
Peer reviewed version

Link to published version (if available):
10.1109/mwsym.2017.8058730

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at http://ieeexplore.ieee.org/document/8058730/. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Analysis of the Coverage of Tunable Matching Networks with Three Tunable Elements

Eyad Arabi, Xingran Jiao, Kevin Morris and Mark Beach
Communication Systems and Networks Research Group
University of Bristol
Bristol, BS8 1UB, UK
Email: {eyad.arabi, kevin.morris}@bristol.ac.uk

Abstract—Tunable matching networks are crucial for agile radio frequency circuits. To optimally design such networks the overall coverage needs to be determined. In this work, analytical formulas for the coverage area within the Smith chart of a three-element tunable-network are derived. It has been found that up to sixteen circles bound the coverage area. Analytical expressions for the centers and radii of these circles have been derived and verified by circuit simulation as well as measured data. The formulas in this work can be readily integrated into CAD tools, thus providing a valuable tool for the design of tunable circuits.

I. INTRODUCTION

Reconfigurable wireless transceivers are becoming very important for future systems such as long term evolution (LTE) and LTE-advanced. At the heart of such systems, are tunable circuits like filters, antennas, and matching networks (MN). The latter are important to design power amplifiers [1] and antennas [3].

Lumped-based MNs are very attractive at frequencies below three GHz due to their small form factors and high qualities. Variable capacitors and inductors can be used to design tunable networks. Since variable inductors cannot be physically realized, a variable capacitor in parallel with a fixed inductor can be used. A typical topology with three tunable elements is analyzed in this work as illustrated in Fig. 1.

One of the main characteristics the RF designer needs to know about a tunable MN is the range of complex impedances it can match to a specific load (typically 50 Ohm). This range of impedances can be described by an area within the Smith chart. If the centers and radii of these circles are derived, the boundary can be defined. A typical boundary for the network of Fig. 1 is illustrated in Fig. 3-a & b.

Three main cases can be considered for the circuit of Fig. 1 by sweeping each of the tunable capacitors while keeping the other two at constant values (minimum (m) or maximum (x)). From each case four circles are obtained for the combinations of the maximum and minimum of the two constant capacitors (mm, mx, xm, and xz) resulting in a total of twelve circles. Moreover, if C2, C3, and L are in resonance, the coverage area might be extended by up to four additional circles, which are referred to here as auxiliary circles. All of the sixteen circles are tangential to the circle of |Γ|=1. If the tangent point is denoted A(xA,yA) and point B(xB,yB) is any other point, the center (xc, yc) and radius (rc) can be calculated by:

\[ x_c = \frac{x_A \left(x_B^2 - x_A^2 + y_B^2 - y_A^2\right)}{2 \left(-x_A^2 - y_A^2 + x_Ax_B + y_Ay_B\right)} \]  \hspace{2cm} (1a)

\[ y_c = \frac{y_A \left(x_B^2 - x_A^2 + y_B^2 - y_A^2\right)}{2 \left(-x_A^2 - y_A^2 + x_Ax_B + y_Ay_B\right)} \]  \hspace{2cm} (1b)

\[ R_c = \sqrt{(x_c - x_A)^2 + (y_c - y_B)^2} \]  \hspace{2cm} (1c)

\[ R_c = \sqrt{(x_c - x_A)^2 + (y_c - y_B)^2} \]

Fig. 1. Schematic of the tunable matching network analyzed in this work.

II. DERIVATION OF THE BOUNDARY CIRCLES

In [4] it was found that as one tunable parameter of the matching network is varied between its limits while all the others are kept constant, the locus of the matched impedance follows an arc on the impedance plane. Since the relation between the complex impedance plane and the Γ plane is a bilinear transformation, circles on the complex plane are mapped into circles on the Γ-plane [7]. Therefore, the coverage area of any matching network is bounded by circles in the Smith chart. If the centers and radii of these circles are calculated, the boundary can be defined. A typical boundary for the network of Fig. 1 is illustrated in Fig. 3-a & b.

Thus formula can be presented against other design metrics [5]. In our previous work [6], we have derived analytical formulas for the coverage in the Smith chart for networks with two tunable elements. In this paper, analytical formulas for a matching network with three tunable elements (Fig. 1) are presented for the first time. It has been found that the boundary of the coverage area consists of up to sixteen arcs. Analytical formulas for the radii and centers of these arcs have been derived. These formulas are suitable for CAD tools and the same analysis method presented here can be used for networks with more or less tunable components. Therefore, this analysis provides a convenient tool to design and optimize tunable matching networks.
respectively. These equations are used in the following sections to define the circles of the boundary.

A. $C_1$ variable, $C_2$ and $C_3$ are fixed

In the first case $C_2$ and $C_3$ are fixed at either their minimum ($C_{i, \text{min}}, i=2,3$) or maximum ($C_{i, \text{max}}, i=2,3$) while $C_1$ is varied between its limits. For the sake of mathematical convenience, $C_3$ will be allowed to take negative as well as positive values. The tangent point can be found by assigning infinity to $C_1$, which results in a short at the input of the matching network; therefore, the coordinates of the reflection coefficient are given by:

$$x_{A1} = -1 \quad \text{and} \quad y_{A1} = 0. \quad (2a)$$

For the other point $C_1$ can be assigned a value of zero and the real and imaginary parts of the input admittance $Y_{in}$ can be calculated as:

$$\mathcal{R}\{Y_{in}\} = (\frac{1}{\omega L} - \omega C_2) \left[ Y_0\omega C_3 - Y_0 \left( \omega (C_3 + C_2) - \frac{1}{\omega C_3} \right) \right]$$
$$\mathcal{R}\{Y_{in}\} = Y_0^2 + \left( \omega (C_3 + C_2) - \frac{1}{\omega C_3} \right)^2 \quad (3a)$$

and

$$\mathcal{I}\{Y_{in}\} = \frac{\omega C_2 - \frac{1}{\omega L}}{Y_0^2 + \omega C_3 \left( \omega (C_3 + C_2) - \frac{1}{\omega C_3} \right)}, \quad (3b)$$

from which the real and imaginary values of $\Gamma_{in}$ are:  

$$x_{B1} = \frac{-(\mathcal{R}\{Y_{in}\})^2 + Y_0^2 - (\mathcal{I}\{Y_{in}\})^2}{(\mathcal{R}\{Y_{in}\}) + Y_0} \quad \text{and} \quad (4a)$$

$$y_{B1} = \frac{-2Y_0\mathcal{I}\{Y_{in}\}}{(\mathcal{R}\{Y_{in}\}) + Y_0^2 + (\mathcal{I}\{Y_{in}\})^2}, \quad (4b)$$

respectively. The results of (2), (3) and (4) can be used with (1) to calculate the circle parameters for this case.

B. $C_2$ variable, $C_1$ and $C_3$ are fixed

In this case $C_1$ and $C_3$ are fixed at either their minimum ($C_{i, \text{min}}, i=1,3$) or maximum ($C_{i, \text{max}}, i=1,3$) while $C_2$ is varied between its limits. The tangent point occurs when $C_2 = 1/(\omega^2 L)$ and its coordinates are given by

$$x_{A2} = \frac{Y_0^2 - (\omega C_3)^2}{Y_0^2 + (\omega C_3)^2} \quad (5a)$$

and

$$y_{A2} = \frac{-2Y_0\omega C_3}{Y_0^2 + (\omega C_3)^2}. \quad (5b)$$

The second point is calculated by assigning infinity to $C_2$ and calculating the real and imaginary parts of $Y_{in}$ as

$$\mathcal{R}\{Y_{in}\} = 0 \quad \text{and} \quad (6a)$$

$$\mathcal{I}\{Y_{in}\} = \omega (C_1 + C_3), \quad (6b)$$

respectively. Equations (5), (6) and (4) can be used with (1) to calculate the boundary circles for this case.

C. $C_3$ variable, $C_1$ and $C_2$ are fixed

In this case $C_1$ and $C_2$ are fixed at either their minimum ($C_{i, \text{min}}, i=1,2$) or maximum ($C_{i, \text{max}}, i=1,2$) while $C_3$ is varied between its limits. The tangent point occurs when $C_3$ is assigned a value of infinity to give real and imaginary values of $Y_{in}$ as

$$\mathcal{R}\{Y_{in}\} = 0 \quad \text{and} \quad (7a)$$

$$\mathcal{I}\{Y_{in}\} = \omega (C_2 + C_1) + \frac{1}{\omega L}, \quad (7b)$$

respectively. The second point is calculated by assigning zero to $C_3$ and calculating the real and imaginary parts of $Y_{in}$ as

$$\mathcal{R}\{Y_{in}\} = \frac{Y_0 (\omega C_2 - \frac{1}{\omega L})^2}{Y_0^2 + (\omega C_2 - \frac{1}{\omega L})^2} \quad \text{and} \quad (8a)$$

$$\mathcal{I}\{Y_{in}\} = \omega C_1 + \frac{Y_0^2 (\omega C_2 - \frac{1}{\omega L})}{Y_0^2 + (\omega C_2 - \frac{1}{\omega L})^2}, \quad (8b)$$

respectively. Equations (7) and (8) can be used with (4) to calculate the coordinates of the two points, which can be used with (1) to calculate the boundary circles.

D. The auxiliary circles

As discussed previously, up to four auxiliary circles might be part of the boundary. These circles result from a resonance condition of $C_2$, $C_3$ and $L$. Therefore, they define maximum and/or minimum input conductances and they do not depend on $C_1$. They can be plotted using the relations derived for variable $C_1$ in section II-A with appropriate values of $C_2$ and $C_3$ obtained by evaluating the maximum and minimum of the input conductance. For simplicity, the combination of $C_2$ and $L$ can be considered as a variable inductor with inductance of $L/(1 - \omega^2 LC_2)$. The first derivative technique can be used to obtain the condition for maximum/minimum criteria as:

$$C_2' + C_3' = \frac{1}{\omega^2 L}, \quad (9)$$

where $C_2'$ and $C_3'$ are the critical values of $C_2$ and $C_3$ at which resonance occurs. From this condition, up to four circles can be plotted by assigning the maximum and minimum capacitance to $C_2'$ and evaluate $C_3'$ from (9). Two circles can be plotted using these values with the variable $C_1$ circles derived previously. The other two circles can be plotted by reversing the assignment of $C_2'$ and $C_3'$. If either of the evaluated values

![Fig. 2. Illustration of the twelve arcs of the boundary area. The two ends and any third point are sufficient to plot the arcs. The auxiliary arcs are not included.](image-url)
Table of Contents

E. Connecting the Boundary Area

Formulas for the centers and radii of the sixteen different circles of the boundary have been derived in the previous sections. Many of these circles intersect at multiple points, therefore a systematic method to identify and connect the different arcs is described in this section. In Fig. 2 eight different points are presented for all the combinations of the maximum and minimum values of the three capacitors. These points are denoted $ijk$ where $i, j \in \{1, 2, 3\}$, $j, k \in \{m, x\}$, where $m$ represents the minimum value and $x$ represents the maximum value. The values used in the theory are: $L=3nH$, $C_{min}=0.2\, \mu F$, and $C_{max}=10\, \mu F$.

of $C_{2}$ and $C_{3}$ fall outside the range of $C_{min}-C_{max}$, the associated circle is not part of the boundary. Therefore, part or all of the auxiliary circles might not be necessary to define the boundary.

IV. Conclusion

In this work, a method for the analysis of tunable matching networks is presented. Formulas for the coverage of a three-element matching network has been derived as proof of concept. It has been found that up to sixteen circles are needed to completely define the boundary area. The formulas are simple and can be used with CAD tools to analyze and optimize tunable matching networks.

ACKNOWLEDGMENT

This work is supported by the British Engineering and Physical Sciences Research Council (EPSRC), under the FARAD project with grant number EP/M01360X/1 in collaboration with the University of Sheffield.

REFERENCES