Destination images, holistic images and personal normative beliefs:

Predictors of intention to revisit a destination

Nikolaos Stylos
The University of Wolverhampton Business School, MN Building, Nursery Street, Wolverhampton WV1 1AD, England, United Kingdom

Chris A. Vassiliadis
Department of Business Administration, University of Macedonia, 156 Egnatias Str., PO Box 1591, 54006, Thessaloniki, Greece

Victoria Bellou
Department of Economic Studies, University of Thessaly, 43 Korai Str., 38333, Volos, Greece

Andreas Andronikidis (*)
Department of Business Administration, University of Macedonia, 156 Egnatias Str., PO Box 1591, 54006, Thessaloniki, Greece

(*) Corresponding Author

Abstract

This research examines the complex relationship between components of images of destinations and behavioral intentions, incorporating two pivotal constructs that have not been explored in the related literature, namely holistic image and personal normative beliefs (PNBs). Previous studies incorporating destination images as predictors of intention to revisit have mostly investigated their direct effect. This research integrates holistic image as a mediator and PNBs as a moderating variable. The findings verify the mediating role of holistic image for predicting tourists’ intentions to revisit a destination, supporting a model that incorporates a partial effect and two indirect mediations. Interestingly, only affective and conative images contribute to the prediction of tourists’ intentions to revisit a destination through the holistic image towards this destination. Moreover, PNBs moderate the effect that
Conative destination images have on tourists’ holistic images. Practically, the research sheds light to factors that affect tourists' tendency to select a tourism destination, which can serve as a basis for tailoring the effective positioning of destinations.

Keywords: destination images, holistic image, personal normative beliefs, intention to revisit a destination
1. Introduction

The impact of tourism in the economic growth of countries and local destinations has been widely confirmed (Song, Dwyer, & Cao, 2012; Tugcu, 2014; Webster & Ivanov, 2014), causing competition among countries in the tourism industry (Dwyer et al., 2009; Molina, Frías-Jamilena, & Castañeda-García, 2013). In the case of Greece, travel and tourism contributes 7.0% of GDP directly, leading to a total contribution of 17.3% to the national economic performance, directly supporting 340,500 jobs (9.4% of total employment) and generating 12.2 billion euros of invisible exports (24.5% of total exports) in 2014 (World Travel & Tourism Council, 2015).

Tourism destinations are central to the tourism industry (Kozak & Rimmington, 1999), with destination image critical to destination positioning (Kotler, Haider & Rein, 1993; Pike & Ryan, 2004; Sönmez & Sirakaya, 2002) and destination selection process (Chon, 1990; Hunt, 1975; Pike, 2008). However, according to Tasci, Gartner, & Cavusgil (2007), there is no systematic structure that defines and operationalizes the relationship between destination image and behavioral intentions. This creates a vague picture of the construct in the research community.

In particular, the vast majority of previous studies emphasize the role of cognitive and affective images for consumer attitude and behavioral intentions (Bigné, Sánchez & Sanz, 2009; Bigné, Sánchez, & Sánchez, 2001; Chew & Jahari, 2014; Hosany, Ekinci, & Uysal, 2006; Jang, Bai, Hu, & Wu, 2009; Kim & Yoon, 2003; Yüksel & Akgül, 2007). Tourism research has almost completely neglected the conative aspects of destination image when predicting consumer attitude and behavioral intentions (Gallarza, Saura, & García, 2002; Tasci, 2009; White, 2014), despite the fact that many researchers agree that destination image is crucial to
tourists’ perceived images (Chen, Ji, & Funk, 2014; Dann, 1996; Gartner, 1993; King, Chen, & Funk, 2015; Li, Pan, Zhang, & Smith, 2009; Nadeau, Heslop, O’Reilly, & Luk, 2008; Pike & Ryan, 2004; Stepchenkova & Morrison, 2008). In addition, the relationship between cognitive, affective, and conative images also remains vague as Gartner (1993, 1994) has proposed a hierarchical relationship (cognitive-affective-conative) but several other researchers have proposed that conative image is predicted by both cognitive and affective images (Agapito, Valle, & Mendes, 2013; Roth & Diamantopoulos, 2009).

Taken together, the present study sets out to enrich current knowledge of the effect of destination images on tourists’ intention to revisit a destination. In doing so, first, we investigate all three dimensions of destination images. Second, we investigate both the direct and indirect effects of all three types of destination images on tourists’ intention to revisit, via holistic image. To further delineate this relationship, we look into the moderating role of personal normative beliefs (PNBs) on the effect that conative images separately has on holistic image and the moderating effect that all destination images have on tourists’ intention to revisit a destination, through holistic image (Figure 1). PNBs are incorporated in our model in order to capture the influence of personal reasoning on tourists’ decision making for selecting a destination. As researchers note, PNBs illuminate the importance of self-evaluative personal standards or goals associated with an ideal-self in shaping one’s formation of intention and behavior (Abraham, Sheeran & Johnston, 1998; Bandura, 1998; Harland, Staats & Wilke, 1999, 2007; Miniard and Cohen, 1983; Triandis, 1977).

The contribution of this research is of both theoretical and practical value. Theoretically, this research draws attention to the complexity of the relationship between image components and behavioral intentions, incorporating two pivotal
constructs that have not been explored in the related literature, namely holistic image (Baloglu & McCleary, 1999a, b; Echtner & Ritchie, 1993) and PNBs (Jaccard & Davidson, 1975; Schwartz & Tessler, 1972; Triandis, 1977, 1980). From a practical viewpoint, we shed light to factors that affect tourists' tendency to select a tourism destination, which can serve as a basis for the effective positioning of tourism destinations (Ahmed, 1991; Pike & Ryan, 2004).

Figure 1: The conceptual model under investigation

2. Research background

2.1. Destination image

Image is a construct that is widely applied in marketing and behavioral sciences to represent people’s perceptions of products, objects, behaviors and events driven by beliefs, feelings, and impressions (Baloglu & Brinberg, 1997; Crompton, 1979). In the
area of marketing tourist destinations, image has been given various definitions. Most researchers agree that the image of a destination is a set of impressions, ideas, expectations and emotional thoughts an individual has of a specific place (Assaker, 2014; Baloglu & McCleary, 1999a; Beerli & Martin, 2004; Kim & Richardson, 2003).

The multi-attribute concept of destination image serves as common ground for most destination image researchers (Dann, 1996; Gallarza, Saura, & García, 2002; Huang & Gross, 2010; Zhang, Fu, Cai, & Lu, 2014). The two main approaches are the ones developed by Echtner and Ritchie (1991) and Gartner (1993), with the latter being more popular among tourism scholars (Zhang et al., 2014). Gartner’s (1993) approach postulates that destination image consists of cognitive, affective and conative components. Specifically, the cognitive image is expressed through the sum of beliefs and knowledge reflecting evaluations of the perceived attributes of the destination (Bigné, Sánchez & Sanz, 2009; del Bosque & Martín, 2008; Stylos & Andronikidis, 2013). In addition, with respect to cognition, Pike (2008) argued that it is the sum of what is known or believed by the individual about a tourism destination, as well as the associated knowledge that could or could not be derived from a previous visit. The affective component refers to the emotional responses or appraisals of the individual, reflecting the tourist’s feelings towards the destination (Baloglu & Brinberg, 1997; Baloglu & McCleary, 1999a; Bigné, Andreu, & Gnoth, 2005; Hallmann, Zehrer, & Müller, 2014). According to Russell and Snodgrass (1987) people develop affective evaluations for a place before entering that environment, during their presence there and after leaving that place to move somewhere else. Moreover, Klenosky (2002) has shown that before tourists make their travel decision, they formulate a more positive affective destination image when the destination-related emotions match their motives and the benefits pursued. The
conative component of destination image represents tourists’ active consideration of a place as a potential travel destination (Gartner, 1993). Although conative destination image has been considered by many scholars as synonymous to intention (King et al., 2015; Pike & Ryan, 2004; Prayag, 2009; Woodside & Dubelaar, 2002), representing how and why knowledge and feelings of new or repeat visitors contribute to the selection of a specific destination for vacations (Pike & Ryan, 2004; Tasci et al., 2007), there is evidence that conative destination images and intentions are distinct constructs (Perugini & Bagozzi, 2004; Prestwich et al., 2008; White, 2014). Hence, destination image theory suggests that cognitive and affective images represent individuals’ subjective associations or perceptions related to a destination’s characteristics (Chen & Uysal, 2002; Gartner, 1993; Kim & Richardson, 2003) and conative image outlines the idealized and desired future situation the individual wants to develop for himself/herself (Dann, 1996). Similarly, Bagozzi (1992, p. 184) notes that, “A person who finds an act appealing may have no desire to perform it and either may intend not to do it or may form no intention one way or the other”, stressing the role of what an image connotes for intention to act. Table 1 summarizes the definitions and related views regarding destination images.

The extant literature is not clear regarding the interrelationship among cognitive, affective, and conative images. For example, Gartner (1993) argued that the components are hierarchical with cognitive images preceding affective image, and affective image preceding conative image. This proposition corresponds with Fishbein and Ajzen’s (1975) attitude theory which is based on a sequentially causal relationship between cognition, affect, and conation. In contrast with that, Bagozzi (1992) insists that both cognition and affect have a direct effect on conation.
Table 1 Construct of Destination Image (DI)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baloglu & McCleary (1999); Kim & Richardson, (2003); Beerli & Martin, (2004a,b); Assaker (2014);</td>
<td>DI is a set of impressions, ideas, expectations and emotional thoughts an individual has of a specific place.</td>
</tr>
<tr>
<td>Gartner (1989; 1993; 1994); Echtner & Ritchie (1993); Dann, (1996); Pike & Ryan, (2004); Tasci, Gartner, & Cavusgil (2007); Tasci & Gartner (2007); Konecnik & Gartner, (2007); Stepchenkova & Mills, (2010)</td>
<td>DI is a multi-attribute concept; DI consists of cognitive, affective and conative components. DI is a complex combination of various products and associated attributes.</td>
</tr>
<tr>
<td>Echtner & Ritchie, (1993, 2003); Baloglu & McCleary, (1999); Beerli & Martin, (2004a,b)</td>
<td>The three DI components or dimensions contribute to the formation of a global image that is considered to be greater than the sum of its parts, and that is used by the consumer to simplify the task of decision making.</td>
</tr>
<tr>
<td>Gartner, (1993); Kim & Yoon, (2003); Li et al., (2010)</td>
<td>The three dimensions of destination image can be studied separately in order to understand the complexity of the whole.</td>
</tr>
<tr>
<td>Tasci, Gartner & Cavusgil (2007)</td>
<td>The essence of DI is to find how tourism destinations are seen and felt.</td>
</tr>
<tr>
<td>Sönmez & Sirakaya (2002)</td>
<td>DI is based on the tourist's expected benefits, psychological characteristics, and meanings.</td>
</tr>
<tr>
<td>Agapito et al., (2013)</td>
<td>DI consists of a subjective interpretation of a destination made by an individual which influences tourist behavior.</td>
</tr>
<tr>
<td>Molina et al., (2010)</td>
<td>DI serves many functions, such as expressing ideas, sending messages.</td>
</tr>
</tbody>
</table>

2.2. *Intention to revisit a destination*

Intention to revisit a tourism destination has been defined as an individual’s readiness or willingness to make a repeat visit to the same destination, providing the most accurate prediction of a decision to revisit, e.g. purchase of a vacation package to the
same destination (Han & Kim, 2010). Cole and Scott (2004) considered it to be the desire to visit, in a specific timeframe, a prior destination for a second time. As Um, Chon, & Ro (2006, p. 1141) argue, “Revisit intention has been regarded as an extension of satisfaction rather than an initiator of [the] revisit decision making process”.

Numerous researchers have focused on factors that contribute to revisit intention (Alegre & Garau, 2011; Baloglu, 2000; Chen & Tsai, 2007), as it is better to attract visitors to come back than to look for new visitors (Um, Chon, & Ro, 2006). For example, Petrick, Morais & Noran (2001) concluded that intention to revisit a destination is influenced by the tourist's level of satisfaction, the perceived value, and past behavior. In a similar vein, there is evidence that the need for variety and alternatives, as tourists who seek novelty tend not to revisit a destination (Assaker & Hallak, 2013; Assaker, Vinzi & O’Connor, 2011; Barroso, Martin & Martin, 2007; Bigné, Sánchez & Andreu, 2009).

As mentioned above, the relationship between destination images and intention to revisit is the scope of the present study, and the extant literature suggests that cognitive and affective images have a positive, direct effect on tourists’ intentions to revisit a destination (Bigné, Sánchez, & Sanz, 2009; Chew & Jahari, 2014; Kim & Yoon, 2003), as positive perceptions of destinations drive purchase decisions (Woodside & Lysonski, 1989). Accordingly, our expectation is that:

\[H_1: \text{Cognitive image directly and positively influences a tourist’s intention to revisit a destination} \]

\[H_2: \text{Affective image directly and positively influences a tourist’s intention to revisit a destination} \]
H3: Conative image directly and positively influences tourist’s intention to revisit a destination

2.3. Holistic Image as a mediator

Further to the confusion relating to the interrelationship among the three destination images, Echtner and Ritchie (1993) postulate that studies should incorporate, not only attribute-based components but also a holistic construct of image. MacKay and Fesenmaier (1997, p. 538) define holistic image as, “A composite of various products (attractions) and attributes woven into a total impression”, while Um and Crompton (1990, p. 432-33) posited that holistic or overall image is, “A holistic construct which, to a greater extent, is derived from attitudes towards the destination’s perceived tourism attributes”. Numerous researchers have argued that the holistic representation of images is greater than the sum of its components (Fakeye & Crompton, 1991; Phelps, 1986). Researchers who have emphasized the role of cognitive and affective destination images include some who have conceptualized holistic image as a third component of destination perceptions, which involves the global impressions of tourists, and which supplements cognitive and affective perceptions or is a subset of them (Baloglu & Love, 2005; Baloglu & McCleary, 1999b). Again, there are conflicting views of the relationships among cognitive, affective, and holistic images. In particular, Baloglu (1997) indicates that cognitive and affective images predict holistic image, while Stern and Krakover (1993) and Baloglu & McCleary (1999a, b) identify a mediating role of affective image in the relationship between cognitive and holistic image.
Therefore, given the inconclusive evidence regarding the relationship between holistic image and destination components (basically cognitive and affective images), researchers have proposed the incorporation of both when investigating the positioning of a destination (Ahmed, 1991; Bigné, Sánchez & Sanz, 2009; Qu, Kim, & Im, 2011). Therefore, the present research looks at all three destination images, in addition to holistic image, and their interrelationships.

Regarding the relationship between the three destination images and holistic image, Aurifeille, Clerfeuille, & Quester (2001) found that cognitive, affective, and conative images contribute to overall attitudes in similar ways. According to Dobni and Zinkhan (1990), the conceptualization of holistic image as an “attitude” in the context of tourism marketing provides an “orientation that is more amenable to measurement and evaluation, and a broader explanation to the impact of destination image components on behavioral intentions” (Nadeau, Heslop, O’Reilly, & Luk, 2008).

In connection with the relationship between holistic image and intention to revisit, Chen and Tsai (2007) indicate that destination image has the most important effect on behavioral intentions. Finally, Prayag (2009) found a mediating role of holistic image, concluding that destination images affect visitors’ loyalty indirectly through holistic image. He concluded that destination images affect visitors’ loyalty (behavioral construct indicating a repeat pattern) through holistic image. Taken together, we anticipate that:

\[H_4: \text{Holistic image positively mediates the relationship between destination images and a tourist’s intention to revisit a tourism destination.} \]
H₄a: Holistic image positively mediates the relationship between cognitive image and a tourist’s intention to revisit a tourism destination.

H₄b: Holistic image positively mediates the relationship between affective image and a tourist’s intention to revisit a tourism destination.

H₄c: Holistic image positively mediates the relationship between conative image and a tourist’s intention to revisit a tourism destination.

2.4. The role of Personal Normative Beliefs

PNBs are measures of one’s own expectations about their own behavior and the corresponding motivation to comply with those expectations (Ajzen & Fishbein, 1973; Budd & Spencer, 1985; Schwartz & Howard, 1980). Schwartz (1968, 1977) defines personal norms as self-expectations that are based on internalized values (norm-activation theory), thus reflecting commitment with them. As suggested by Schwartz (1977), personal norms are experienced as feelings of personal obligation to engage in a certain behavior. However, they only influence behavior when they are activated. Activation is subject to conditions, namely, (a) a person is aware of the consequences of his or her behavior for the welfare of others, and (b) he or she ascribes at least some responsibility for these consequences to himself or herself (Schwartz & Howard, 1980).

In line with the Theory of Reasoned Actions (Fishbein, 1967), PNBs reflect an individual’s ideal behavioral intentions (what a person feels should be done), and are hence constituent parts of general normative pressure that influences subsequent behavior (Schwartz, 1977). Budd and Spencer (1985) stress the need to incorporate
PNBs in models examining behavioral intentions, emphasizing their explanatory role. The usefulness and explanatory value of PNBs has also been recognized in various research domains in recent years (Bamberg & Schmidt, 2003; Gagnon, Sánchez, & Pons, 2006; Valois, Desharnais, & Godin, 1988). For example, Vohs, Baumeister and Schmeichel (2012) reveal the significant influence of PNBs on self-regulation while Park & Ha (2011) confirm the conclusion of Aertsens, Verbeke, Mondelaers and Huylenbroeck (2009) that PNBs contribute a great deal to explaining consumer behavior. The present research investigates both the direct and indirect effect of PNBs in predicting tourists’ intentions to revisit a destination.

Consequently, we expect that what a tourist thinks he or she should do will intervene in the relationship between conative and holistic image of the tourism destination, as agreement between normative pressures and desires may enhance positive overall attitude towards a destination. In contrast, when there is no congruence, obligations that are part of PNBs may alter in strength and direction of the impact of conative image on holistic image. The expected moderating role of PNBs is consistent with the work of Bozionelos and Bennett (1999), Godin, Conner, and Sheeran (2005), and Park and Smith (2007), who argued that subjective norms may enhance or reduce the effect of predicting factors on attitudinal and behavioral responses. Therefore, our expectation is:

\[P_1: \text{PNBs moderate the relationship between conative image and holistic image, such that when PNBs and conative are congruent, holistic image will improved.} \]

Similarly, activated personal norms may also mitigate the effect of holistic image on tourists’ intentions to revisit. Specifically, congruence between a tourist’s
view of ideal behavior and overall attitude towards a tourist destination can boost intention to revisit the tourist destination, as PNBs differentiate between acceptable and unacceptable behavioral intentions. As Robinson (2012) notes, destination image is interpreted within personal contexts before being experienced by tourists. Consequently, the anticipation is that:

\[P_2: \text{PNBs moderate the effect that cognitive, affective and conative images have on a tourist's intention to revisit a destination, through holistic image, such that when PNBs and holistic image are congruent, the tourist's intention to revisit a destination will increase.} \]

Overall, the perception of what should be done is shaped by the individual’s evaluation of the proposed action, while he or she actually intends to do is driven by the emotional response to that action (Budd & Spencer, 1985). In addition, according to the Theory of Interpersonal Behavior (Triandis, 1977, 1980), PNBs contributes a great deal to the explanation of behavioral intentions (Bamberg & Schmidt, 2003; Gagnon et al., 2006; Sönmez, Apostolopoulos, Yu, Yang, Mattila, & Yu, 2006; Valois et al., 1988; Zhang, Inbakaran, & Jackson, 2006). Hence, PNBs are expected to influence intention to revisit a tourism destination.

3. Study One

Study One tested the reliability and validity of the scale items among Russian tourists visiting Greece (Anderson & Gerbing, 1988).

3.1. Methodology
A series of research actions were implemented to enhance the content validity and reliability of measurements. Specific procedures before, during and after data collection were followed to deal with the potential dangers of response bias (either response set or response style). Briefly, these involved: (1) reversing the scale of questions so that high scale values reflect a low value in the measured attribute (Tibbles, Waalen, & Hains, 1998), (2) scrambling the order of questions (Ruble & Stout, 1991) for nearly half of the distributed questionnaires, and (3) reducing situational pressure (Paulhus, 1991). Further to these, all data were collected in the same setting and all respondents enjoyed access to standardized information about the study. Finally, to ensure no significant deviations among the responses received, three corrected data sets were computed, each reflecting corrections for extreme response style alone, acquiescence response style alone, and both together (Dolnicar & Grun, 2009). Frequency counts of responses were computed from each dataset for each of the answer categories (responses from specific tourists departing to their three alternative home towns in the Russian Federation, i.e. Moscow, Novosibirsk and Omsk) were identified using a nominal dummy variable (1=yes and 0=no), and chi-squared tests were utilized to assess differences in frequency distributions. The results indicated no statistically significant differences, suggesting that response styles have not biased the data. To assess sampling error, we calculated the margin of error, which is due to the random sampling error in Study One. The total number of Russian passengers flying back to their home country from the International Airport of Thessaloniki during 21-23 June 2013 was 822 (HCAA, 2014). For a sample size of 270 and a confidence interval of 95%, the resulting sample error is 4.9%.
3.2. Sampling procedure and data collection

Study One focused on tourists departing from the largest Northern Greece airport (Macedonia / Thessaloniki) towards airports located in Russian Federation (Sheremetyevo / Moscow, Tolmachevo / Novosibirsk, and Tsentralny / Omsk). The Russian tourist market was selected because it is the fastest growing market for destinations in Northern Greece (annual increase of 54.7%, for years 2013/2012), and within the top three foreign tourist markets, representing 7.5% of the total market (ELSTAT, 2014). Fifteen undergraduate students of business administration served as field researchers and worked voluntarily on the field in teams of three, with a research coordinator, on a daily basis. They distributed a self-administered questionnaire at the International Airport “Macedonia” of Thessaloniki (SKG) from 21 June to 23 June, 2013. Participants were asked to provide their opinions while waiting in the non-Schengen countries transit area of Macedonia airport, linking the passport / hand luggage control point and departure gates, between 08:00 and 19:00 hours. The study was conducted using a mall-intercept technique, with one tourist in every three asked to participate in the study. A pen carrying the University of Macedonia brand name was given as a gift to every respondent after filling out the questionnaire, which typically took approximately eleven minutes to complete. 270 Russian tourists responded. Demographic characteristics of participants are described in Table 2.

Table 2: Profile of survey participants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Distribution of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male: 45.7%; Female: 54.3%</td>
</tr>
<tr>
<td>Age</td>
<td>< 19: 9.4%; 20-29: 23.7%; 30-39: 19.0%; 40-49: 23.2%; 50-59: 17.9%; > 60: 6.8%</td>
</tr>
<tr>
<td>Annual Household income (€)</td>
<td>< 10k: 16.5%; 10 k – 30 k: 29.3%; 30 k – 50 k: 20.9%; 50 k – 70 k: 7.9%; 70 k – 100 k: 5.2%; > 100 k: 20.2%</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Highest Level of Education</td>
<td>Secondary degree: 9.8%; Post-Secondary degree: 19.2%; Undergraduate degree: 58.6%; Graduate degree: 12.4%</td>
</tr>
<tr>
<td>Employment Status</td>
<td>FLB: 13.9%; FTE: 55.5%; PTE: 5.9%; Household: 4.3%; Student: 16.0%; Pensioner: 4.0%; Other: 0.4%</td>
</tr>
</tbody>
</table>

Note: FLB: Freelance professional / Businessman, FTE: Full-Time Employee, PTE: Part-Time Employee

3.3. Measures

Intention to revisit a destination: This was measured with 4 items. The scale aggregated items from scales validated in previously published research. Specifically, we used the three items developed by Lam and Hsu (2006), corresponding to questionnaire items IRD 1, 2, and 3, and one developed by Quintal and Polczynski (2010), corresponding to item IRD 4. All items were measured on a 7-point semantic differential scale, ranging between “1 = extremely unlikely” and “7 = extremely likely”.

Cognitive image: This was measured with a 28-item-scale. The scale was adopted from the study of Stylos and Andronikidis (2013), and developed by aggregating items from four scales developed in studies by Beerli and Martin (2004), Pike and Ryan (2004), Baloglu and Mc Cleary (1999a), and Chen and Kerstetter (1999). Cognitive image items produced measures for perceived consequences (P_{ci}) and evaluated importance (V_{ci}). Seven-point Likert scales were employed for rating P_{ci} and V_{ci} items, ranging from “1=strongly disagree” to “7=strongly agree”, and “1=totally unimportant” to “7=totally important”, respectively, and including “0=I do
not know/I cannot answer” in order to avoid false neutral evaluations (Shoemaker, Eichholz, & Skewes, 2002).

Affective image: This was measured with eight items. Respondents were asked to rate Greece as a tourist destination utilizing eight bipolar feelings, previously proposed in the study of Russell, Ward, and Pratt (1981). Similar items can also be found in the studies of Baloglu and Bringer (1997), Baloglu and Mangaloglu (2001), and Russell and Pratt (1980). The scale was 7-point semantic differential.

Conative image: This was measured with a new 12-item scale. Specifically, the scale was developed through an extensive literature review (Bagozzi, 1992; Brunstein & Gollwitzer, 1996; Dann, 1996; Heckhausen & Dweck, 1998; Huitt, 1999; Huitt & Cain, 2005; Kolbe, 1990; Sansone & Harackiewicz, 1996; Sheldon & Elliott, 1999; Valois et al., 1988) and content analysis in an effort to aggregate items found in previous studies. After collecting potential items, a round of review by field experts (Delphi method) was used to validate the scale. These techniques have been reported to be sufficient for validating the proposed conative image scale and improving wording (Dabholkar, Thorpe, & Rentz, 1995). Respondents were asked to respond on a 7-point Likert scale with anchors of “1=strongly disagree” and “7=strongly agree”, with an added option of “0=I cannot answer”.

Holistic image: This was measured with a single item, in accordance with the method developed by Echtner and Richie (1993, 2003): “Please circle the number that best describes your overall perception of Greece as a tourist destination”, anchored with “1 = Very negative” and “7 = Very positive”. In addition, the extremes and the midpoint of the scale were also illustrated with smiley/sad faces to facilitate the respondent’s preference.
PNB: Three items were used to measure personal normative beliefs, which drew on the work of Triandis (1977), Valois et al. (1988), and Huiit (1999). The items were tested for content validation using the qualitative techniques previously mentioned in connection with the conative image scale, and then verified with exploratory factor analysis. In this case, a 7-point Likert scale was employed, ranging from “1 = strongly disagree” to “7 = strongly agree”.

3.4. Results

The first step of our analysis in Study One included missing value analysis (MVA). Our results indicate that missing values are completely random ($\chi^2 = 24420.14$, df = 24350, Sig. = 0.374) (Little, 1988). Concerning the univariate normality of the data, both skewness and kurtosis were within limits for all independent variables, ranging from -0.990 to 0.936 for the former and -0.765 to 0.998 for the latter, supporting univariate normality for our data. Furthermore, we calculated scale reliability, before proceeding with exploratory factor analysis. Then, we performed Principal Components Analysis (PCA- promax rotation with Kaiser normalization) to examine the dimensionality of the proposed scales.

The cognitive image scale was reduced to 22 items (items CI4, CI7, CI9, CI13, CI20, CI26 were excluded). Application of PCA to the affective image scale showed that 7 of the 8 items could adequately represent the information included in the dataset (AI3 was pruned). Concerning the conative image scale, 4 of the 12 items were excluded (CnI1, CnI7, CnI8, CnI12), resulting to a set of 8 conative image items. As regards PNB, all 3 items loaded satisfactorily in a single factor. Finally, the results of PCA show that all items for measuring intention to revisit tourism destination form a very robust scale (see Table 3).
Table 3 shows the internal consistency of each latent construct and measures associated with the exploratory factor analyses. Bartlett’s test of sphericity rates (Bartlett, 1954) reached statistical significance, supporting the idea that the correlation matrices satisfactorily represent all the factors and latent dimensions. Also, for cognitive image, principal axis factoring with promax rotation suggested four factors (essential conditions, attractive conditions, appealing activities and natural environment) explain 58.85% of the variance. For affective image, conative image, holistic image, PNB and intention to revisit a destination (IRD henceforth), factor analyses confirmed one factor each, accounting for 69.06%, 62.98%, 82.89%, 70.65% and 85.60% of the total variance, respectively. The reliability coefficients of all factors fell between 0.768 and 0.944, which exceeded the minimum standard for reliability of 0.70 (Nunnally & Bernstein, 1994). Thus, in all cases, Cronbach’s alpha coefficients indicate acceptable reliability of the constructs to be used in SEM modeling.

Next, we performed principal axis factoring (PAF) with a promax rotation. As Haig (2005, p. 322) underlines, “EFA contributes to detection of the empirical phenomena that motivate the need for generating factorial hypotheses; and, it helps to present factorial hypotheses in a form suitable for subsequent testing by CFA.

<table>
<thead>
<tr>
<th>Factors & Dimensions</th>
<th>Eigenvalue</th>
<th>Variance extracted (%)</th>
<th>Bartlett’s test of Sphericity</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential conditions</td>
<td>9.55</td>
<td>41.51</td>
<td>2262</td>
<td>.86</td>
</tr>
<tr>
<td>Attractive conditions</td>
<td>1.54</td>
<td>6.69</td>
<td>2172</td>
<td>.87</td>
</tr>
<tr>
<td>Appealing activities</td>
<td>1.33</td>
<td>5.76</td>
<td>1715</td>
<td>.77</td>
</tr>
</tbody>
</table>
Natural environment | 1.13 | 4.89 | 548 | .78
Affective image | 4.83 | 69.06 | 4182 | .92
Conative image | 5.04 | 62.98 | 3519 | .92
Holistic image | 1.66 | 82.89 | 416 | -
Personal normative belief | 2.12 | 70.65 | 722 | .79
Intention to revisit destination | 3.42 | 85.60 | 2828 | .94

Note: PAF: Principal Axis Factoring. All values reported are significant at p<0.001.

4. Study Two
4.1. Methodology

The same series of research actions as in Study One were implemented to ensure the content validity and reliability of the measures. In addition, as with Study One, missing values analysis (MVA) was conducted before proceeding with structural equation modeling (Hair et al., 2010). Again, our results indicate that all missing values are completely random ($\chi^2 = 17396.89$, df = 17629, Sig. = 0.892 (Little, 1988). Confirmatory factor analysis (CFA) followed. All measurement scales for the six constructs of the model remained the same, except for item CI15 – appealing local food (cuisine) – from the cognitive image scale, which was removed because it had a factor loading below 0.50 (Janssens, Wijnen, Pelsmacker, & Van Kenhove, 2008). Next, we calculated scale reliability and validity. Then, as deviations from univariate and multivariate normality may distort the results of structural equation modeling (Byrne, 2001), we also checked for normality. As in Study One, univariate normality was again confirmed. Furthermore, the calculation of Mahalanobis distance using AMOS found a value of 539.461. Then, we compared it with the corresponding chi-square critical value (955.392, df = 885, $\alpha = 0.05$). As the distance value was clearly
smaller than the critical value, there were no multivariate outliers in the data set (Pallant, 2010). Next, the examination of the value of multivariate kurtosis (Mardia’s coefficient; Mardia, 1970) suggests that the assumption of multivariate normality is tenable (i.e. 1361.909 with a critical ratio of 284.238, which is smaller than the 2024 cut-off point value derived from the $p \ (p+2)$ formula, where $p = 44$ is the number of observed variables (Bollen, 1998). Therefore, multivariate normality of the total sample data distribution can be safely assumed. Since normality was not an issue, we proceeded to confirmation the factor structure of the measurement model. Finally, goodness-of-fit indices, path coefficients and squared multiple correlations were assessed for the structural model using AMOS.

4.2. Sampling procedure and data collection

Study Two adopted the same sampling procedure and data collection as Study One. Data collection took place between July 26 and August 16, 2013. During the 22 days of research a total of 1506 Russian tourists were asked to participate and 1263 agreed, yielding a response rate of 83.9%. 1244 usable questionnaires were collected (a response rate of 82.6%). Response rates were deemed adequate both according to rules of thumb and to power analysis (Hair et al., 2010). The sample composition of participants for Study Two was similar as that of Study One, with no statistically significant deviations.

In designing and conducting this study, we took several steps to eliminate potential errors (Carmines & Zeller, 1979; Davidshofer & Murphy, 2005). In particular, a) we ensured that only Russian tourists participated to reduce the coverage error (Moutinho & Chien, 2007), b) we reflect the perceptions of 14.2% of Russian tourists that visited Greece in 2014 (HCAA, 2014) to avoid sampling error (Zikmund
& Babin, 2007), c) we achieved an 83.86% response rate, which suggests that non-response error is not an issue (Baumgartner and Steenkamp, 2001), and d) we added an “0 = I don’t know/I cannot reply” option to the 7-point Likert scale to reduce measurement error (Weijters, Cabooter, & Schillewaert, 2010).

4.3. Measures

Based on the results of Study One, the scales utilized in Study Two are as follows.

Intention to revisit a destination: This was measured with the same four items as in Study One. The scale again was a 7-point semantic differential.

Cognitive image: Six items of the twenty eight were excluded resulting in a 22-item set. Specifically items: “Great variety of plants and animals” (CI4); “Convenient to get tourism information” (CI7); “Exciting night life and entertainment (e.g. nice bars, restaurants, shows, casinos)” (CI9), “Good facilities for sports training” (CI13); “Friendly and hospitable local people” (CI20); and “Strikes and social unrest” (CI26). A 7-point Likert scale was utilized again.

Affective image: The scale was reduced to a total of seven items. Specifically, the item “Sleepy vs. Arousing” (AI3) was excluded. The scale utilized was a 7-point semantic differential as in Study One.

Conative image: Four of the twelve items were excluded resulting to a set of eight conative image items. These items were: “Fits in with my personal needs and style” (CnI1); “It was more desirable for me to get to Greece, in comparison to a potential doubt I had that it may not prove a good experience” (CnI7); “Has not been affected, as a potential option for vacations, by negative experiences of the past” (CnI8); and
“Is the right place to have a high status vacation” (CnI12). Again, the scale was a 7-point Likert.

Holistic image: This was measured with one item as in Study One, asking tourists to state their overall perception of Greece as a destination.

PNB: The same three items were used as in Study One. The scale again was a 7-point Likert scale.

4.4. Results

Study One indicated that the constructs of the initial theoretical model are suitable for structural equation modeling. In Study Two, holistic image is conceived as a mediator between the tripartite concept of images and intention to revisit a tourist destination. Moreover, PNB is anticipated to moderate the relationship between conative image and intention to revisit a tourist destination through holistic image and also the effect of holistic image - as a mediator - on intention to revisit the tourist destination.

Table 4 provides an overview of the final list of items with their means and standard deviations that were used for modeling the proposed constructs. In addition, the standard loadings, standard errors and critical ratios (t-statistics) of relationships between observed and latent variables, resulting from confirmatory factor analysis, are provided. According to the relevant criteria indicated (Hair et al. 2010), loadings and t-statistics (t0.001 = 3.291) of all indicators included in the model are significant (p < 0.001).

Table 4: Final scales, means, standard deviations, standardized factor loadings, errors and critical ratios of the constructs used in the measurement model

<table>
<thead>
<tr>
<th>Construct</th>
<th>Item Code</th>
<th>Mean (SD)</th>
<th>St. Loading</th>
<th>Std. Error</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cognitive Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attractive Conditions</td>
<td>CI5</td>
<td>27.71 (10.62)</td>
<td>.749</td>
<td>.059</td>
<td>17.348</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Good quality of infrastructure</td>
<td>CI19</td>
<td>32.03 (11.53)</td>
<td>.756</td>
<td>.063</td>
<td>17.865</td>
</tr>
<tr>
<td>Standard hygiene & cleanliness</td>
<td>CI22</td>
<td>27.85 (11.52)</td>
<td>.636</td>
<td>.057</td>
<td>16.640</td>
</tr>
<tr>
<td>Political stability</td>
<td>CI23</td>
<td>34.20 (12.82)</td>
<td>.680</td>
<td>.070</td>
<td>16.240</td>
</tr>
<tr>
<td>Good reputation of destination</td>
<td>CI24</td>
<td>32.69 (11.50)</td>
<td>.671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpolluted/unespoiled natural environment</td>
<td>CI25</td>
<td>28.71 (11.20)</td>
<td>.750</td>
<td>.040</td>
<td>26.921</td>
</tr>
<tr>
<td>Implementation of policies towards sustainability & environmental protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential Conditions</td>
<td>CI6</td>
<td>30.82 (10.72)</td>
<td>.725</td>
<td>.049</td>
<td>19.327</td>
</tr>
<tr>
<td>Availability of hotels/lodgings/camping</td>
<td>CI10</td>
<td>35.16 (14.95)</td>
<td>.503</td>
<td>.070</td>
<td>12.592</td>
</tr>
<tr>
<td>Relaxing/avoidance of daily routine</td>
<td>CI16</td>
<td>38.77 (9.99)</td>
<td>.689</td>
<td>.058</td>
<td>15.997</td>
</tr>
<tr>
<td>Safe place to travel</td>
<td>CI17</td>
<td>32.00 (12.53)</td>
<td>.609</td>
<td>.052</td>
<td>19.567</td>
</tr>
<tr>
<td>Easily accessible from permanent residence</td>
<td>CI18</td>
<td>35.54 (11.25)</td>
<td>.736</td>
<td>.051</td>
<td>18.156</td>
</tr>
<tr>
<td>Family-oriented destination</td>
<td>CI21</td>
<td>32.77 (11.00)</td>
<td>.682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good value for money</td>
<td>CI27</td>
<td>34.99 (11.12)</td>
<td>.736</td>
<td>.048</td>
<td>14.659</td>
</tr>
<tr>
<td>Satisfactory customer care on behalf of various professionals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appealing Activities</td>
<td>CI8</td>
<td>25.95 (11.61)</td>
<td>.662</td>
<td>.052</td>
<td>16.145</td>
</tr>
<tr>
<td>Various shopping opportunities</td>
<td>CI11</td>
<td>34.47 (17.88)</td>
<td>.519</td>
<td>.079</td>
<td>12.862</td>
</tr>
<tr>
<td>Interesting cultural attractions</td>
<td>CI12</td>
<td>37.93 (13.26)</td>
<td>.763</td>
<td>.059</td>
<td>13.551</td>
</tr>
<tr>
<td>Interesting historical monuments & relevant events</td>
<td>CI14</td>
<td>26.10 (11.93)</td>
<td>.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nice opportunities for biking/fishing/hunting/climbing</td>
<td>CI28</td>
<td>25.93 (11.77)</td>
<td>.549</td>
<td>.053</td>
<td>17.463</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>CI1</td>
<td>41.82 (8.97)</td>
<td>.574</td>
<td>.053</td>
<td>12.002</td>
</tr>
<tr>
<td>Good climate</td>
<td>CI2</td>
<td>37.18 (11.00)</td>
<td>.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great beaches</td>
<td>CI3</td>
<td>39.18 (9.75)</td>
<td>.836</td>
<td>.061</td>
<td>16.484</td>
</tr>
<tr>
<td>Beautiful landscape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Affective Image

<table>
<thead>
<tr>
<th>Rate Greece as a tourism destination for the following set of feelings:</th>
<th>AI1</th>
<th>6.26 (1.02)</th>
<th>.708</th>
<th>.029</th>
<th>22.542</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpleasant – Pleasant</td>
<td>AI2</td>
<td>5.39 (1.28)</td>
<td>.635</td>
<td>.038</td>
<td>19.668</td>
</tr>
<tr>
<td>Gloomy – Exciting</td>
<td>AI4</td>
<td>6.08 (1.21)</td>
<td>.792</td>
<td>.028</td>
<td>31.445</td>
</tr>
<tr>
<td>Distressing – Relaxing</td>
<td>AI5</td>
<td>6.21 (1.18)</td>
<td>.924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative – Positive</td>
<td>AI6</td>
<td>6.24 (1.16)</td>
<td>.945</td>
<td>.023</td>
<td>43.002</td>
</tr>
<tr>
<td>Unenjoyable – Enjoyable</td>
<td>AI7</td>
<td>6.13 (1.18)</td>
<td>.908</td>
<td>.027</td>
<td>37.048</td>
</tr>
<tr>
<td>Unfavorable – Favorable</td>
<td>AI8</td>
<td>5.37 (1.37)</td>
<td>.612</td>
<td>.040</td>
<td>19.340</td>
</tr>
<tr>
<td>Boring – Fun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Conative Image

<table>
<thead>
<tr>
<th>Greece as a tourism destination...</th>
<th>CnI2</th>
<th>5.81 (1.24)</th>
<th>.683</th>
<th>.033</th>
<th>19.802</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was always a dream-destination to visit sometime during my lifetime</td>
<td>CnI3</td>
<td>5.12 (1.41)</td>
<td>.771</td>
<td>.034</td>
<td>24.405</td>
</tr>
<tr>
<td>Expresses myself as a suitable vacation choice</td>
<td>CnI4</td>
<td>5.12 (1.33)</td>
<td>.645</td>
<td>.037</td>
<td>18.082</td>
</tr>
<tr>
<td>Helps me put in use knowledge that I have (i.e. history, geography, philosophy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was always / constitutes a personal goal for vacations</td>
<td>CnI5</td>
<td>5.49 (1.33)</td>
<td>.702</td>
<td>.033</td>
<td>21.643</td>
</tr>
</tbody>
</table>

25
As a choice, it stems from a personal need of mine that had to be fulfilled. Has evoked a persistent wish to visit it. Encapsulates positive attributes that help in the growth of my personality. Makes me believe that my vacations there may be the best reward / gift I can offer myself.

4. Holistic Image
Rate the overall image of Greece as a tourism destination
<table>
<thead>
<tr>
<th>CI</th>
<th>Mean</th>
<th>SD</th>
<th>T-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CnI6</td>
<td>5.02</td>
<td>1.50</td>
<td>.775</td>
<td>.037</td>
</tr>
<tr>
<td>CnI9</td>
<td>5.53</td>
<td>1.38</td>
<td>.826</td>
<td>.032</td>
</tr>
<tr>
<td>CnI10</td>
<td>5.20</td>
<td>1.42</td>
<td>.735</td>
<td>.034</td>
</tr>
<tr>
<td>CnI11</td>
<td>5.12</td>
<td>1.51</td>
<td>.854</td>
<td></td>
</tr>
</tbody>
</table>

5. Personal Normative Belief
The selection of a tourism destination in this case Greece...
- Is a personal responsibility
- Is a process that I should support as a person
- Requires a firm commitment from myself that my desire will be satisfied

<table>
<thead>
<tr>
<th>PNB</th>
<th>Mean</th>
<th>SD</th>
<th>T-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNB1</td>
<td>5.76</td>
<td>1.29</td>
<td>.634</td>
<td>.045</td>
</tr>
<tr>
<td>PNB2</td>
<td>4.93</td>
<td>1.37</td>
<td>.680</td>
<td>.051</td>
</tr>
<tr>
<td>PNB3</td>
<td>5.14</td>
<td>1.34</td>
<td>.765</td>
<td></td>
</tr>
</tbody>
</table>

6. Intention to Revisit Tourism Destination
I intend to travel again to Greece sometime within the next 2 years. I want to visit Greece again within the next 2 years. The possibility for me to travel to Greece within the next 2 years is... Greece could be again my next vacations place

<table>
<thead>
<tr>
<th>IRD</th>
<th>Mean</th>
<th>SD</th>
<th>T-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRD1</td>
<td>5.32</td>
<td>1.45</td>
<td>.943</td>
<td>.026</td>
</tr>
<tr>
<td>IRD2</td>
<td>5.39</td>
<td>1.45</td>
<td>.923</td>
<td>.026</td>
</tr>
<tr>
<td>IRD3</td>
<td>5.30</td>
<td>1.48</td>
<td>.886</td>
<td></td>
</tr>
<tr>
<td>IRD4</td>
<td>5.16</td>
<td>1.44</td>
<td>.839</td>
<td>.028</td>
</tr>
</tbody>
</table>

Note: CI: Cognitive image, AI: Affective image, CnI: conative image, HI: Holistic image, PNB: Personal normative belief, IRD: Intention to revisit destination, SD: Standard deviation. All t-statistics are significant at p < 0.001.

Table 5: Fit Indices, measurement model and corresponding structural model

<table>
<thead>
<tr>
<th>Fit Indices</th>
<th>Measurement Model</th>
<th>Structural Model</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2/df)</td>
<td>2.753 for p<.001</td>
<td>1.407 for p=.187>0.001</td>
<td><3</td>
</tr>
<tr>
<td>CFI</td>
<td>.932</td>
<td>.998</td>
<td>>.90</td>
</tr>
<tr>
<td>TLI</td>
<td>.924</td>
<td>.992</td>
<td>>.90</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.049</td>
<td>.024</td>
<td><.08</td>
</tr>
<tr>
<td>SRMR</td>
<td>.0562</td>
<td>.0128</td>
<td><.08 (CFI>.92)</td>
</tr>
</tbody>
</table>

Note: \(\chi^2/df\): chi-square normed, CFI: Comparative fit index, TLI: Tucker Lewis index, RMSEA: Root mean square error of approximation, SRMR: Standardized root mean residual.

As apparent, the model fits the second sample of 1244 Russian tourists well, ratifying the factor structure of the measurement model (Figure 2). The substituting latent variables with composite variables in the structural model is a necessary step,
because the complexity of the structure is further increased by the introduction of moderating variables. All latent variables were converted to composite variables including the moderating factors, with 7 of them taking the form of observed variables and one moderating factor (conative image _x_PNB) retaining a latent factor structure. Fit indices satisfy the established criteria, even for the normed chi-square index, which takes values well below 3.0 for both measurement and structural models (Table 5). This six-factor model has undergone a confirmatory factor analysis supporting robust construct reliability and validity (Table 6). When checking for discriminant validity, the square root of average variance extracted between the different pairs of factors was found in all cases to be greater than the estimated correlation of the factors.

Regarding regression weights for paths involved in the structural model, four causal relationships and one moderating effect were found to be highly significant, whereas the others are not significant, as shown on Table 7.

![Table 6: Construct Reliability and Validity measures of the measurement model](image)

<table>
<thead>
<tr>
<th></th>
<th>CR</th>
<th>AVE</th>
<th>MSV</th>
<th>ASV</th>
<th>Conative Image</th>
<th>Affective Image</th>
<th>Revisit Intention</th>
<th>Cognitive Image</th>
<th>PNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conative Image</td>
<td>.911</td>
<td>.562</td>
<td>.467</td>
<td>.454</td>
<td>.781</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective Image</td>
<td>.924</td>
<td>.639</td>
<td>.375</td>
<td>.206</td>
<td>.475</td>
<td>.800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revisit Intention</td>
<td>.944</td>
<td>.807</td>
<td>.398</td>
<td>.246</td>
<td>.631</td>
<td>.305</td>
<td>.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Image</td>
<td>.926</td>
<td>.761</td>
<td>.490</td>
<td>.293</td>
<td>.607</td>
<td>.436</td>
<td>.408</td>
<td>.872</td>
<td></td>
</tr>
<tr>
<td>PNB</td>
<td>.839</td>
<td>.636</td>
<td>.610</td>
<td>.311</td>
<td>.750</td>
<td>.382</td>
<td>.459</td>
<td>.501</td>
<td>.798</td>
</tr>
</tbody>
</table>

Note: CR: Composite reliability, AVE: Average variance extracted, MSV: Maximum Shared Squared Variance, ASV: Average Shared Squared Variance.
The direct effects from cognitive and affective images on IRD were both found to be non-significant, whereas the corresponding effect from conative image on IRD was strongly significant ($\beta_{\text{CnI-IRD}} = 0.371, p < 0.001$). Consequently, H_1 and H_2 are not supported, but H_3 is confirmed. The contribution of cognitive image to holistic image is not significant, thus hypothesis H_{4a} is not supported. However, holistic image increases 0.342 and 0.444 standard deviations per unit of increase of affective and conative images, respectively. Thus, affective and conative images directly and positively affect holistic image and holistic image significantly and positively influences IRD ($\beta_{\text{HI-IRD}} = 0.262$), thus confirming H_{4b} and H_{4c}. With regard to the moderating effects of PNB, personal normative beliefs, Table 7 shows a significant and negative effect on the relationship between conative and holistic images. This means that the positive influence of conative image on the holistic image is negatively moderated by PNB, thus supporting P_1. Although path loadings are significant, the moderating effects of PNB on the relationship between holistic image and IRD ($\beta = 0.007$) was not significant at the 0.05 level. As a result, hypothesis P_2 must be rejected.

Therefore, it is concluded that holistic image plays an indirect mediating role in the relationships between cognitive and affective images and IRD, respectively. (None of the direct effects were significant.) At the same time, holistic image partially mediates the relationship between conative image and IRD. An aggregate picture of hypothesis and proposition testing is presented in Table 9.

As shown in Table 8, the proposed model has good predictive power. According to Cohen (1988), R^2 values of 0.01, 0.09 and 0.25 indicate small, medium and large effects, respectively, in behavioral sciences. In our case, the model explained 0.53 or 53% of the variance in holistic image. Furthermore, 0.37 (>0.25) or 37% of the
variance in the intention to revisit a destination was explained, supporting the high usefulness of the proposed model.

Figure 2: Structural model

In order to further understand the significant moderating role of PNB, we plotted the interaction effect between PNB and conative image on holistic image (Figure 3). Evidently, PNB moderates the relationship between conative and holistic image, such that for tourists with low PNB, the higher the conative image, the higher the holistic image. In contrast with this, tourists with high PNB are less likely to form more positive holistic images as their level of conative image increases.
Figure 3: Plot of significant PNB x conative image interaction for predicting holistic image

<table>
<thead>
<tr>
<th>Regression paths</th>
<th>St.RW</th>
<th>S.E.</th>
<th>C.R.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holistic image</td>
<td>Cognitive image</td>
<td>.022</td>
<td>.03</td>
<td>.795</td>
</tr>
<tr>
<td>Holistic image</td>
<td>Affective image</td>
<td>.342</td>
<td>.03</td>
<td>10.701</td>
</tr>
<tr>
<td>Holistic image</td>
<td>conative image</td>
<td>.444</td>
<td>.04</td>
<td>10.279</td>
</tr>
<tr>
<td>Revisit Intention</td>
<td>Cognitive image</td>
<td>-.047</td>
<td>.03</td>
<td>-1.565</td>
</tr>
<tr>
<td>Revisit Intention</td>
<td>Affective image</td>
<td>-.016</td>
<td>.04</td>
<td>-.437</td>
</tr>
<tr>
<td>Revisit Intention</td>
<td>conative image</td>
<td>.371</td>
<td>.05</td>
<td>7.476</td>
</tr>
<tr>
<td>Revisit Intention</td>
<td>Holistic image</td>
<td>.262</td>
<td>.04</td>
<td>6.019</td>
</tr>
<tr>
<td>Holistic Image</td>
<td>PNB</td>
<td>.026</td>
<td>.04</td>
<td>.663</td>
</tr>
<tr>
<td>Revisit intention</td>
<td>PNB</td>
<td>.037</td>
<td>.04</td>
<td>.891</td>
</tr>
<tr>
<td>Holistic Image</td>
<td>conative Image_x_PNB</td>
<td>-.084</td>
<td>.11</td>
<td>-5.038</td>
</tr>
<tr>
<td>Revisit Intention</td>
<td>Holistic Image_x_PNB</td>
<td>.007</td>
<td>.03</td>
<td>-.228</td>
</tr>
</tbody>
</table>

Table 8: Squared multiple correlation values (R^2) of endogenous latent variables

<table>
<thead>
<tr>
<th>Endogenous Latent Variables</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holistic Image</td>
<td>.53</td>
</tr>
<tr>
<td>Intention to Revisit journey</td>
<td>.37</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H1</td>
<td>Cognitive image directly and positively influences a tourist’s intention to revisit a destination</td>
</tr>
<tr>
<td>H2</td>
<td>Affective image directly and positively influences a tourist’s intention to revisit a destination</td>
</tr>
<tr>
<td>H3</td>
<td>Conative image directly and positively influences a tourist’s intention to revisit a destination</td>
</tr>
<tr>
<td>H4a</td>
<td>Holistic image mediates the relationship between cognitive image and tourists’ intention to revisit a tourism destination</td>
</tr>
<tr>
<td>H4b</td>
<td>Holistic image mediates the relationship between affective image and a tourist’s intention to revisit a tourist destination</td>
</tr>
<tr>
<td>H4c</td>
<td>Holistic image mediates the relationship between conative image and a tourist’s intention to revisit a tourist destination</td>
</tr>
<tr>
<td>P1</td>
<td>PNB moderates the impact that conative image has on a tourist’s intention to revisit a destination through holistic image</td>
</tr>
<tr>
<td>P2</td>
<td>PNB moderates the impacts that cognitive, affective, and conative images have on a tourist’s intention to revisit a destination through holistic image</td>
</tr>
</tbody>
</table>

5. Discussion of findings

5.1. Theoretical implications

Recognizing the fundamental role of tourists’ intentions to revisit a destination for tourist organizations, which entails relatively limited effort and cost to attract tourists
(Petrick, 2004), we adopted destination image theory to delineate the factors that generate intention to revisit through a moderated mediation model. In doing so, we adopted Gartner’s (1993) typology, which is very popular among scholars of tourism (Zhang et al., 2014). Given the various alternatives available for measuring the constructs under investigation, we performed Study One to develop a valid and reliable measure for each construct. The evidence suggests that the measures that emerged from this study could improve our understanding of tourists’ intentions to revisit a tourist destination.

Next, we performed a second study to examine the effect that each distinct form of destination image has on intention to revisit a destination through holistic image, expecting also that the impact of conative image on holistic image and of holistic image on intention to revisit a destination would be moderated by PNBs. Our results reveal the positive direct effect of conative image and the positive indirect effect of affective and conative images on a tourist’s intention to revisit a destination. These findings suggest that the long-term memory of a tourist destination is central to predicting the intention to revisit, and may hence inhibit or suppress the effect of knowledge and beliefs derived from a previous visit (Pearce, 1988). In addition, our findings confirm the mediating role of holistic image on the aforementioned relationships and the moderating impact of PNB on the relationship between conative and holistic image. These findings imply that overall impressions of a destination are more important than distinct images of a destination, as suggested by Um and Crompton (1990), either because a holistic image may reflect more attributes than those measured using a distinct dimensional approach (Baloglu & McCleary, 1999a) or because holistic image represents only those attributes that are meaningful to tourists. Altogether, this research confirms the significance of holistic image for
predicting a tourist’s intention to revisit a destination (Echtner & Ritchie, 2003). At the same time, it confirms the distinctiveness of holistic image (Beerli & Martín, 2004 a,b) and its mediating role (Prayag, 2009), highlighting its explanatory power in predicting a tourist’s intention to return to a destination they have already visited.

A possible explanation for the lack of significance of a direct and indirect effect of cognitive image for predicting the intention to revisit a destination is the destination’s inability to develop a distinct identity. Specifically, in the case of the tourism destination examined, namely Greece, it is similar to Turkey and Spain with regards to quality and pricing features (sun, sand and sea), sights and landscapes (ancient theaters, archeological sites), and infrastructure (marinas, etc.) with Turkey. This increasing similarity of destinations may reduce the impact of cognitive image attributes. As King, Chen and Funk (2015) suggested, cognitive images are quite stable over time, but affective and conative components of image are more susceptible to change.

The fundamental role of conative image is supported by the findings of this research. In line with Dann’s (1996) proposition, when tourists decide on their destination, tourists project themselves into an imagined or idealized future situation as though they had already experienced it. Specifically, a tourist’s pre-trip interest moves from the impersonal scenery and destination related touristic activities to the personal enjoyment and delights they anticipate for themselves and their intimates (Dann, 1993). Consequently, the recognition of conative image as an antecedent of the intention to revisit a destination reintroduces the need to examine conative images, which contradicts the suggestions of previous researchers who considered that the intent or action component of image is analogous to behavior (Çakmak & Isaac, 2012; Gartner, 1996; Hallmann et al. 2014; Lee, 2009; Nadeau et al., 2008; Prebensen,
Concerning PNB, our findings indicate that the relationship between conative and holistic image is positive for tourists with low PNB, but slightly negative for tourists with high PNB. This evidence suggests that PNBs play a regulating role in shaping volition, thus refining the mechanism for creating desirable images to support a totally favorable attitude, namely a holistic image of the destination image. The recognition of PNBs as a contributor to behavioral intention draws on the theory of reasoned action, as originally introduced by Fishbein (1967), and the theory of interpersonal behavior (TIB) (Sönmez et al., 2006; Triandis, 1977; Valois et al., 1988; Zhang et al., 2006). In fact, our findings support the argument advanced by researchers that PNBs are significant if one wishes to understand behavioral intentions (Budd & Spencer, 1985). The present research recognizes the intervening role of PNBs, suggesting that “the moral obligation to performing an act” (Schwartz & Tessler, 1972) can add to the explanatory power of behavioral intention models, by unraveling motivation at the level of the individual tourist level.

5.2. Practical implications

Other than its theoretical importance, this research sought to offer advice to managers of tourist destinations. Destination managers should capitalize on our findings by devising appropriate marketing policies to increase the intentions of tourists to revisit their destination. To start with, since affective and conative images of destinations
represent a solid basis for the analysis of alternative offerings of tourist products in the eyes of visitors, such components need to be considered seriously when designing the positioning strategy of a tourist destination. Moreover, given the relatively unstable nature of conative and affective images, decision makers need to track them constantly in order to adjust their marketing strategies (Agapito et al., 2013).

Specifically, given that the affective component is significant in creating a holistic image of a destination, which in turn positively affects intention to revisit, managers need to be able to transform external experiences related to a destination into internal emotional affect, and should also use communications that emphasize affective impulses of images. For example, positive experiences between suppliers and tourists can reinforce positive affective images of the destination. Typical locations for these positive experiences are websites promoting tourist destinations, tourist offices, airports, lodgings, catering outlets in the place, and means of transport. Moreover, to stress the affective image of a destination, the promotional messages in leaflets and media advertisements should mainly consist of emotional content, incorporating words such as “enjoyable”, “exciting”, and “relaxing”.

In relation to the conative image of a tourist destination, marketing managers should focus on stimulating word-of-mouth communication to promote the desire to repeat travel to a specific destination. Nowadays, given with the plethora of social media platforms available to travelers, practitioners can exploit countless word-of-mouth (or “mouse”) opportunities over the Internet. Marketers should make use of outdoor and ambient forms of digital communication to offer an enhanced and innovative experience. In order to do so, events that emphasize gastronomy, hospitality, and culture and involve tourists should be organized in key countries that are home countries of potential tourists before the holiday season starts. In addition,
the use of the previous experiences of visitors could be used in promotional materials to evoke internal motivation to revisit the destination.

Concerning holistic image, the improvement of the people, processes, and physical evidence (the service-related 3 Ps) could increase serviceability. The training of employees pursuing a career in the hospitality industry should be aligned to the principles of relationship marketing. At the same time, customer relationship management (CRM) systems should be devised and put in systematic use in order to support front-line service employees. With regard to the processes of the overall service value chain, it is important that public and private sector initiatives develop a common plan for improving several aspects of the tourist experience. For example, public organizations should focus on improving services provided at airports, ports and points of public interest, while private organizations should work together to design and offer unique overall experiences to tourists.

Regarding the moderating role of PNBs, marketing managers need to promote the ethical aspects of revisiting a tourist destination, emphasizing the responsibility that accompanies the choice of a tourist destination. For example, positioning Greece as the destination that responsible and well-educated individuals should visit, by promoting the fact that it is the origin of European civilization and democracy, could turn revisiting Greece into a personal obligation. Similarly, revisiting Greece could be communicated as a means to help the nation recover from its financial crisis. Finally, creating a brand name for Greece as a tourist destination that is synonymous with the ultimate tourism experience, could serve as another normative pressure to revisit, as a reward that any tourist ought to offer himself or herself in exchange for hard work during the previous months. Of course, as Mossberg and Kleppe (2005) suggest, image programs of countries and promotion programs for tourist destinations should
be coordinated. However, a solid communications strategy alone is not sufficient to support and/or increase repeat visits from tourists.

5.3. Limitations and Suggestions for Further Research

As with any research, our work has several limitations that need to be taken into account when interpreting its findings. First of all, this research explored only a region of Greece as a tourist destination and only Russians as visiting tourists. Future research is needed to test our theoretical framework with visitors from different nations to different tourist destinations. In addition, this research does not distinguish between tourists who are making their first visit to Greece, and those who have visited Greece before, despite evidence that different attitudinal responses and mechanisms of prediction are relevant in the two cases (Oppermann, 2000, Um, et al., 2006).

Another limitation is the fact that social norms were not incorporated in our analysis. As behavioral and social norms are distinct constructs, the inclusion of separate measures of PNBs and social norms in a system of regression equations “could lead to invalid predictions and an overestimation of normative influence in the model” (Donald & Cooper, 2001, p. 602). Therefore, future researchers could incorporate both types of norms in their analysis. Finally, since several other factors may influence a tourist’s intention to revisit a destination, future researchers could also investigate the role of perceived value and satisfaction, as well as personal characteristics of the individual tourist, such as motivation and the propensity to seek novelty, and attributes, which might include the demographic profile of the tourist and of the group he or she travels with.
References

Hellenic Civil Aviation Authority (HCAA) - International Airport MAKEDONIA (2014). *Passengers Transit Statistics*. Manager Ms. E. Koufidou, last accessed on 9 January 2014.

