
Peer reviewed version

Link to published version (if available): 10.1038/nature23646

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via NATURE at https://www.nature.com/articles/nature23646. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
A large and mostly volcanic carbon source drove the Paleocene-
Eocene Thermal Maximum

Marcus Gutjahr1,2*, Andy Ridgwell3,4, Philip F. Sexton5, Eleni Anagnostou1, Paul N. Pearson6, Heiko Pälike7, Richard D. Norris8, Ellen Thomas9,10 and Gavin L. Foster1

1 Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, UK
2 GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany mgutjahr@geomar.de
3 School of Geographical Sciences, Bristol University, Bristol, UK
4 Department of Earth Sciences, University of California-Riverside, Riverside, CA, USA
5 School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, UK
6 School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
7 MARUM, Center for Marine Environmental Sciences, University of Bremen, Germany
8 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, U.S.A.
9 Department of Geology and Geophysics, Yale University, New Haven CT, U.S.A.
10 Department of Earth and Environmental sciences, Wesleyan University, Middletown CT, USA
Global warming during the Palaeocene-Eocene Thermal Maximum (PETM, ~56 Ma) is commonly interpreted as being driven by massive destabilization of carbon from surficial sedimentary reservoirs. If correct, this has important implications for the amplification of future fossil fuel emissions via carbon-climate feedbacks. Here we provide new paired records of boron and carbon isotope changes in the ocean that question this long-held interpretation. Our data are assimilated in an Earth system model to reconstruct the unfolding carbon cycle dynamics across the event. Strong evidence for a larger (>10,000 PgC) and on average isotopically heavier (> -17‰) carbon source leads us to identify volcanism associated with the North Atlantic Igneous Province as the main driver of the PETM. We also find that, although amplifying organic carbon feedbacks with climate likely played only a subordinate role in driving the event, enhanced organic matter burial was important in ultimately sequestering the released carbon and accelerating recovery of the Earth system.

Main text (2200 words)

Aside from climate\(^1\) and ecological sensitivities\(^2\), arguably the greatest uncertainties surrounding the future impact of continuing fossil fuel emissions concern the role of carbon-cycle feedbacks\(^3,4\). A past event with considerable potential to evaluate such feedbacks is the Palaeocene-Eocene Thermal Maximum (PETM)\(^5\) – a 4-5°C transient surface warming\(^6\) associated with ecological disruption\(^7\) occurring around 55.8 million years ago\(^8\). Estimates of total carbon release vary from ~3,000 PgC to over 10,000 PgC\(^9-12\), spanning the range of present-day fossil fuel reserves\(^13\) but equally reflecting considerable uncertainty in current understanding. The source(s) of carbon is also highly uncertain, and has been proposed to involve methane hydrates\(^14\), permafrost\(^15\), peatlands\(^16\), and marine sedimentary\(^17\) organic matter – Earth surface carbon reservoirs that may be susceptible to modern warming and provide feedback on future climate change. Massive flood basalts and sill emplacement, associated with the North Atlantic Igneous Province (NAIP)\(^18-21\), emplaced prior to and during the PETM, represent an additional potential source of carbon, but one not linked to a feedback with climate. If we are to fully exploit the paleo-record to improve our
understanding of the longer-term consequences of anthropogenic carbon emissions, we must resolve the balance of carbon source(s) that gave rise to the PETM, and thereby deconvolve the role(s) of triggers vs. feedback. To provide new insight into the amount and source of carbon involved in PETM warming, we present new, paired, surface ocean boron (a well-established proxy for ambient surface seawater pH\(^{22}\)) and carbon isotope data, and use these to simultaneously constrain the time-varying sources and sinks of carbon across the PETM in a novel data assimilation approach in an Earth System model (ESM).

We generated near-continuous boron, oxygen and carbon isotope records from NE Atlantic DSDP Site 401, using the surface ocean mixed-layer dwelling foraminifer *Morozovella subbotinae* (Fig. 1). We sampled the sediment sequence over an interval corresponding to \(~300\) ka preceding the carbon isotope excursion (CIE) to \(~500\) ka afterwards, using a new stratigraphy for Site 401 (Methods). To avoid alignment issues between proxies, we measured boron, oxygen and carbon isotopic compositions on the same samples (Figs. 1a, c, e and Extended Data Fig. 2).

Our measured CIE magnitude at Site 401 of -3.4‰ (Fig. 1a) is at the upper end of planktic foraminiferal \(\delta^{13}C\) records (minimum CIE: -0.7, maximum -4.4, average -2.7, n=36)\(^{5}\), suggesting that our sampling encompasses close to the full magnitude of the CIE (see Methods). The CIE is accompanied by a decrease in \(\delta^{11}B\) of almost 1.7‰ (Fig. 1c). The lowest \(\delta^{13}C\) and \(\delta^{11}B\) values are both observed about \(~25\) ka after the onset of the CIE in our preferred age model, giving an inferred duration of the onset phase of the CIE in good agreement with an independently dated record from Spitsbergen\(^{8}\).

Because of uncertainties in early Cenozoic seawater boron isotopic composition \(\delta^{11}B_{SW}\), we tie our initial, pre-CIE boron isotope derived pH to mean ocean pH (7.75) as simulated by the ‘GENIE’ Earth System Model (ESM)\(^{23}\) and following the approach of a previous PETM model-data pH study\(^{24}\). Our \(\delta^{11}B\) measurements then dictate the timing and magnitude of how ocean pH deviated from this value across the PETM. In our pH reconstruction, we calculate an uncertainty envelope accounting for uncertainties in surface ocean temperature and salinity plus \(\delta^{11}B\) measurement errors, and test two contrasting end-member \(\delta^{11}B\)-pH calibrations for the extinct foraminifer *M. subbotinae* (see Methods). We focus on the \(\delta^{11}B_{foram} = \delta^{11}B_{borate}\) calibration, giving
an estimated $\delta^{11}\text{BSW}$ (38.9 ± 0.4‰) consistent with a recent reconstruction of Eocene $\delta^{11}\text{BSW}$ based on $\delta^{11}\text{B}$. This also gives us the most conservative possible pH excursion, as discussed below.

Evolution of ocean pH across the PETM is characterized by a negative excursion of 0.27 (range: 0.18-0.41) or 0.36 (0.21-0.56) pH units, depending on which $\delta^{11}\text{B}$-pH calibration is used (Fig. 2 and Extended Data Fig. 3a, b), and in general agreement with a recently published PETM $\delta^{11}\text{B}$ record24 (Fig. 2). The wide geographic distribution, but close correspondence in magnitude of all PETM $\delta^{11}\text{B}$-pH records (Pacific, S. Atlantic and N. Atlantic) gives us confidence that a global surface pH excursion signal is captured at DSDP Site 401. The fact that ocean surface pH responds relatively uniformly in models2 supports the evidence from multiple $\delta^{11}\text{B}$ records (Fig. 2) that a single open ocean site can be representative of the global trend (see Methods).

To reconstruct PETM carbon release and its average isotopic composition, we devised a novel data assimilation methodology. We build on previous work9 in which a single $\delta^{13}\text{C}$ record was assimilated (‘inverted’) to constrain the time-varying addition of carbon, but here exploit a more direct indicator of carbon addition – ocean surface pH (Fig. 2). This allows our $\delta^{13}\text{C}$ record to provide a second, independent constraint on the isotopic composition of the carbon emissions in a simultaneous, transient, 500 kyr duration assimilation of both records (see Methods). We explored a wide range of different model parameterizations and proxy assumptions (Extended Data Table 1a) but focus here on the results of the data assimilation of the smoothed record.

From our preferred initial model configuration (‘R07sm’, Extended Data Table 1a) we diagnose a cumulative PETM carbon release reaching ~10,200 PgC with almost all emissions occurring in the first 50 kyr (Fig. 3d). This estimate is largely independent of the choice of age model (Extended Data Table 1), which primarily affects the cumulative carbon emissions associated with the onset interval itself (i.e., the first trace of the CIE in our records) rather than with total emissions associated with the event as a whole. We demonstrate this in idealized model experiments in which pH and $\delta^{13}\text{C}$ linearly decline by 0.3 pH units and 3.5‰, respectively, on time-scales ranging from 0.1 to 20 kyr (Extended Data Fig. 5 and Extended Data Table 1b).
We find that the total carbon emissions in our sensitivity experiments are approximately independent of the assumed duration of the onset interval (Extended Data Fig. 5 and Extended Data Table 1b), as long as the event as a whole is at least 20 kyr in duration. Thus, it is the extended duration of low pH across the PETM and the existence of the co-called carbon isotope ‘plateau’ that lead to the diagnosis of emissions on the order of 10,000 PgC.

In response to carbon emissions, atmospheric pCO_2 in the model increases from ~866 to a peak PETM value of 2176 \pm1904/-669 μatm, consistent with independent atmospheric pCO_2 constraints based on variable terrestrial and marine $\delta^{13}C$ gradients over the PETM. The corresponding projected annual mean sea surface temperature (SST) increase is 3.6°C – close to the observation-based global mean warming estimate of 4-5°C. Also in response to carbon emissions (and ocean acidification), there is a shoaling of the carbonate compensation depth (CCD) in the model – the depth horizon below which calcium carbonate (CaCO$_3$) is not preserved (Extended Data Fig. 7). In previous global carbon cycle model analyses of the PETM, the CCD has been used as a data constraint, with the conclusion that carbon emissions on the order of 10,000 PgC are too high. In contrast, here, the relatively long (>50 kyr) duration of low ocean pH conditions (Fig. 3) in conjunction with weathering feedbacks, leads to a partial decoupling of pH and ocean carbonate saturation, hence a relatively muted response of the CCD (Extended Data Fig. 7 and Methods).

Diagnosed carbon emission rates peak at 0.58 PgC yr$^{-1}$ (Fig. 3c; Extended Data Table 1a), although we assign rather less confidence to these, because their value is sensitive to the duration of the onset of the PETM and hence the specific age model (Extended Data Table 1a). To put this in perspective, for carbon input rates to approach those of current fossil fuel emissions (~10 PgC yr$^{-1}$), the PETM onset would have to occur within 200-500 yr – a duration not supported by any independent age model. However, we cannot rule out multiple, short-lived pulses of carbon release >0.58 PgC yr$^{-1}$ having occurred throughout an extended (e.g. 20 kyr) onset.

In addition to the emissions diagnosed by matching the pH decline, using the $\delta^{13}C$ data as an independent constraint leads us to deduce a flux-weighted mean $\delta^{13}C$ of released carbon of -11‰ (Fig. 3f, n). However, the smoothed $\delta^{13}C$ record (-2.6‰ excursion) on which we focus on very likely underestimates the isotopic magnitude of
the event. For instance, assuming that the ‘true’ PETM CIE was as large as -4.0‰9,28, our mean diagnosed \(\delta^{13}C_{\text{input}} \) would become more depleted (-17‰). Uncertainty in our ocean pH reconstruction also affects the diagnosed carbon source composition. Our minimum pH decrease of 0.18 pH units requires only 5,700 PgC, with a mean \(\delta^{13}C_{\text{input}} \) that is -19‰. We note that the comparatively muted surface warming seen in this ‘minimal pH change’ model experiment (2.25°C, Extended Data Table 1a – experiment ‘R07am_HI’) is difficult to reconcile with an observed warming of 4-5°C6. Conversely, the upper end of our measured pH increase (0.56 pH units) would require emission of considerably more carbon (19,960 PgC) with a significantly heavier carbon isotopic composition (-6.6‰) (Extended Data Table 1a).

Our diagnosed carbon input over the event likely reflects a combination of carbon source(s) – for instance, a mean of -11‰ could reflect a 75% contribution of mantle-derived carbon (\(\delta^{13}C_{\text{source}} \sim -6‰^{30} \)) plus 25% from permafrost (-26‰31), or 90% mantle-derived plus 10% methane hydrates (\(\delta^{13}C_{\text{source}} = -60‰^{14} \)). In such scenarios, volcanism triggered the PETM, and thawing permafrost in Antarctica15 or destabilization of methane hydrates provided amplifying feedback. Correcting for a maximum -4‰ magnitude excursion and a mean \(\delta^{13}C_{\text{input}} \) isotopically not lighter than -17‰ requires a substantial CO2 contribution from volcanism20, but would allow for the possibility of a greater role for organic carbon feedbacks – almost 60% for organic matter or ~20% for methane hydrates.

To date, the PETM has predominantly been viewed as an event dominated by feedbacks between climate and reservoirs of carbon14,16, perhaps with an orbital trigger15. Yet there is abundant evidence of an intimate link in time with the opening of the North Atlantic19, with volcanism and ash deposition occurring immediately prior to PETM onset, as also recorded by declining \(^{187}\text{Os}/^{188}\text{Os} \) in sediments21. Radiometric dating places the PETM coincident with a ~1 Myr interval of massive flood basalt volcanism19 and the emplacement of magmatic sills32, both of which represent large carbon sources. Degassing CO2 from magma yields an estimated 3,600-6,000 gC m\(^{-3}\)33,34 and combining this with the estimated volume of the NAIP as a whole (5\(\times 10^6 \) km\(^3\) to 10\(\times 10^6 \) km\(^3\)19,34), gives a carbon source of 18,000-60,000 PgC. The interaction of magmatism with organic rich sediments could enhance carbon release via thermogenic methane production19,20,35,36, which is estimated to range from 3,000-6,000 PgC35,36 to as high as 15,000 PgC20. Either source of carbon
is potentially sufficient to provide the 10,200-12,200 PgC required by our data assimilation, although our estimated mean $\delta^{13}C_{\text{input}}$ of -11 to -17‰ would rule out either acting in isolation.

Our paired $\delta^{11}B$-$\delta^{13}C$ data also provide insights into climate system recovery from PETM warming. Once carbon emissions ceased (ca. ~55 kyr after PETM initiation – Fig. 3c), elevated global temperatures (Fig. 3a) and enhanced rates of silicate weathering (Fig. 3c) in cGENIE37 (see Methods) drive a trend of increasing ocean surface pH that closely follows the observed surface ocean pH recovery (Fig. 3b). However, we find a model-data misfit of up to ~1‰ in $\delta^{13}C$ during the recovery phase (Fig. 3e). We therefore performed an additional set of experiments in which, after peak CIE, organic carbon (C_{org}) is removed from the ocean surface38 and assumed buried whenever modelled mean ocean surface $\delta^{13}C$ registered lower values than the observed trend (see Methods). These final experiments provide close agreement with the recovery trend in the $\delta^{13}C$ data (Fig. 3m), with cumulative C_{org} burial (Fig. 3l, blue bars) of 2,500 PgC (at an average modelled marine value of -30.5‰39), in agreement with other estimates (~2,000 PgC)40 of the role of enhanced organic matter burial in PETM recovery38 as well as the ensuing reduction in deep-sea oxygenation41.

These findings collectively lead us to a view of the PETM as having been on the smaller end of a spectrum of severe perturbations of climate and carbon cycling during the Cretaceous and Jurassic (Ocean Anoxic Events – OAEs42,43), despite it having been by far the largest end-member in a series of Paleocene-Eocene ‘hyperthermal’ events44. Our pH reconstruction, in conjunction with the observed $\delta^{13}C$ decline, constrains the dominant carbon source during the PETM onset to have had a comparatively heavy carbon isotope ratio, strongly implicating volcanism as having been dominant in triggering and driving the event. Our inferred mean $\delta^{13}C$ source of -11 to -17‰ is consistent with the isotopically relatively heavy source (ca. -15‰45) inferred for the end-Permian event, suggesting mechanistic similarities between the two events34. The implied important role for organic carbon deposition in the recovery from peak warming40 represents another diagnostic feature of OAEs42 (and end-Permian46). Further quantifying and understanding the precise role of feedbacks – both amplifying initial CO$_2$ release, and aiding recovery from global warming – is arguably where the PETM is of greatest value in helping reduce
uncertainties for our warm future. Our study, in indicating a dominant role for
volcanism, points to a lower potential, at least during the prevailing warmth of the
eyear Cenozoic, for the existence of catastrophic amplifying carbon cycle feedbacks
on climate.

Acknowledgments

This study used samples provided by the International Ocean Discovery
Program (IODP). We thank Andy Milton at the University of Southampton for
maintaining the mass spectrometers used in this study. Lulzim Haxhiaj at GEOMAR
Kiel and Henning Kuhnert at MARUM Bremen are acknowledged for their help with
carbon and oxygen isotope analyses. This study was funded by UK Ocean
Acidification Research Program NERC / DEFRA / DECC grant NE/H017518/1 to
P.N.P., G.L.F., and P.F.S. (which supported M.G.). A.R. was supported by a Heising-
Simons Foundation award, and EU grant ERC 2013-CoG-617313. ET was in part
supported by NSF OCE (grant no. NSF OCE 1536611).
References

3. IPCC. *Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.* (eds Stocker, T.F. *et al.*) 1-1535 (2013).

Methods

Site and sample selection

The open northeast Atlantic DSDP Site 401 (47° 25.65’ N, 08° 48.62’ W, 2495 m) was selected for this study. Around 2 mg of the 250-300 μm size fraction of mixed-layer dweller *Morozovella subbotinae* were picked for the carbon, oxygen and boron isotopic analyses. Furthermore, over the studied interval, very high-resolution δ¹⁸O and δ¹³C analyses of bulk carbonate were conducted to establish a revised age model for Site 401. Planktic foraminifera are extremely well preserved at Site 401, free from infilling and, particularly from the onset of the CIE upwards, are semi-glassy in appearance.

Sample treatment

Using a binocular microscope, picked foraminifera were cracked open under glass plates, the sample then homogenised, before splitting into a fraction for stable isotope (δ¹⁸O and δ¹³C) analysis and another for the boron isotopic and elemental analyses (with a ratio of ca. 10:90). Purification and measurement of the boron fraction followed established protocols. Samples were thoroughly cleaned to remove any adhering clays and samples were oxidatively cleaned using buffered peroxide in a warm water bath closely following. Boron isotopic and elemental analyses were carried out on a Thermo Scientific Neptune MC-ICPMS and Element XR ICPMS, respectively, at the University of Southampton. Sample purification and handling was done in low-boron clean labs at the University of Southampton. The average boron total procedural blank was on the order of 30 to 50 pg (n>10) and is hence negligible given our typical sample size (~5 to 15 ng of B). Boron isotopic uncertainties are reported at the 2 sigma level calculated using repeats of in-house carbonate standards. Boron isotopic and elemental aliquots were measured using additional ammonia gas for better sample washout between samples and strictly monitored during every analytical session. Prior to analysis for boron isotopic composition, samples were screened for chemical consistency by checking various elemental ratios (B/Ca, Mg/Ca, Al/Ca etc.) (Extended Data Fig. 1). While few samples had elevated...
Al/Ca (up to ~ 3400 μmol/mol) this feature did not translate into altered δ¹¹B (Extended Data Fig. 1).

Carbon and oxygen isotope aliquots were measured on a Thermo Finnigan MAT252 stable isotope mass spectrometer at the GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany. Additionally, some foraminifera-based δ¹⁸O and δ¹³C analyses as well as all bulk carbonate stable isotope measurements were carried out at the MARUM Bremen, Germany on a Finnigan 251 gas isotope ratio mass spectrometer, coupled to a Kiel I automated carbonate preparation device. All produced isotope records are shown in Extended Data Fig. 2 plotted against depth in core. The carbon isotope excursion seen in our record is 3.4‰, significantly expanded relative to the benthic carbon isotope excursion presented by Nunes and Norris⁵³ that only reported an excursion on the order of 1.8‰. This discrepancy arises from the lower resolution data this earlier study⁵³ the fact that samples were not taken through the core interval of the CIE at Site 401 (202.55 to 202.41 mcd) in this earlier study. We note that Bornemann et al.⁴⁷ reproduced a very similar magnitude of change in δ¹³C to us; their δ¹³C data obtained from the same species (Morozovella subbotina) registered a shift from 4.87‰ at 202.58 mcd to 1.47‰ at 202.46 mcd (an identical excursion magnitude of 3.4‰).

Effect of δ¹¹B-pH calibration used on resulting pH excursion

Using the appropriate δ¹¹B-pH calibration in order to convert calcite δ¹¹B into ambient seawater pH is essential for any paleo-pH reconstruction. For late Neogene studies using extant foraminifer species, the species used are typically calibrated for their δ¹¹Bcalcite to pH dependency using culture or field studies⁵⁴,⁵⁵ in order to assess the magnitude of δ¹¹B-vital effects that relate to foraminiferal physiology⁵⁶-⁵⁸. However, the species used here is extinct, making such calibrations impossible.

In order to bracket the likely magnitude of vital effects we present two calibrations, one using the δ¹¹B to pH relationship of aqueous borate⁵⁹ and the other using the *T. sacculifer* calibration⁵⁵. While the aqueous borate calibration is used for pH trends shown in Figs. 2 and 3, Extended Data Fig. 3a also present the alternative outcome. As noted previously²⁴,⁵⁸, when pre-PETM pH is fixed (as is the case here), the choice of δ¹¹B-pH calibration has little impact on the reconstructed pH curve. We
note, however, that the aqueous borate calibration is more conservative and is therefore our preferred option in this case.

δ¹⁸O and Mg/Ca-based temperature reconstructions

M. subbotinae inhabited the surface ocean mixed layer and the temperatures used for determining \(pK^*_{B} \) (see Extended Data Fig. 8) were determined using the \(\delta^{18}O_{\text{calcite}} \) to temperature relationship of inorganic carbonates\(^{60}\) and a local NW Atlantic seawater \(\delta^{18}O_{\text{SMOW}} \) of 0.014‰\(^{61}\). Mg/Ca based temperatures shown in Extended Data Fig. 8 were calculated using deep time foraminiferal Mg/Ca paleothermometry\(^{62}\) using identical parameters as Dunkley-Jones et al.\(^{6}\).

Determination of \(\delta^{11}B_{\text{sw}} \)

Boron in seawater has a residence time of between ~11 to 20 Ma\(^{63,64}\) and to date the \(\delta^{11}B_{\text{sw}} \) is not well constrained for the PETM. In order to create a self-consistent model-data setup we therefore used the output of GENIE ESM in the pre-CIE configuration which for the open NE Atlantic provides a pH of 7.75\(^{23}\). Using this pH information and employing the generic borate ion calibration\(^{59}\) for the pH-dependent incorporation of boron into the studied foraminifera *Morozovella subbotinae* resulted in a \(\delta^{11}B_{\text{sw}} \) of 38.94 ± 0.41‰. The uncertainty in deriving this bulk seawater \(\delta^{11}B \) is based on 10,000 realizations of a borate ion to pH conversion using the commonly used experimentally derived boron fractionation factor\(^{59}\), varying the given \(\delta^{11}B \) randomly within its 2 sigma measurement uncertainty, and also varying salinity by ±1.5 psu and temperature by ±1.5°C. Utilising the *T. sacculifer* \(\delta^{11}B\)-pH calibration\(^{55}\), but following the same approach, gives a \(\delta^{11}B_{\text{sw}} = 37.6 \pm 0.5\% \).

Chronology for Site 401

A new and detailed age model was established for Site 401 by aligning our new ultra-high resolution (1 cm-spacing) bulk carbonate \(\delta^{18}O \) and \(\delta^{13}C \) records with equivalent bulk carbonate isotope records from Site 690 using the ‘Analyseries’ software\(^{65}\). Most stratigraphic correlation tie points (vertical lines in Extended Data Fig. 4) were made using the \(\delta^{18}O \) records, which gave excellent agreement between the sites. Site 690
currently has two detailed age models. By detailed correlations to Site 401, we were thus able to transpose both the astronomically calibrated chronology29,66 and an extra-terrestrial He-based chronology67 onto Site 401. Extended Data Figs. 3b and c compares our pH record from Site 401 on both chronologies.

Earth system modelling – configuration and data inversion methodology

(c)GENIE is an Earth system model of ‘intermediate complexity’ comprising: a 3-D dynamic ocean circulation model with simplified energy-moisture balance atmosphere68, a representation of the biogeochemical cycling of a variety of elements and isotopes in the ocean69 including 13C (see ref. 70 for a summary), plus representations of the preservation and burial of biogenic carbonates in accumulating marine sediments of the open ocean70, and terrestrial weathering71,72. We utilize the cGENIE Earth system model in the same early Eocene configuration as recently employed28,73 but with terrestrial weathering feedback enabled.

We introduce three separate model innovations here. The first builds on previous work9,74 ‘inverting’ an observed δ^{13}C record to recover the underlying time-history of carbon release. In this, cGENIE adjusts mean atmospheric or surface ocean δ^{13}C to match a (proxy data) target at each time-step (~1 week). If the current mean model value lies *above* the data value (observed data with a coarser resolution than the model time-step is automatically linearly interpolated), a pulse of carbon is released to the atmosphere (or ocean). If the model lies *below* the data value, depending on the experimental setup, carbon is either removed from the atmosphere, or nothing is done (cf. Fig. 3). The magnitude of the carbon pulse emitted at each time-step is prescribed and chosen such that the fastest observed change in δ^{13}C can be closely tracked, but without creating excessive overshoots in modelled δ^{13}C. Here, we allow a maximum rate of carbon emissions to the atmosphere of 10 PgC yr$^{-1}$ and hence a magnitude of an individual pulse of ~0.21 PgC, approximately corresponding to an instantaneous increase in atmospheric pCO$_2$ of 0.1 ppm.

We diverge from the earlier approach9,74 in that rather than utilizing a record of δ^{13}C as our model target to assimilate, we instead employ our Site 401 reconstructed surface ocean pH record. The methodology is inherently the same, but rather than comparing mean model and observed δ^{13}C each time-step, we contrast
(model and data) pH, diagnosing the required carbon flux to the atmosphere in order that surface pH in the model tracks the data. The model-data comparison is done on the basis of a mean global surface ocean pH value calculated in cGENIE because utilizing a single (Site 401) surface ocean grid point in cGENIE creates artefacts in the diagnosed carbon emissions because there is seasonality in pH in the model but not in the data. We justify this assumption that proxy reconstructed surface ocean pH at Site 401 can be representative of the global mean, firstly on the basis of the relatively close degree of correspondence (visually) between the globally distributed pH records available, as show in Fig. 2. Secondly, ocean surface today and during the Paleocene and Eocene is relatively uniform in the model (and reality), with maximum surface gradients between upwelling regions and sub-polar regions no more than 0.1 pH units for modern, and considerably less than this in the late Paleogene (likely primarily due to the non-linear nature of the pH scale) (Extended Data Fig. 6). Furthermore, these muted patterns are retained largely unaltered in response to CO$_2$ emissions. For instance, when we calculate the annual mean surface ocean pH anomaly at different times across the PETM (experiment ID ‘R07sm_Corg’) as compared to the pre-PETM pattern, we find a clearly generally uniform (to within ±0.02pH units) pattern in pH change (Extended Data Fig. 6). If we contrast the evolution of global and annual mean surface ocean pH across the PETM (‘R07sm_Corg’) with the annual mean surface pH at the location of Site 401 for the time points available (Extended Data Fig. 6, top), we also find Site 401 pH is globally representative (and vice versa). All this goes to illustrate that there is unlikely to be any substantive artefact in our assumption of treating our pH record at Site 401 as a surrogate for the global mean in the model inversion experiment. Finally, and for comparison, a similar analysis for the modern ocean under a future ocean acidification scenario (here, chosen to follow RCP6.0) is shown in Extended Data Fig. 6 and demonstrates a similarly muted pattern of pH change.

The second innovation involves the determination of the δ13C of the carbon emitted to the atmosphere. Previously$,^{9,74}$ the δ13C of the carbon was treated as an unknown and a range of different possible values (and hence carbon sources and reservoirs) tested in turn. However, since observed pH constrains the magnitude of carbon emissions, we can now simultaneously employ our observed δ13C record to determine the source of carbon. The way in which the ‘double inversion’
methodology then works is that on each model time-step, following the assessment of whether or not a pulse of carbon is emitted to the atmosphere (based on the model-data pH difference), mean global model and observed Site 401 $\delta^{13}C$ values are compared. If the current mean model surface ocean $\delta^{13}C$ value lies \textit{above} the current data value, the carbon emitted is assigned a carbon isotopic value of -100‰. If however, the mean model value lies \textit{below} the data value, an isotopic value of 0‰ is assigned to the carbon values. By binning the emission fluxes in time and calculating a flux-weighted average $\delta^{13}C$, as per in Figs. 3, intermediate (between -100 and 0 ‰) $\delta^{13}C$ values are achieved. We emphasize that we are not assuming a source that could be -100‰ \textit{per se}, this choice of extremely depleted value simply gives the model greater flexibility in tracking the trend in $\delta^{13}C$. We could have used any value just as long as it is lighter than the lightest conceivable source.

Finally, in the situation that the mean model surface ocean $\delta^{13}C$ value becomes lower than the observed Site 401 value, we also test the importance of marine organic carbon (C$_{org}$) burial. This works identically to the negative emissions diagnosed in previous studies9,74 (when carbon is removed from the system to force $\delta^{13}C$ more positive) but rather than prescribing the $\delta^{13}C$ value, we calculate it according to a simple phytoplankton organic matter fractionation scheme69,75.

For all our experiments, we first spun up the model under late Paleocene boundary conditions28,73, here choosing an open system run time of 200 kyr in order to fully bring the long-term $\delta^{13}C$ cycle into balance (and following on from an initially closed system spin-up of 20 kyr used to established the basic climate and ocean circulation state). We then carried out a range of experiments as summarized in Extended Data Table 1a. We tested combinations (not all are reported here) of: (i) age model – orbital cyclostratigraphy (‘R07’) vs. 3He-based age model (‘FE’), uncertainty in the pH reconstruction – mean vs. the 2.5% and 97.5% confidence limits (‘LO’ and ‘HI’, respectively), whether or not the data is smoothed (‘sm’) or raw (‘rw’), whether or not climate-dependent weathering feedback was allowed, or weathering was fixed (‘noW’), and whether or not C$_{org}$ burial was enabled to recover $\delta^{13}C$ to more positive (and data tracking) values (C$_{org}$ when carbon burial was enabled). These experiments were run for 500 kyr, with the exception of the carbon burial C$_{org}$ series of experiments (Extended Data Table 1a), which were run for an initial interval of 72.6
kyr and up until the peak of the CIE with no organic carbon burial allowed, and then a
further 227.4 kyr with carbon burial allowed when needed (for a total of 300 kyr of
simulation). Model results are plotted relative to the last observed data point prior to
an unambiguous onset of the CIE although in practice the cGENIE double inversion
experiments were run for some ~50 kyr prior to this.

Earth system modelling – additional sensitivity experiments and analysis

We also carried out a range of sensitivity experiments to explore the importance (or
otherwise) of the assumed duration of the CIE onset – in other words, whether there is
a strong age model dependence of diagnosed total carbon emissions. In this series of
experiments, the CIE onset phase was assumed to occur as a simultaneous linear
decline in both δ^{13}C and pH to our reconstructed peak PETM values. We varied the
duration of this decline from 100 to 20,000 yr. Once the minimum in δ^{13}C and pH
was reached, these values were held constant up until the end of the experiment (a
total of 50 kyr). The exact same double inversion methodology was employed. The
results of these sensitivity experiments are plotted in Extended Data Fig. 5 and
summarised in Extended Data Table 1b. Further details of the model and its paleo
configuration, plus comprehensive discussion of model uncertainties, can be found in
the supplementary information file SI 1. Additional assessments of the evolution of
model-projected global mean as well as spatial patterns of sedimentary wt% CaCO$_3$
and sea-surface temperature are illustrated in Extended Data Figs. 7 and 8,
respectively (and described in SI). Site-specific model-data comparisons are shown in
Extended Data Fig. 9 (and again discussed in full in SI 1).

Earth system modelling – model code and supporting file availability

The source code of the cGENIE Earth system model is available for download.
Instructions regarding obtaining the model code and configuring it (and the software
environment) for a range of platforms are provided via: mycgenie.seao2.org.
Further instructions as to how to use the model, process output etc. are also provide
via a series of PDF manuals and tutorials. The specific experiment configuration files
and a README describing the precise model commands needed to run these are
provided under cgenie.muffin\genie-userconfigs\MS\2017.Nature.PETM
in the code tree. All other boundary conditions and data-forcing files required are automatically made available as part of the code download. The MATLAB plotting and analysis functions used are available under cgenie.muffin\genie-matlab in the code tree (and also automatically downloaded along with the code itself). Details of the exact parameters passed to the plotting functions and observed data plotted can be obtained directly from A.R. (andy@seao2.org).
References cited within Methods

Manuscript Figure Captions

Fig. 1. Foraminifera (*M. subbotinae*) (a) and bulk carbonate $\delta^{13}C$ (b), $\delta^{11}B$ (c) and $\delta^{18}O$ (d and e) records plotted relative to the onset of the PETM carbon isotope excursion (CIE) from DSDP Site 401 (47° 25.65' N, 08° 48.62' W, 2495 m) using our preferred age model (see Methods).

Fig. 2. *M. subbotinae* based $\delta^{13}C$ and boron isotope based pH reconstructions of Site 401. Panels A and B show the entire record, while C and D focus on the CIE interval. Also shown are data of ref. 24 on the original age model with pH values recalculated using a laboratory offset such that pre-PETM pH calculated using our Monte Carlo approach at Site 1209 = 7.74 given the distribution of seawater $\delta^{11}B$ determined at Site 401 (38.9 ± 0.4‰). This resulted in a mean correction of the literature data of -0.32‰.

Fig. 3. Output of the GENIE ESM data assimilation experiment in which both $\delta^{13}C$ and pH records were simultaneously inverted. The left hand panels show the results of the first series of data assimilation in which no organic carbon burial was allowed (i.e. positive carbon input to the ocean and atmosphere only) and are as follows: (a) Model diagnosed trajectories of atmospheric pCO$_2$ (red, LH axis) and mean global SST (blue, RH axis), with the mean trajectory in bold and the 95% uncertainty limits as a shaded band. (b) Interpolated surface ocean pH data (yellow symbols) together with model trajectories of mean global ocean surface pH, with the mean trajectory in bold and the 95% uncertainty limits as a shaded band. (c) Model diagnosed rates of CO$_2$ release to the atmosphere in 2 kyr bins. The central estimate (red) is show together with 95% uncertainty limits (empty bars). Rates of excess CO$_2$ due to silicate weathering is shown in green. (d) Cumulative CO$_2$ release to the atmosphere in 2 kyr bins. The central estimate (red) is show together with 95% uncertainty limits (empty bars). (e) Interpolated surface ocean $\delta^{13}C$ data (yellow symbols) together with model trajectories of mean global ocean surface $\delta^{13}C$, with the mean trajectory in bold and the 95% (pH-derived) uncertainty limits as a shaded band. (f) Model diagnosed $\delta^{13}C$ of the CO$_2$ release. The central estimate (red) is show together with 95% uncertainty limits (empty bars). The right hand panels show the results of the second series of
data assimilation in which organic carbon burial was allowed. The panels are as per a-f with the exception of: (k), which shows the diagnosed rates of organic carbon burial (blue), (l), cumulative organic carbon burial (blue), and (n), the isotopic composition of burial carbon (blue). All experiments assumed and are plotted along with the data on our preferred orbital age model29 and are plotted form -50 to +150 kyr relatively to the onset of the CIE.
Extended Data Figure Captions

Extended Data Fig. 1. Elemental and stable isotope cross-plots for *M. subbotiniae* measured in this study.

Extended Data Fig. 2. Foraminifera- and bulk carbonate $\delta^{13}C$, $\delta^{18}O$ and $\delta^{11}B$ data plotted against depth in core. Foraminifera-based stable isotope compositions were generated from identical samples after splitting of $\delta^{13}C / \delta^{18}O$ fraction from $\delta^{11}B^{67}$ fraction.

Extended Data Fig. 3. (a) Comparison of pH evolution at Site 401 over the PETM CIE using either the borate ion (red) or alternatively the *T. sacculifer* (green) calibration. Age scale used is following Röhl et al.²⁹. (b) Direct comparison of our two age models, showing the reconstructed pH evolution of Site 401 plotted using either the age model of Farley and Eltgroth⁶⁷ or our preferred age model of Röhl et al.²⁹. (c) Expanded view of (b).

Extended Data Fig. 4. Bulk carbonate $\delta^{13}C$ and $\delta^{18}O$ comparison between Site 401 and Site 690 presented in Röhl et al.²⁹. Vertical lines highlight age tie points used to derive the age model relative to the PETM carbon isotope excursion.

Extended Data Fig. 5. Sensitivity experiments illustrating the importance of uncertainties in the age model for the CIE onset. In these experiments, the CIE onset phase is assumed to occur linearly, with a duration of the decline in $\delta^{13}C$ and pH that varies from 100 to 20,000 yr duration, with the target pH and $\delta^{13}C$ values thereafter held constant until the end of the experiment (50,000 yr). The evolution with time of these target ocean surface variables is shown in the uppermost panels (a), with pH on the left hand y-axis, and $\delta^{13}C$ on the right hand y-axis. The lower rows of panels show: (b) maximum emission rate per time interval, (c) cumulative carbon emission for respective onset phase in EgC (1 Eg = 10^{18} g) and (d) average emitted $\delta^{13}C$ per time interval. Results shown with onset phases ranging from 100 years to a maximum of 20 ka.
Extended Data Fig. 6. Illustration of the spatial and temporal evolution of mean annual surface ocean pH in the cGENIE Earth system model both across the PETM and for illustration, the modern mean annual surface ocean pH projected from the preindustrial and into the future under RCP 6.0. Shown are: (a) Global and annual mean surface ocean pH (black solid line) across the PETM from experiment ‘R07sm_Corg’ (our central pH estimate, using the inorganic borate ion calibration and the RH07 age model, and including an assumption of organic carbon burial post peak PETM). Red circles represent the annual mean pH values at the location of Site 401 in the model (see location in panel b) at the times from PETM onset onwards that corresponding to the δ¹¹B derived pH data points (cf. Fig. 3b). (b) Model projected spatial pattern of annual mean surface ocean pH at time zero (i.e. PETM onset). (c-f) Model projected spatial pattern of the annual mean surface ocean pH anomaly compared to time zero, for the highlighted time-points in (a) – 5.0, 31.6, 58.2, and 71.5 kyr following onset. (g) Model projected spatial pattern of annual mean surface ocean pH in the modern ocean under pre-industrial atmospheric CO₂ (278 ppm). The model is configured as per described in Cao et al. and driven with a CO₂ scenario calculated consistent with RCP 6.0. The scale is chosen to be the same as per (b). (h-i) Model projected spatial pattern of the annual mean surface ocean pH anomaly compared to 1765, at year 2010 and 2050. The scale is chosen to be the same as per (c-f).

Extended Data Fig. 7. Illustration of the spatial and temporal evolution of surface sedimentary carbonate content in the cGENIE Earth system model across the PETM. Shown are: (a) Global mean surface sedimentary wt% CaCO₃ (black solid line) across the PETM from experiment ‘R07sm_Corg’. White circles represent the times from PETM onset onwards that correspond to the δ¹¹B derived pH data points as per in Fig. 3b and Extended Data Fig. 6. Note that the white circles do not represent ‘values’ and are plotted simply as markers of specific time-points. (b) Model projected spatial pattern of surface sedimentary wt% CaCO₃ at time zero (i.e. PETM onset). Shown are the locations of sites for which surface ocean pH has been reconstructed (see Fig. 2) and at which detailed down-core model-data comparison is carried out (Extended Data Fig. 9). (c-f) Model projected spatial pattern of the surface sedimentary wt% CaCO₃ anomaly compared to time zero, for the highlighted time-points in (a) – 5.0,
31.6, 58.2, and 71.5 kyr following onset. (g) For reference – the assumed seafloor bathymetry in the model (together with the four data-rich sites focussed on in the SI analysis).

Extended Data Fig. 8. Illustration of the spatial and temporal evolution of sea surface temperature in the cGENIE Earth system model across the PETM. Shown are: (a) Global and annual mean sea surface temperature (SST) (black solid line) across the PETM from experiment ‘R07sm_Corg’. Yellow circles represent the annual mean SST values at the location of Site 401 in the model at the times from PETM onset onwards that corresponding to the δ¹¹B derived pH data points (cf. Fig. 3b). Orange and blue filled circles represent Mg/Ca and δ¹⁸O derived, respectively, SST estimates. (b) Model projected spatial pattern of annual mean SST at time zero. The location of Site 401 in the model is highlighted by a star. (c-f) Model projected spatial pattern of the annual mean SST anomaly compared to time zero, for the highlighted time-points in (a) (yellow circles) – 5.0, 31.6, 58.2, and 71.5 kyr following onset.

Extended Data Fig. 9. Down-core model-data evaluation at four data-rich sites. Shown are comparisons for four ocean drilling sites for which surface ocean pH has been reconstructed across the PETM (Fig. 2) – 401, 865, 1209, and 1263 (this study and ref. 24). Their paleo locations in the cGENIE Earth system model are shown to the side (panel q). Model-data comparisons are made for: (i) wt% CaCO₃ (far LH panel for each site), (ii) δ¹³C of bulk carbonate (second-from-left series of panels), and (iii) surface ocean pH (third-from-left series of panels). To provide an orientation in time with regard to the evolution across the PETM event, the farthest-right series of panels shows the projected evolution of atmospheric δ¹³C of CO₂ in the model. For wt% CaCO₃ and δ¹³C of bulk carbonate, model points (resolved at 1 cm resolution) are plotted as filled yellow circles. Model-projected pH (global and annual mean, as per shown in Fig. 3j and Extended Data Fig. 6a) and atmospheric δ¹³C of CO₂ are shown as continuous red lines. In all cases, observed data values are shown as stars (*). The age models for Sites 865, 1209 and 1263 employing original relative age model constraints²⁴ used to convert from model-simulated sediment depth (resolved at 1 cm intervals) at each location in the cGENIE Earth system model, are calculated using a constant detrital flux accumulation rate. The observed data are plotting on
their respective site 690-derived age models. Both model and data age scales are synchronized to age zero at PETM onset (horizontal line). See SI for details.

Extended Data Table 1. (a) Summary of the main double inversion experiments carried out. The terminology “R07” refers to configurations tying the Site 401 records to the chronostratigraphy of ref. 29, the notation “FE” refers to the 3He-based age model of ref. 67). Annotation “sm” refers to inversion of analytically smoothed δ^{13}C and pH data sets, “rw” to usage of original sample data for double inversions. “HI” and “LO” represent potentially extreme configurations taking into account the boron proxy uncertainty at the 95% confidence level. “noW” has silicate (and carbonate) weathering feedbacks disabled. “Corg” denote model configurations that allow removal of excess organic carbon from the surface ocean. The outcome of “R07sm” is shown in Fig. 3a-f, that of “R07sm_Corg” is illustrated in Fig. 3i-n. (b) Summary table presenting the results of sensitivity experiments (shown in Extended Data Fig. 5) designed to quantify the importance of uncertainties in the age model for the CIE onset. In these experiments, the CIE onset phase is assumed to occur linearly, with a duration of the decline in δ^{13}C and pH that varies from 100 to 20,000 yr duration. Reported are: (1) the diagnosed peak carbon emissions (occurring at any time during the experiment), (2) the cumulative carbon emissions occurring over the duration of the onset, and the mean (flux weighted) δ^{13}C of these emissions, (3) the cumulative carbon emissions occurring at the 20 kyr time horizon – comparable to the onset duration in our assumed age model, plus the mean (flux weighted) δ^{13}C of these emissions, and (4) the cumulative carbon emissions occurring at the 20 kyr time horizon, which is the maximum model run duration in this series of experiments, plus the mean (flux weighted) δ^{13}C of these emissions. Note that in all experiments, once the onset is complete, the target pH and δ^{13}C values are held constant (and low) until the end of the experiment (50,000 yr).