
Peer reviewed version

Link to published version (if available): 10.3399/bjgp18X696293

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via RCGP at https://bjgp.org/content/68/671/266. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Clinical case

- Typical case of child with RTI
- Borderline observations
- Call to ED – registrar advises ‘there’s a lot of it about’ ‘waiting room is full of kids like that’

Being made aware of something ‘going around’ increased confidence diagnosis of viral infection that would need careful supportive management by the parents with clear safety netting but the majority of cases would be self limiting.

Would management of this case changed if the GP had already been aware of what viral infections were going around their local area/the Bristol area?

Scale of the problem

Brief outline of burden of RTIs to primary care and antibacterial prescribing with link to AMR:

- AMR public health challenge
- The over and misuse of antimicrobials are recognised as drivers of AMR, with high levels of poorly targeted antimicrobials are prescribed in the community and 74% of all antibacterial prescribing occurring in general practice
- Routine use of antibacterials in primary care has been shown to be directly linked to AMR
- Majority of patients presenting to primary care with an uncomplicated respiratory tract infection in the UK still receive an antibacterial prescription.

Clinician uncertainty has been identified as a driver for prescribing antimicrobials in primary care and therefore a potential target for interventions looking to affect behaviour change of clinicians. Horwood et al. (2016) suggest that additional support is needed for clinicians in their decision-making and interventions that seek to tackle this uncertainty in order to change clinician behaviour are more likely to affect a measurable change.

Diagnostic process

Theory of how the diagnostic process works:
- Description of Bayes and how this fits into diagnostic reasoning
- Pattern recognition
- Hypothetic deductive – list of differential diagnoses and rule out one by one
- Non-specifics e.g. presentation with weight loss and nothing else... prompt doctor to go through thorough systems review

Diagnostic process + infection surveillance data

Incorporating infection surveillance data into diagnostic process.
- If the next patient on your surgery list presents with chest pain, and you had briefly glanced at their record before calling them in this will likely start to focus the consultation from the start – are they an overweight 21 year old smoking female on the COCP – or are they a 75 year old male with hypertension and diabetes?
- If the next patient your list is a 4 year old with no know significant medical or social problems there is a high likelihood they could be presenting with symptoms of a respiratory tract infection.
- Would prior knowledge of prevalent respiratory viruses in your local area help with your management?

In practice
How could this work in practice?
References

