
Peer reviewed version

Link to published version (if available):
10.1038/nature21055

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Nature at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21055.html. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan

Jakob Vinther¹,² *, Luke Parry¹,³ *, Derek E. G. Briggs⁴,⁵, Peter Van Roy⁴,⁶

¹School of Biological Sciences, University of Bristol, Life Sciences, Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
² School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK.
³ Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD.
⁴ Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA.
⁵ Department of Geology and Soil Science, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium.

*These authors contributed equally to this work

Exceptionally preserved fossils provide crucial windows on extinct body plans and organismal evolution¹. Molluscs, one of the most disparate animal phyla, radiated rapidly during the early Cambrian (~535-520 Ma)². The problematic fossil taxa Halkeria³ and Orthrozanclus⁴ (grouped in Sachitida) have been assigned variously to stem-group annelids, brachiopods⁴,⁵, stem-group molluscs⁴ or stem-group aculiferans (Polyplacophora + Aplacophora)⁶, but their affinities have remained controversial due to a lack of preserved diagnostic characters. Here we
describe the youngest known sachitid, *Calvapilosa kroegeri* gen. et sp. nov., from the Early Ordovician (~478 Ma) Fezouata biota of Morocco\(^7,8\). The new taxon is characterized by the presence of a single large anterior shell plate and a polystichous radula bearing a median tooth and several lateral and uncinal teeth in more than 125 rows. Its flattened body is covered by hollow spinose sclerites, and a smooth, ventral girdle flanks an extensive mantle cavity. Phylogenetic analyses resolve *C. kroegeri* as a stem group aculiferan together with other single plated forms such as *Maikhanella-Siphogonuchites* and *Orthrozanclus; Halkieria* is recovered closer to the aculiferan crown. These genera document the stepwise evolution of the aculiferan body plan from forms with a single, almost conchiferan-like shell via two plated taxa such as *Halkieria*, to the eight-plated crown group aculiferans. *C. kroegeri* therefore provides key evidence concerning the long debate about the crown molluscan affinities of sachitids. This new discovery strongly suggests that the possession of only a single calcareous shell plate and the presence of unmineralised sclerites are plesiomorphic for the molluscan crown.

44

Mollusca Linnaeus, 1758

45 **Sachitida** He, 1980

46 (This clade includes Aculifera plus stem taxa Halkieriidae, *Orthrozanclus*,

47 Siphogonuchitidae)

48 **Siphogonuchitidae** Qian, 1977

49 (This clade contains *Calvapilosa, Siphogonuchites, Dabashanites, Drepanochites, Lomasulcachites, Lopochites, Quadrosiphogonuchites*)
Calvapilosa kroegeri gen. et sp. nov.

LSID. urn:lsid:zoobank.org:pub:C0C05357-69A2-4937-A28F-C52854CF2870

Etymology. Calva (L), scalp and pilosus (L), hairy/shaggy for the head plate covered by densely spiculated mantle. Species named for Björn Kröger for ‘discovering’ the holotype in the collections at Yale.

Holotype. Yale Peabody Museum YPM 237255 (Fig. 1 and Extended Data Fig. 1).

Other material. Paratypes: YPM 227515 (Fig. 2 a-c, h, j and Extended Data Fig. 2), 530835 (Extended Data Fig. 4c), 530836 (Fig. 2d-e and Extended Data Fig. 4c, d, Extended Data Fig. 5d, e) and 530837 (Extended Data Fig. 4a, b and Extended Data Fig. 5a).

Other specimens: YPM 227641 (Extended Data Fig. 4g, h), 515766.

Locality and horizon. Calvapilosa occurs throughout the classical collecting area of the Fezouata biota to the north of Zagora. The holotype was collected in the Bou Zorgan area. The other specimens were found at additional excavations in this area, near Bni Zoli, in the Bou Glf and Tamagroute areas and on the western flank of Jbel Tigizigaouine. All localities belong to the Fezouata Formation, Araneograptus murrayi graptolite biozone, upper Tremadocian (Lower Ordovician). Detailed locality data are curated with the specimens.

Diagnosis for genus and species. Elongate sachitid-grade aculiferan bearing a single, large subquadratic anterior shell plate with an anteriorly placed mucro. Dense dorsal covering of fine, hollow, spinose sclerites with inconspicuous morphological zonation. Shell plate largely covered by the mantle and sclerites.
The single anterior shell plate is subquadratic in outline, the apex (mucro) situated anterior of the mid-length resulting in a steeper anterior than posterior slope (Fig. 2a-b, Extended Data Fig. 4). A shallow concave posterior median indentation in the shell plate of smaller (subadult) individuals (Fig. 1) is subdued into an almost straight margin in larger specimens (Extended Data Fig. 4). The shell plate exhibits holoperipheral growth. Partially infilled structures along the margin may be aesthete canals (Fig. 2a, b, f)⁶. The dorsal surface of the mantle is covered by hollow spinose sclerites, which do not appear to be arranged in distinct morphological zones. If sclerites are present on the ventral surface they are too small to be discerned (<40µm). The ventral mantle is preserved as a smooth brown-stained surface (Fig. 2a, Extended Data Figs 2a-d, 3). The mantle cavity (evident as a ridge in YPM 227515, and a colour difference in YPM 237255) extends along the entire length of the trunk. The radula bears at least 125 tooth rows comprising a median tooth and several flanking teeth (Fig. 2c-e, Extended Data Figs 5, 6a-e). These can be divided into lateral and uncinal teeth using terminology applicable to chitons⁹ (Extended Data Figs 5e, 6a-e), but the exact number is difficult to discern. The median tooth is separated from a major cusp by at least four smaller lateral teeth (Extended Data Figs 5e, 6d). A suite of oblique and posteriorly oriented uncinal teeth lies further abaxially (Extended Data Figs 5e, 6b, c, e).

The position of the radula confirms that the shell plate is anterior. A posterior shell plate, such as that in *Halkieria evangelista*³,⁵ (and likely also *Oikozetes*), is absent (Figs 1, 2 and Extended Data Figs 1, 2): the cover of dorsal sclerites is uninterrupted where such a plate would be situated (Fig. 1).
The body of the holotype YPM 237255 (Fig. 1), which is the smallest known specimen, is 16.7 mm long and 7.6 mm wide, whereas the almost complete YPM 227515 (Fig. 2, Extended Data Fig. 2a-b) is 68.3 mm in preserved length and at least 31 mm wide. Extrapolating from the largest isolated shell plates (Extended Data Fig. 4), individuals reached at least 120 mm in length. Sclerites vary in cross section from polygonal, to square to circular (Fig. 2j). The dorsal sclerites in YPM 227515 are 54 µm ± ~20 µm in diameter internally, ~70 µm externally, and about 0.8 mm long (Fig. 2i-j, Extended Data Fig. 2f-g). Those in the holotype may solely be preserved as diagenetic infills (Extended Data Figs 5, 6f-i), and are 57 µm ± ~20 µm in diameter and vary from 0.5-1.2 mm in length. It therefore appears that the sclerites in the juveniles were larger relative to their body size. An isolated shell (227641) plate differs in details of shape and is therefore only tentatively assigned to C. kroegeri (Extended Data Fig. 4g-h).

The phylogenetic position of sachitids and wiwaxiids, which have been grouped together into Halwaxiida by some authors, has been a topic of debate. Sachitids have been interpreted as stem brachiopods or basal aculiferan molluscs, while halwaxiids as a whole have been considered to represent either stem molluscs, or the stem group of both brachiopods and annelids (see Supplementary Text). C. kroegeri provides new data, which allow the affinities of sachitids and wiwaxiids to be clarified. It possesses a number of unequivocal molluscan synapomorphies identified in sachitids for the first time, including a radula and mantle cavity, together with mineralized sclerites and a shell plate. Such a combination occurs only in aculiferan molluscs (chitons and aplacophorans) among extant taxa. C. kroegeri is distinguished from other sachitids by the possession of slender, spinose sclerites and the lack of
conspicuous sclerite zones (distinct sclerite zones may also have been absent in siphogonuchitids13). Sclerite morphology and zonation also vary among modern aculiferans9.

Our phylogenetic analysis (Fig. 4, Extended Data Figs 8-9; see Supplementary Text and nexus files with character matrices) suggests an evolutionary sequence from Cambrian sachitids, via \textit{C. kroegeri}, towards crown aculiferans. The analysis indicates that a single anterior shell plate was acquired prior to the addition of further shell plates in \textit{Halkiera} and crown group aculiferans. Fossil, morphological and molecular data in a Total Evidence approach14 suggest that the aculiferan crown group diversified around the Cambrian/Ordovician boundary15 (Fig. 4, Extended Data Fig. 9). The earliest crown or upper stem aculiferans (e.g. \textit{Matthevia15}) have an anterior holoperipheral valve followed by seven self-similar mixoperipheral/hemiperipheral valves. Extant chitons maintain the plesiomorphic complement of eight shell plates but this number is reduced, ultimately to zero, in aplacophorans. This loss is heralded by the presence of seven shell plates in the Silurian total group aplacophorans \textit{Acaenoplax16} and \textit{Kulindroplax17}, and echoed in seven serially repeated calcium-secreting papillae in living \textit{Chaetoderma18} and seven iterated regions in a neomeniomorph aplacophoran post-larva11. During development, the anterior and intermediate shell plates form first and the posterior shell plate is added later19. The absence of a holoperipheral posterior shell plate in \textit{Kulindroplax} may indicate that it was lost before the intermediate and anterior shell plates in aplacophorans, and supports the scenario in which aplacophorans evolved through progenetic paedomorphosis20.
We recovered the 17-plated multiplacophorans21 outside the polyplacophoran crown group, in a similar position to that obtained previously22. Our analyses therefore suggest that the separation of lateral shell plates in Multiplacophora is an autapomorphy that is not related to the origin of the aculiferan or polyplacophoran body plan. The similarities between multiplacophoran shells and those in crown group chitons21,22, and even in very derived Cretaceous chitons22, suggests convergent evolution.

The placement of \textit{C. kroegeri}, \textit{Halkieria} and the other sachitids on the stem of Aculifera, rather than on the molluscan stem, allows us to generate a new hypothesis for the assembly of the molluscan body plan. The ancestral mollusc was previously considered shell-less and aplacophoran-like23 or showing the eight-fold serialization evident in chitons and the soft tissues of monoplacophorans24. Evidence from molecules, fossils and morphology, however, indicates that the aculiferan morphology is not plesiomorphic—the group is a derived clade and sister taxon to conchiferans25. Aplacophorans lost their shells secondarily – thus the characters shared by polyplacophorans and conchiferans, such as possession of a shell, are plesiomorphic for the mollusc crown group.

The presence of multiple muscle scars in monoplacophorans, fossil cephalopods26 and bivalves has been invoked as evidence of a chiton-like ancestor for conchiferans. The phylogenetic position of \textit{C. kroegeri}, however, indicates that a single shell is a synapomorphy of Aculifera as well as Conchifera. This is consistent with the fossil evidence: diverse conchiferans and sachitids appear in the earliest Cambrian (~535 Ma) whereas the first unequivocal multivalved chiton-like fossils are late Cambrian in age (~495 Ma)27. Thus the
evidence suggests that a single shell was present in the molluscan crown ancestor.

C. kroegeri suggests that the ancestral radula comprised a median tooth and several lateral teeth, the heterodontous and polystichous condition found in chitons and several living conchiferans. A comparable morphology is evident in *C.5kroegeri* suggests that the ancestral radula comprised a median tooth and several lateral teeth, the heterodontous and polystichous condition found in chitons and several living conchiferans. A comparable morphology is evident in *Odontogriphus* and *Wiwaxia* from the Burgess Shale, which we recovered on the molluscan stem (Fig. 4), but the radulae of these taxa are characterized by only 4-6 largely undifferentiated tooth rows. The radula was lost in bivalves and reduced in some aplacophorans such as *Chaetoderma*, which has a single tooth row.

Aculiferan sclerites are chitinous structures enveloping a calcareous body. The chitinous bristles of chitons and juvenile octopods are probably homologous, and likely represent a synapomorphy of a spiralian subgroup. Unmineralised chitinous sclerites are also present in wiwaxiids, suggesting that they were also a feature of the ancestral mollusc.

The discovery of a well-preserved radula in an articulated sachitid demonstrates their molluscan affinities and provides a likely answer to the phylogenetic position of these animals. The morphology of *C. kroegeri* provides key evidence informing the stepwise evolution of the aculiferan body plan from a single shelled form, via two shells, to the eight plated chitons and secondarily reduced vermiform aplacophorans. Our new discovery suggests that the last common ancestor of aculiferans and conchiferans possessed a radula with numerous rows of differentiated teeth, non-biomineralised chaetae, and a single calcareous shell. This body plan gave rise to the remarkable morphological
diversity characteristic of the molluscan classes - a disparity that has confounded previous attempts to reconstruct the evolutionary history of the group.

References

Supplementary information is available in the online version of the paper.

Acknowledgements M., B. and L. ‘Ou Said’ Ben Moula collected the specimens and provided support in the field. B. Kröger ‘discovered’ the holotype in 2014 amongst freshly collected and at the time uninventoried material at the Yale Peabody Museum. L. Ben Moula and B. Tahiri provided practical assistance. S. Butts and J. Utrup curated specimens and facilitated access to the collections at the YPM. The drawings of *C. kroegeri* were made by Zubin Dutta and the physical reconstruction was done by Esben Horn (10tons.dk). The research was supported by National Science Foundation Grant EAR-1053247 and by the Division of Invertebrate Paleontology, YPM.

Author Contributions JV initially analysed the fossils and wrote the first manuscript draft with significant input to both from all other authors. LP and JV
assembled the character matrix. LP did the phylogenetic analyses and produced the interpretative drawings. PVR, JV and LP photographed the fossils. PVR obtained the specimens and locality information through Mohamed ‘Ou Said’ Ben Moula, and prepared the fossils. DEGB facilitated curation and accession of material to YPM.

Author information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Readers are welcome to comment on the online version of the paper. Correspondence and request for materials should be addressed to JV (jakob.vinther@bristol.ac.uk).

Figure 1 | *Calvapilosa kroegeri*, holotype YPM 237255, from the Lower Ordovician (Tremadocian) Fezouata Formation, near Zagora, Morocco. a, Part; b, Interpretative drawing.

Figure 2 | Details and additional specimens of *C. kroegeri*. a, Paratype YPM 227515, part, preserving both dorsal and ventral mantle (Extended Data Fig. 3) in addition to anterior shell. b, Radial imprints of putative aesthete canals, arrowed. c, Radula. d, Radula in YPM 530836, see also Extended Data Fig. 4 and 5. e, Detail of (d), note the attachment base of a median tooth (arrowed). f, Infilled putative radial aesthete canals (arrowed) in YPM 530836. g, Sclerites near margin YPM 237255 (Fig. 1). h, Sclerites from folded section of dorsal mantle in YPM 227515 (a and Extended Data Fig. 2). i, SEM detail of sclerites in
longitudinal section in YPM 237255. j, Sclerites in cross section in YPM 227515, showing angular external outlines.

Figure 3 | **Reconstruction of Calvapilosa kroegeri, juvenile.** a, Dorsal view. b, ventral view. c, lateral view. Colour scheme is speculative, while soft tissues are inferred by phylogenetic bracketing. See also Extended data Fig. 7. Resin model constructed by Esben Horn (10tons.dk).

Figure 4 | **Time tree of aculiferan evolution based on a Bayesian total evidence analysis.** Based on 62 taxa, 134 morphological characters and 2054 amino acid loci analysed in MrBayes. Error bars at nodes are 95% HPD intervals, and the time axis is truncated at the end of the Permian and within the Ediacaran. See Extended data Fig. 8 and 9 and Supplementary Information for details of the phylogenetic analysis. Scale in millions of years before present.

METHODS

No statistical methods were used to predetermine sample size.

The fossils were mechanically prepared using PaleoToolsME9100, PaleoAro, MicroJack5 and MicroJack1 air scribes, and needles and scalpels. Specimens were glued with Paraloid B-72 dissolved in acetone.

Lighting for the overview photographs of dry, uncoated specimens was provided by a Schott KL 1500 fiber optic light source with moveable polarisers fitted at the end of the goosenecks; a Cokin XPro X164 circular polarizer was mounted on the camera lens and crossed with the polarizer of the light source to maximize contrast. All parts were lit from the northwest. Counterparts were illuminated from the southwest and mirrored horizontally in Adobe Photoshop CC 2015.4 to create a
false-positive relief image and facilitate direct comparison of part and counterpart.

Photographs were taken with a Hasselblad H4D-200MS medium frame digital single-lens reflex camera attached to a computer and operated remotely in six-shot mode through Hasselblad Phocus 8.2.1 software to acquire images of 200 megapixel resolution using a Hasselblad HC Macro 4/120mm II lens stopped down to f/9.5. Lens distortion was corrected using Hasselblad Phocus 8.2.1 software. Stacks of between 20 and 50 images were taken in aperture priority mode, with manual focusing through the focal plane. After exporting the FFF-format digital negatives to TIFF from Hasselblad Phocus 8.2.1, the photographs were stacked in Zerene Stacker Pro 1.04 Build T201602151850 (64 bit) using the PMax pyramid stack algorithm. The stacked images were then post-processed in Adobe Photoshop CC 2015.4, first applying the ‘Sharpen’ function, followed by removal of the background. Levels were then manually balanced while holding down the ‘alt’ key to prevent clipping of pixels in the specimen; the grey level was always retained at 50%. In a few cases, some minor adjustments were made to the exposure. The high-resolution images were downsampled in Adobe Photoshop CC 2015.4 to lower resolution TIFF files for use in the plates.

Additional photographs were taken with a Nikon d800 using a 105 mm microNikkor lens with or without a 2x teleconverter. Images were taken using a variety of configurations and lighting conditions, including crossed polarised light and normal incident light, in order to highlight different features. Details were imaged under a Leica M60 or M205 C microscope. In some cases, specimens were whitened with ammonium chloride prior to photography to enhance contrast.

Specimens were also imaged in a Zeiss Sigma HD VP Field Emission SEM to reveal fine details and preservation of shell plates and sclerites.
A morphological matrix of 62 taxa and 134 morphological characters was analysed using equal and implied weights \(k=3\) parsimony with TNT 1.1 using traditional search options with 10000 replicates. Bayesian analyses of the morphological data utilised MrBayes 3.2.6 and were performed under the Mkv + G model for discrete characters. Total evidence analyses were performed using a modified version of a published molecular dataset consisting of 2054 concatenated amino acids from 7 nuclear house keeping genes with MrBayes 3.2.6 under the uniform tree prior using the IGR clock model, and Mkv + G and LG + I + G for the morphological and molecular partitions respectively. Full details of phylogenetic analyses are included in Supplementary Information.

Data Availability Statement.

Nexus files, containing morphological and molecular sequences used in phylogenetic and total evidence analyses are provided in the online supplementary data. All specimens have been figured in good quality in the extended data figures and are furthermore available in original resolution from the corresponding author.

Extended Data Figure 1 | *Calvapilosa kroegeri* YPM 237255, holotype. a, Part illuminated from north west. b, Counterpart, illuminated from south west and then mirrored horizontally. c, Part, submerged in water.

Extended Data Figure 2 | *Calvapilosa kroegeri* YPM 227515, paratype. a, Part, illuminated from north west. b, Counterpart, illuminated from south west and then mirrored horizontally. c, Interpretative drawing of YPM 227515 part and counterpart combined. Interpretations below the stippled line are derived
from the counterpart. Boxes denote position of details. Areas shown in green are of exposed ventral mantle, areas within dashed lines denote gaps in preservation, darker blue shows the teeth of the radula and lighter blue denotes the shell. Sclerites are shown in orange but are only drawn where lying flat or covering the shell. d, Exposed ventral mantle, which is preserved in darker colouration but shows no visible sclerites. e, Folded dorsal mantle which preserves dorsal sclerites in longitudinal section. f, Dorsal sclerites. g, Dorsal sclerites in cross-section and marginal sclerites in longitudinal section.

Extended Data Figure 3 | Cartoon explaining preservation of YPM 227515, cross-sectional view. a, Prior to burial. b, Burial. c, Decay and replacement of the mantle and sclerites by pyrite. d, Compaction. e, Weathering and uneven splitting along the dorsal mantle, cross cutting sclerites and along smooth, ventral mantle.

Extended Data Figure 4 | Additional specimens of C. kroegeri and Calvapilosa sp. a, YPM 530837, isolated head valve with radula preserved. b, counterpart, mirrored. c, YPM 530836, isolated head valve with radula preserved. d, counterpart, mirrored. e, YPM 530835, isolated head valve. f, counterpart, mirrored. g, YPM 227641, Calvapilosa ?kroegeri. isolated head. h, counterpart, mirrored.

Extended Data Figure 5 | The radula of C. kroegeri. a, YPM 530837. b, YPM 227515. c, YPM 237255. d, YPM 530836. e and f, detail of (d) with explanatory drawing showing basal attachment points of radula teeth. Labels denote: Ur,
uncinal region; Mc, major cusp; La, lateral area; Mt, median tooth. Stippled areas obscured by overlying mineral.

Extended Data Figure 6 | SEM images of C. kroegeri sclerites and radula.

a, YPM 530836 indicating regions from which SEM photomicrographs b-e were obtained. b, left major cusps and adjacent uncinal teeth. c, left uncinal region. d, overview showing median teeth (a single tooth indicated by white arrow), broad flanking region with lateral teeth (a single tooth indicated by black arrow) and major cusps. e, right uncinal teeth. f, YPM 237255 indicating where SEM photomicrographs g-i were obtained. g, sclerites with diagenetic infill. h, sclerites in longitudinal section. i, sclerite in longitudinal section preserved as a void. b-h and g-i were taken using backscatter and secondary electron imaging respectively.

Extended Data Figure 7 | Reconstruction of C. kroegeri.

a, juvenile. b, adult dorsal view. c, adult lateral view. d, adult ventral view. Drawing by Zubin Dutta.

Extended Data Figure 8 | Morphological phylogenetic analyses of molluscs incorporating C. kroegeri.

a, strict consensus of 369 trees of length 209 from parsimony analysis under equal character weighting, numbers at nodes are from 1000 bootstrap replicates, 1000 Jacknife replicates and Bremer support respectively. b, parsimony analysis under implied weighting (k=3), numbers at nodes are from 1000 replicates of symmetric resampling. c, Results of Bayesian analysis using the mkv + Γ morphology model, numbers at nodes are posterior probabilities.
Extended Data Figure 9 | Bayesian Total evidence dating analysis

Incorporating *C. kroegeri*. Analysis performed using the uniform tree prior and LG + Γ and *mkv* + Γ for the molecular and morphological data respectively. The topology shown is for analysis using a 549Ma maximum on the age of the molluscan crown group. Error bars on node ages are 95% HPD intervals for both unconstrained analyses (red) and analyses with the maximum age constraint on molluscs (purple). Numbers at nodes are posterior probabilities from the constrained analysis.