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Abstract Cell function is regulated by the spatio-temporal organization of signaling 

machinery and a key facet of this is molecular clustering. Here, methodology is presented 

for the analysis of clustering in data generated by 2D single molecule localisation 

microscopy (SMLM), for example, photoactivated localisation microscopy (PALM) or 

stochastic optical reconstruction microscopy (STORM). Three features of such data cause 

standard cluster analysis approaches to be ineffective: the data take the form of a list of 

points rather than a pixel array; there is a non-negligible unclustered background density of 

points which must be accounted for; every localisation has an associated uncertainty on its 

position. These issues are overcome using a Bayesian, model-based approach. Many 

possible cluster configurations are proposed and scored against a generative model, which 

assumes Gaussian clusters overlaid on a completely spatially random background, before 

every point is scrambled by its localisation precision. We present the process of generating 

simulated and experimental data which are suitable for our algorithm, the analysis itself, 

and the extraction and interpretation of key cluster descriptors such as the number of 

clusters, cluster radii and the number of localisations per cluster. Variations in these 

descriptors can be interpreted as arising due to changes in the organization of cellular 

nanoarchitecture. The protocol requires no specific programming ability and the processing 

time of one data set, typically containing 30 regions of interest, is ~18h with ~1h of user 

input. 

 

Introduction 
In recent years, Single Molecule Localisation Microscopy (SMLM) has become a widely used 

technique. Conventional microscopy is limited in resolution to around 200 nm, which is the 
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closest two fluorescent molecules can be before they cannot be distinguished. This limit is 

due to diffraction, and is only dependent on the numerical aperture of the microscope 

objective and the wavelength of light, meaning it cannot easily be improved. Despite the 

great utility of diffraction limited microscopy, there are many biological structures and 

processes which occur on smaller length-scales. There is therefore a strong scientific 

motivation to develop methods which circumvent this limit. One of the most widely used 

techniques is SMLM1-3, which exploits the temporal separation of fluorescing molecules to 

achieve resolutions in the 20-30 nm range. 

 

The overarching principle behind SMLM is that if only a sparse distribution of molecules can 

be imaged at a time, then their positions can be accurately estimated by calculating the 

centre of each individual point spread function. The most common way of generating such a 

sparse distribution is by exploiting the stochastic nature of photo-physical processes, 

obtaining randomly separated fluorescent signals of different molecules in time. There are 

numerous ways of achieving this, including using photo-switchable fluorescent proteins1, 

long-lived non-fluorescent dark states4, 5, or transient molecular binding6. Once a sparse 

subset has been imaged, the centroid of individual point spread functions is found, typically 

by fitting a two-dimensional Gaussian kernel7-9. The position of the molecule is estimated as 

the location of the peak, with localisation uncertainty (also known as localisation precision) 

determined by the quality of the fit9, 10. This random subset is then bleached, and a new 

random subset activated. Through repeated cycles of activation, imaging and bleaching, the 

locations of a large subset of the available molecules is eventually acquired. 

 

The clustering of molecules in biological systems is often critical to their function and 

therefore cluster analysis on data obtained from microscopy is an important analytical 

method. However, unlike conventional microscopes, which produce images consisting of 

arrays pixels each with a numerical value proportional to the intensity at that location, 

SMLM generates pointillist data, specifically a set of x-y (and z in the case of 3D acquisitions) 

coordinates with associated localisation precisions. Thus, the image analysis tools developed 

for conventional microscopy are not applicable. Instead, the data must be treated within 

the framework of spatial point pattern (SPP) analysis. At the same time, cluster analysis 

tools developed in this field do not handle the uncertainty in the positions of the molecules. 

Options are further reduced by the typical presence of a non-negligible background of 

points which are not clustered. We have therefore developed a new cluster analysis 

technique for SMLM data, using a Bayesian approach, to address all these issues. Our 

algorithm produces a full clustering of the points11, i.e., a vector allocating each observation 

to a cluster or the background. The method is model-based, assuming Gaussian clusters 

overlaid on a completely spatially random (CSR) background, takes full account of the 

localisation precisions and does not require any arbitrary user-supplied analysis parameters 

but instead requires Bayesian prior probabilities which have well-defined statistical 

interpretations.  



 

 

Applications 
 
Despite being designed for SMLM data, the method is, in principle, applicable to any 

pointillist data set to which the 2D circular, Gaussian cluster model is applicable. Such 

examples may arise in diverse fields such as astronomy or ecology. 

 

Here, we provide a precise guide to using the technique on simulated and experimental 

SMLM data. We recommend the use of ThunderSTORM8 – an ImageJ plugin to localise the 

fluorophores for analysis. Our tool is flexible however, and can be used with any of the 

common or commercial localisation software of which there are many7, 12, 13. 

 

Our motivating application is the analysis of the clustering behaviour of molecules in, or 

proximal to, the cell plasma membrane. Membrane proximal signalling molecules are 

extremely common targets of study as all intercellular communication ultimately results in 

signal transduction through the plasma membrane. There is a large body of literature which 

now shows that in a wide range of signal transduction pathways, the clustering of molecules 

(either directly in the membrane itself, or proximal to it) is a regulating factor14-19. One 

manifestation of this regulation for example, is that clustering can digitise signalling, 

producing rapid and discretised cellular outcomes20, 21. The mechanisms for generating such 

clusters are diverse. One example are protein-protein interactions either resulting from 

direct binding domains (oligomerisation) or simple van der Waals interactions resulting from 

a Lennard-Jones potential22. Another might be clustering due to interactions with ordered 

membrane microdomains (lipid rafts); areas of the cell membrane with differential lipid 

packing to which membrane proteins have differential affinity23-26. The cytoskeleton can 

also influence clustering – cortical actin has been shown to corral membrane proteins both 

theoretically and experimentally27-29.  

While the morphology of the resulting clusters of course depends on the generative 

mechanism, in many cases, they can be reasonably approximated as 2-dimensional Gaussian 

clusters. This includes the case of a 3D membrane-proximal cluster projected into two 

dimensions. It is this type of 2D morphology which we address and analyse here; our tool is 

only appropriate if, for example by visual inspection, clusters are found to beat least 

approximately circular. 

Method 

Conceptually, the algorithm is formed of two parts11; a full schematic of the analysis 

workflow is shown in Figure 1. The first proposes several thousands of potential clustering 

configurations, called cluster proposals, by direct point pattern analysis of the data. The 

second scores each cluster proposal according to a Bayesian generative model. This allows 

the highest scoring cluster proposal to be identified, which is the main output of the 

algorithm. Tools for extracting key cluster descriptors such as cluster radii, number of 



 

 

clusters per ROI or number of localisations per cluster, are also provided in a post-

processing step. 

Cluster proposal generation 

Let 𝑉 = (𝑉1, … , 𝑉𝑁) denote the list of 2D localisations provided, with associated localisation 

uncertainties 𝑠1, … , 𝑠𝑁 (treated as standard deviations). A cluster proposal is an assignment 

of every localisation to a specific cluster or to the background. This is represented by a 

vector of non-negative integers ℓ = (ℓ1, … , ℓ𝑁), where ℓ𝑖 = ℓ𝑗 indicates that 𝑉𝑖 and 𝑉𝑗 are 

either in the same cluster, if ℓ𝑖 ≥ 1, or the background, if ℓ𝑖 = 0. Two parameters, 𝑟 and 𝑇, 

allow a single cluster proposal to be generated. A number of proposals are then generated 

by separately varying 𝑟 and 𝑇. The cluster proposal mechanism proceeds as follows30, 31. 

Each localisation is first assigned a density estimate (transformed such that its value scales 

with 𝑟) based on the number, say 𝑘, of other localisations that are within a distance 𝑟,  

√𝐴 𝑘 [𝜋(𝑁 − 1)]⁄ , 

where 𝐴 is the area of the ROI. Localisations with a density below 𝑇 are assigned to the 

background. Those that remain are divided into clusters by connecting any pair less than a 

distance 2𝑟 apart. By default, the ranges considered by our algorithm are 𝑟 = 5, … ,300 nm 

and 𝑇 = 5, … ,500, both in increments of 5. 

Generative model 

The generative model assumes that the true molecular positions 𝑍1, … , 𝑍𝑁 follow a hybrid 

distribution whereby a certain proportion are completely spatially random, forming a so-

called background process, and the remainder are grouped into Gaussian clusters. To each 

true molecular position, 𝑍𝑖,  we add independent circular Gaussian noise with variance 𝑠𝑖
2 

(taken from the localisation uncertainty of 𝑉𝑖) in each dimension. For experimental data, 

these uncertainties are calculated theoretically for each localization. There are a number of 

theoretical derivations of these values, each taking into account parameters such as the 

number of photons per PSF, the width of the PSF its local background variance and the 

camera pixel size. Two of the most common were derived by Thompson et al9 and Quan et 

al10 respectively. 

Points are independently assigned to the background with fixed prior probability 𝑝𝐵. 

Remaining points group into clusters according to the Dirichlet process, with concentration 

parameter 𝛼. These two prior assumptions determine our prior distribution on ℓ, denoted 

𝑝(ℓ). The full effect of varying the priors has been analyzed in detail and the analysis has 

been found to be robust32. 

Clusters are mutually independent of each other. True molecular positions within a cluster 

are conditionally independent, drawn from a 2D circular Gaussian distribution, conditional 

on the cluster centre, a priori uniformly distributed on the ROI, and the cluster standard 



 

 

deviation, a priori drawn from a user-supplied histogram. Together these assumptions 

determine the (marginal) likelihood of the data given ℓ, denoted 𝑝(𝑉 ∣ ℓ). The main 

computational burden of the method is calculating this term, as it is not analytically 

available. Actual formulae and derivations are available in Rubin-Delanchy et al11. 

Following the central equation of Bayesian inference, any cluster proposal ℓ can therefore 

be assigned a posterior probability 𝑝(ℓ ∣ 𝑉) ∝ 𝑝(𝑉 ∣ ℓ)𝑝(ℓ), allowing selection of the 

optimal proposal. We have demonstrated the reliability of the scoring mechanism by 

showing overwhelming improvements in estimation accuracy of key cluster descriptors such 

as the number of clusters per region or percentage of localizations in clusters, compared to 

using arbitrarily (but sensibly) chosen proposals based on fixed r and T values. We 

demonstrated the reliability of the scoring mechanism on real data by dividing the 

localizations from a representative data set into two and showing that the algorithm  

produces consistent estimates for each sub-population11. 

Alternative approaches 
The first cluster analysis method to be applied to SMLM data used Ripley’s K-function30, 33, 34. 

Unlike our method, Ripley’s K-function does not provide a full clustering of the data, but 

instead measures the average level of clustering at different scales for the region of interest 

(ROI) as a whole. The K-function is calculated by drawing concentric circles around each 

point and counting the number of neighbours encircled. Its value is then normalised to the 

overall localisation density and linearised such that its value scales with the radius of the 

circles rather than their area. Higher values of the K-function at a particular circle radius 

imply greater clustering at that length-scale. The K-function provides a rapid and robust 

overview of clustering behaviour in an ROI, and has a strong theoretical underpinning. On 

the other hand, it does not generate a full clustering of the data, nor key cluster descriptors 

such as the number of molecules per cluster or the number of clusters. A very closely 

related technique which has also been applied to SMLM data is Pair Correlation (PC)35, 36. 

Here, the circles are replaced by tori, to mitigate the effect of artefacts occurring at specific 

length scales propagating to other length-scales37. An example of such an artefact which 

motivated the development of PC is multiple blinking, discussed in the Limitations section. 

 

While the above methods produce high-level summaries, there are a number of approaches 

which do generate a full clustering of the data. Possibly the most popular among these is 

DBSCAN38, which has also been applied to SMLM39. This algorithm first chooses a subset of 

core points based on their local density (using a radius, 𝑟, and threshold 𝑇), then generates 

clusters by connecting any two points that are within 𝑟 of each other, where at least one is a 

core point. The algorithm is computationally efficient and makes no modelling assumptions, 

which might make it more suitable for datasets where our model assumptions are strongly 

inaccurate, for example, if there are markedly non-circular clusters. The key disadvantage of 

this approach is that it requires the user to supply values for 𝑟 and 𝑇, which strongly affect 



 

 

the outcome, and there is no theoretical guidance on how these should be selected. In a 

similar vein to DBSCAN, Voronoi tessellation chooses a subset of points to be clustered 

based on the area of control of each point (acting as a density estimate), and then clusters 

the subset by connecting adjacent areas40. As with DBSCAN, there are no model 

assumptions, meaning that the approach may be more robust to e.g. non-circular clusters, 

but the user is required to choose a threshold, and again, there is no theoretical guidance. 

In summary, if the observed molecular distributions cannot be closely approximated as 

circular clusters – in the case of fibres for example – then segmentation techniques such as 

DBSCAN or Voronoi tessellation are more appropriate. For ease of comparison, the analysis 

software MIiSR and VividSTORM are recommended41, 42. In addition, specialised software 

exists for 2-colour co-cluster analysis43, 44 and analysis of 3D features45. 

 

Overall, we recommend the use of Ripley’s K-function or Pair Correlation to give a high-level 

overview of the clustering behaviour in the data. These serve as a complementary approach 

to ours. We would advocate the use of DBSCAN or Voronoi tessellation in situations where 

the assumptions of our model are deemed (strongly) unrealistic. 

Limitations 

Model assumptions  

An issue facing any model-based approach to data analysis is the validity of model 

assumptions, the most important of which here is the assumption that each localization has 

a fixed, independent probability of being a member of a cluster and that the cluster shapes 

are well represented by circular Gaussian distributions. While we expect the algorithm to be 

robust to morphologically similar distributions, for example flat top clusters or low aspect-

ratio ellipses, the algorithm is certainly not designed for the analysis of fibrous structures, 

extremely elongated or non-convex clusters. The default prior stipulates that each 

localisation has a 50% probability of being clustered, meaning that completely spatially 

random (CSR) distribution is extremely unlikely a priori. Our position is that exact CSR is 

extremely unlikely to occur in a biological context. However, if such a distribution is 

expected, or conversely a completely clustered distribution, then the prior parameter pB 

must be set accordingly. Keeping the prior set at 50%, we have found results to be robust 

with between 20% and 80% of molecules in clusters11. If the user wishes to statistically 

demonstrate clustering above CSR before setting the prior, we recommend other methods 

such as Ripley’s K-function, discussed more extensively in the Alternative Approaches 

section. There are other prior parameters, such as the prior on the cluster radii (standard 

deviation) and the concentration parameter of the Dirichlet process, that can be altered. 

We have thoroughly tested our default choices on a wide variety of cluster scenarios, and 

found results to be largely insensitive to these parameters. However, we recognize there 

may be extreme examples, e.g. distributions with very large clusters, where these choices 

may need to be revisited. As with all Bayesian analyses, it should be remembered that the 

prior parameters should genuinely represent the analyst’s (subjective) prior beliefs.  



 

 

 

Statistical efficiency 
Theoretically optimal estimates of cluster descriptors such as their radii, number of clusters 

per ROI would be calculated on the basis of a posterior sample, rather than the highest 

scoring cluster proposal. However, obtaining a posterior sample for this inference problem 

is known to be algorithmically difficult, due to the explosion of the space of possible 

solutions. Here, the highest scoring proposal is selected and we have shown that this gives 

higher accuracy than the current state-of-the-art, at a manageable computational cost.  

 

Data limitations 

It is well recognised in the field that fluorophores can undergo a process of multiple 

blinking46-49. This means that a single fluorescent molecule can generate multiple 

localisations in the resulting dataset. While some implementations of SMLM are more 

susceptible to this problem, it is likely that multiple blinking artefacts exist in all SMLM 

datasets. There are a number of methods which attempt to correct for multiple blinking, 

most of which have been implemented at the localisation stage of data analysis. Our 

algorithm assumes that the data has been pre-processed to remove such effects, and makes 

no attempt to be robust to the problem. Previously, when analysing experimental data, we 

have merged localisations which were estimated to have arisen from the same molecule 

using the method of Annibale et al., implemented in the Thunderstorm software8, 11, 46. 

As well as the problem of multiple blinking, the labelling efficiency, expression profile, 

detection efficiency and other sample parameters are frequently not known. Considering 

these potential artefacts, the number of localisations per region and the number of 

localisations per cluster cannot necessarily be directly equated to the number of real 

biological molecules present. 

 

The algorithm assumes a rectangular ROI, and attempts to correct for edge effects. Because 

of this, best results are expected when the area is square, maximizing the ratio of area to 

perimeter. We recommend regions are chosen to be of the order 3 by 3 microns in size. The 

algorithm expects the background and clusters to be uniformly distributed over the 

rectangle, meaning that ROIs need to be selected carefully such that they do not intersect 

with cell boundaries. Additionally, the folding of the membrane at the cell boundary renders 

the 2D assumption of the analysis invalid.  

 

We have tested the performance of the algorithm in detecting clusters in various conditions. 

For typical overall density of localisations, for example, 100-1000 per square micron, we find 

a lower detectability of six molecules per cluster. Our proposal generating algorithm is 

optimal in settings where the clusters are homogeneous in size within each ROI. This is due 

to the requirement of setting a single radius and threshold across the ROI. Therefore, 

regions that show extreme heterogeneity may be sub-optimally characterised. 

 



 

 

Computational considerations 

The computation time scales with the number of points, affecting how long it takes to score 

one proposal, and the number of cluster proposals, which is dependent on the range and 

increments of 𝑟 and 𝑇. These are user-controllable settings, and therefore accuracy can be 

traded off against computation time. By default, the radius is varied over the range 5 to 300 

in increments of 5, and the threshold is varied over 5 to 500 in increments of 5, resulting in 

4000 proposals, which for a region containing 1000 points typically takes 30 minutes on a 

standard office desktop. Given typical limitations of processor power and memory, we 

recommend a maximum number of localisations per region of 15-20,000. The number of 

localisations in one SMLM acquisition are usually in the range 100,000 to 1,000,000. This 

means that typically, 5-10 regions should be selected to analyse the total area of a cell, 

resulting in computation times of several hours with default settings. 

Sample preparation and data acquisition 
In this section we will provide guidelines and key steps common to all SMLM sample and 

data preparation protocols, recognising that there are now a vast range of protocols 

available, each tailored to the study of specific biological processes. Ultimately, the goal is to 

generate a text file with x-y coordinates and associated localisation uncertainties, for input 

into our cluster analysis algorithm. For users, there are already published protocols on 

SMLM sample preparation and acquisition available50-52. In addition, Figure 1 shows a 

schematic of the overall workflow of the algorithm, illustrating where users can input their 

data if not following the preceding steps recommended here. 

Two of the most common SMLM implementations are dSTORM4, 5, which achieves the 

temporal separation of fluorophores using photoactivatable dyes, and PALM1, which is 

based on photoswitchable proteins. Other SMLM implementations such as PAINT or 

transient binding also produce appropriate data for our algorithm6. Our algorithm is 

designed for clustering two dimensional data, for example as generated by the TIRF imaging 

configuration53, 54 which PALM and dSTORM almost exclusively employ. The use of TIRF 

means that the maximal z-range of the data is in the region of 100-150 nm. Here, the 

acquisition results in the analysis of a 2D projection of this thin volume. For this reason we 

suggest to avoid cell edges where the membrane can turn perpendicular to the plane of 

imaging. Away from edges, projection artefacts are likely to be small as they follow a Cosine 

function with the angle of the membrane relative to the imaging plane. 

More precisely, PALM imaging consists of stochastically switching the emission wavelength 

of a random subset of genetically encoded fluorescent proteins over time. mEos, PS-CFP2, 

Dronpa and Dendra are some of the routinely used photoactivatable fluorescent proteins, 

among many47, 55-57. In terms of sample preparation, cells are typically transfected with a 

plasmid encoding the fluorescent fusion construct around 24 hours before imaging. PALM 

therefore relies on the expression of exogenous plasmids, creating a subpopulation of the 

protein of interest tagged with a localisable fluorophore. The principal advantage of PALM 

over other SMLM imaging techniques is that the protein is directly imaged, without the 



 

 

need for antibodies or permeabilisation. While not strictly required58, cells are almost 

always fixed before imaging due to long acquisition times.  

During the acquisition, two lasers must be used: one to facilitate the photoconversion 

process and one for conventional excitation of the converted form. The first laser is used to 

switch the emission wavelength of a small subset of fluorescent proteins and hence is 

typically used at very low powers. The second laser is then used to image and bleach this 

subset. A typical camera integration time is around 30 ms but this should be optimised for 

the particular system in use.  

dSTORM4, 5 relies on the immunostaining of the molecule of interest, avoiding cell 

transfection and over-expression of the molecule of interest, which is a common problem 

with PALM. The principle of the method is to target the molecule of interest with a primary 

antibody (with or without permeabilisation depending on the location of the studied 

protein) and to then target this primary antibody with a secondary antibody onto which the 

fluorophore is attached. The use of two antibodies decreases the resolution as together 

they can sum to an error of up to 40 nm in the estimate of the position of the protein of 

interest. Strategies have been developed to improve estimation accuracy include direct 

fluorophore conjugation of the primary antibody or the use of nanobodies59. The camera 

integration time is generally around 10 ms/frame due to higher photon counts (another 

advantage over PALM). 

The raw data obtained by SMLM imaging consist of a sequence of raw frames containing 

diffraction limited point spread functions (PSFs) resulting from the emitting fluorophore 

subset. Software processing is then applied to localise the fluorophores in each frame and 

concatenate all localisations to reconstruct the final image. The result is a list of x-y 

coordinates with associated localisation uncertainties (x1, y1, s1), (x2, y2, s2),… Many software 

packages are available to perform this localisation process. For the remainder of this 

protocol, we assume the use of ThunderSTORM8, a free and open source plugin for ImageJ.  

Two common issues that arise from SMLM processing are the case of overlapping PSFs 

where a simple Gaussian distribution cannot be fitted to the complex intensity profile, and 

the multiple blinking phenomenon. ThunderSTORM offers the possibility to use multiple-

emitter fitting (MEF), allowing for up to four overlapped PSFs. In the case of PALM, multiple 

blinking can be accounted for and corrected, by merging localisations in close spatial and 

temporal proximity.  

ThunderSTORM allows the filtering of localisations according to a number of properties (e.g. 

localisation uncertainty)8. While our method takes explicit account of localisation 

uncertainty, meaning that such filters are not strictly required, they may help reduce 

processing times. We recommend the use of MEF for high PSF densities, drift correction, 

duplicate correction based on the uncertainty (an artefact associated with MEF), correction 

for multiple blinking in the case of PALM, and a photon count filter (above 2000 photons per 

localisation for Alexa 647 for instance). Note that ThunderSTORM requires, as input, several 

of the camera settings used during the acquisition process (often available in the user 

manual)8. Save the output as .csv files, keeping all descriptive parameters. 



 

 

 

Materials 
 

• ImageJ (http://imagej.nih.gov/ij/) with downloaded and installed plugins “Grid” 

(http://rsb.info.nih.gov/ij/plugins/grid.html) and ThunderSTORM 

(https://code.google.com/p/thunder-storm/)8 

• R (https://cran.r-project.org/) and RStudio (https://www.rstudio.com/). Note that the code 

only requires the free, open source RStudio version. 

• Two additional R libraries, “splancs” and “igraph” which can be installed directly from the 

RStudio interface via Tools>Install Packages. 

• (Optional) Matlab (http://uk.mathworks.com/products/matlab/?refresh=true) with version 

no earlier than 2014b. 

Procedure 
 

1. In order to start analysis of an experimental dataset, proceed with option A. A simulated 

dataset can also be prepared for analysis by following option B. 

 

(A) Formatting processed experimental data sets for analysis and defining regions of interest 
(ROI). Timing 1 hr 
 

i. Create a parent folder in which all files associated with this analysis will be kept. In our 

example, we will call this parent folder “Condition i”. 

ii. Copy the files provided for the analysis (formatting.R, get_histograms.m, run.R, internal.R, 

postprocessing.R, simulate.R, formatting_params.txt,  sim_params.txt, Coord.txt and 

config.txt files) into this folder.  

iii. Open ImageJ.  

iv. Click on “Plugins>ThunderSTORM>Import/Export>Import Results”. A navigation window will 

appear.  

v. Navigate in “file path” to the .csv file and select it. Make sure “live preview” is selected, 

keeping all other defaults, and click OK. Both the list of localisations and their visualisation 

will appear (Figure 2). In the supplementary information, we provide an example 

experimental .csv file for users to test their analysis procedure. 

TROUBLESHOOTING 

vi. (Optional) Perform any required filtering and post-processing (e.g. drift correction) using 

ThunderSTORM8. 

vii. Click on “Export”. A dialog box will appear.  

viii. Select .csv as the format for the file extension.  

ix. Indicate the path to the parent folder, “Condition i” in our example. Give a numerical name 

to the file for further steps, e.g. 1.csv. 

x. Tick only x, y and uncertainty boxes to indicate which columns to save. 

xi. Click on OK. 

http://imagej.nih.gov/ij/
http://rsb.info.nih.gov/ij/plugins/grid.html


 

 

xii. Critical Step: Verify that the parent folder now contains a file called 1.csv which contains 3 

columns: x coordinates, y coordinates and uncertainty. 

TROUBLESHOOTING 

xiii. Click on the visualisation window (Figure 2).  

xiv. In the ImageJ main interface, click on “plugins>Grid”. A dialog box will appear. 

xv. Type in the “Area” box the desired area of the ROI, for example, ‘2’ for a 2 m by 2 m 

square ROI. Note that processing time is dependent on the number of points in the ROI. We 

recommend that the size of each resulting .csv file to be <250kb (representing roughly 15-

20,000 localisations). The size of the ROI should therefore be adjusted depending on the 

density of localisations in the sample. We have found that a ROI of 2 m x 2 m to 3 m x 3 

m is adequate. As the cluster analysis framework assumes homogeneous clustering in the 

x-y plane, if the sample displays large scale heterogeneity, a larger number of smaller 

regions may better generate locally homogeneous ROIs. However, the algorithm is fully 

robust to any ROI size and therefore very large regions can be selected by the user, 

depending on the constraints of computational time. Note that rectangular ROIs are also 

possible. 

xvi. Click “Ok”. A grid will appear over the visualisation (Figure 2). 

xvii. Select the pointer icon in the ImageJ main interface (Figure 2). 

xviii. Place the cursor in the middle of a grid square thus defining the centre of a ROI. 

xix. Look for the corresponding coordinates of this point on the main ImageJ interface (Figure 2). 

The coordinates will be in m. Avoid any grid squares which contain the boundary of a cell, 

as these will give sub-optimal cluster results. In addition, if the cellular sub-region of interest 

is small, smaller ROIs should be selected in order that the ROI illustrates the specific cluster 

characteristics of that sub-region. Note that there are other ImageJ plugins that may be 

useful for selecting regions and these can be used at the user’s discretion42. 

xx. Type the coordinates of the centres of each ROI in the Coord.txt file provided, in the 

following format: 

a. First column: the name (numerical value) of the .csv file containing the list of 

localisations from which the ROIs are extracted e.g. 1 for 1.csv 

b. Second and third columns: the coordinates (x and y respectively).  

c. Columns should be separated by a Tab symbol. 

xxi. Repeat steps 1iv to 2viii for all other data sets of the same condition. 

xxii. Save and close Coord.txt. 

xxiii. Open RStudio (Figure 3). 

xxiv. Critical Step: Set the correct working directory. In the console interface type: setwd(“path to 

parent folder”). Under Windows, occurrences of the backslash, “\”,  in the path name must 

be replaced by forward slashes, “/”. For example: 

setwd(“C:/Users/Owen/Desktop/Condition i”) and press Return. 

xxv. Select the open icon in the RStudio interface and open formatting.R. The code will appear in 

the RStudio interface (Figure 3). 

xxvi. Specify the name of the folder where the experimental data ROI subfolders will be stored 

(line 1), by default the folder name is set as “ROIs”. 

xxvii. Open the formatting_params.txt file contained in the parent folder using a standard text 

editor such as Notepad. Formatting parameters are stored in this file and can be modified. 



 

 

xxviii. Critical Step: Enter the size of the region of interest in x and y in nanometres (Lines 1 and 2 

of the code). 

xxix. Critical Step: Enter the columns within the raw data (e.g. 1.csv)  in which the x (col_x, line 3), 

y (col_y, line 4)and localisation precisions (col_unc_xy, line 5)  

xxx. Save and close formatting_params.txt 

xxxi. Click on the “source” icon in RStudio (Figure 3). 

xxxii. Critical Step: Verify that the code has created a subfolder called ROIs within the Parent 

Folder and that ROIs contains subfolders sequentially labelled from 1 to the total number of 

ROIs as well as the copied config.txt. Each contains a text file called data.txt containing the x, 

y and uncertainty values (Figure 4). The coordinates of the ROI will have been reset to begin 

at coordinate 0,0 and therefore if the user is not using formatting.R, the coordinates must 

also be reset to the origin.  

TROUBLESHOOTING 

B. Generating simulated data sets Timing 10 min 
 

i. Create a parent folder in which all files associated with this analysis will be kept. In our 

example, we will call this parent folder “Condition i”. 

ii. Copy the files provided for the analysis (formatting.R, get_histograms.m, 

formatting_params.txt, run.R, internal.R, postprocessing.R, simulate.R, sim_params.txt, 

Coord.txt and config.txt files) into this folder.  

iii. Open RStudio (Figure 3). 

iv. Critical Step: Set the correct working directory. In the console interface type: setwd(“path to 

parent folder”). Under Windows, occurrences of the backslash, “\”,  in the path name must 

be replaced by forward slashes, “/”. For example: 

setwd(“C:/Users/Owen/Desktop/Condition i”) and press Return. 

v. Select the open icon in the RStudio interface and open simulate.R. The code will appear in 

the RStudio interface (Figure 3). 

vi. Specify the name of the folder where the simulated ROI subfolders will be stored (line 1), by 

default the folder name is set as “ROIs”. 

vii. Open sim_params.txt in a standard text editor, such as Notepad. User definable parameters 

are stored in this file and can be modified. 

viii. Enter the desired number of localisations per cluster (line 1: molspercluster, default=100). 

Note that by setting this parameter = 1, a completely spatially random data set will be 

generated, which can be used as a control for experimental conditions. 

ix. Enter the desired fraction of localisations in the background (line 2: background, default=.5). 

x. Enter the desired number of clusters per ROI (line 3: nclusters, default=10) 

xi. Enter the desired x and y limits of the ROI in nm (lines 4-5: xlim, ylim, default=0,3000 for 

both). 

xii. Enter the desired parameters for the Gamma distribution. This is the distribution from which 

the localisation precisions will be generated. The parameters are given in shape , rate  

format. The mean of this distribution is  and the variance is  (line 6: gammaparams, 

default=5, 0.166667 which generates a mean simulated localisation precision of 30 nm). 

xiii. Enter in the desired number of independent ROIs to be simulated (line 7: nsim, default=2). 



 

 

xiv. Enter the desired cluster radii (defined as the standard deviation of the positions of the 

points within a cluster, before scrambling by the localisation uncertainties) in nm (line 8: 

sdcluster, default=50). 

xv. (Optional) This will save simulated parameters representing a standard clustering scenario 

representing randomly positioned circular Gaussian clusters overlaid with a CSR background. 

Save and close this text file here if this standard configuration is desired. Options for 

scenarios with uneven background, multimerisation and unequal cluster sizes are given 

below. 

xvi. (Optional) If a variety of cluster radii are desired, enter a list of radii in line 8 (separated by 

commas). The list should contain the same number of entries as the number of clusters 

(specified in line 3). 

xvii. (Optional) Enter the desired multimerisation. If this parameter is a positive integer m larger 

than one, then previous clustering parameters are ignored. Points are distributed 

completely spatially randomly on the background, and replicated m times. Every point is 

scrambled by an independent localisation precision drawn from the Gamma distribution 

described above. For example, to simulate dimers, m=2  (line 9: multimerisation, default=0). 

In the case of multimerisation, enter the desired number of distinct molecular positions in 

the ROI (line 10: mols_for_multimer_case, default=2000). Finally, specify the desired 

fraction of the molecules to be simulated in a multimerised state (line 11: propmultimered, 

default=.1). To illustrate, the total number of localisations in the ROI should be around 

mols_for_multimer_case + ( mols_for_multimer_case x propmultimered) x (multimerisation 

-1)) (the rare molecules that are simulated outside the ROI due to the scrambling process 

are deleted). 

xviii. (Optional) Enter the desired background distribution if the default of CSR is not desired. 

Background localisations are distributed uniformly in the y dimension, but according to a 

Beta distribution in the x dimension, with specified parameters a and b. The uniform 

distribution (CSR) is achieved with a=1 and b=1. The choice a=b=2, for example, induces a 

moderate increase in background density in the centre of the ROI, whereas a=5,b=1 induces 

an extreme increase in background density at the right side of the ROI. (line 12: ab, 

default=1,1)  

xix. Save and close the text file.  

xx. Critical Step: In RStudio, click on “Source”. This will create a folder with subfolders 

containing the simulated ROIs in the specified path (Figure 4). Verify that the code has 

created a subfolder called ROIs within the Parent Folder and that ROIs contains subfolders 

sequentially labelled from 1 to the total number of ROIs. Each contains a text file called 

data.txt containing the x, y, localisation uncertainty and cluster label values (Figure 4). 

Clusters are labelled sequentially up to the number of clusters. Unclustered localisations 

have a unique label (singletons). 

TROUBLESHOOTING 

 

Setting up the config.txt for analysis Timing 5 min 

2. Open the config.txt file contained in “ROIs” (not the version which exists in the parent folder 

which will always retain the default analysis parameters), using a standard text editor such 

as Notepad. Analysis parameters are stored in this file and can be modified. 



 

 

3. Critical Step: enter the ROI limits in nm (lines 2-3: xlim, ylim, default=0,3000 for both). The 

size of the ROI should always match the size specified in section 2 iii. 

4. Critical Step: default parameters provided below are appropriate for cluster analysis in 

micron-sized regions in which 20-80% of localisations are in clusters, and the radius of a 

cluster is expected to fall in the range 10-500 nm. If these parameters are not expected to 

be appropriate for the data under analysis, then modify the values as detailed below.  

5. (Optional) Enter the prior probability distribution on the cluster radii (defined as the 

standard deviation of the positions of the points within a cluster) in a histogram format, 

giving first the bin locations in nm (line 4: histbins) and then the bin frequencies (line 5: 

histvalues). The code converts the histogram into a probability density function by linear 

interpolation followed by re-standardization. For example, setting histbins=1,100 and 

histvalues=1,1 is equivalent to assuming a uniform prior distribution between 1 nm and 100 

nm: a priori, each cluster could have a standard deviation between 1 nm and 100 nm, and 

any value within that range is equally probable.  

6. (Optional) Set the concentration coefficient of the Dirichlet process (line 6: alpha, default 

20). This prior affects how clustered points are assumed to organise into groups. Lower 

(higher) values induce fewer (more) clusters. 

7. (Optional) Set the prior on the proportion of localisations in the background (line 7: 

pbackground, default=.5). The default has been shown to be robust to true proportions 

between 0.2 and 0.811.  

8. (Optional) Set the range and increment of radii (rseq) and threshold (thseq) to be used to 

generate cluster proposals in the format min, max, increment (lines 8-9: rseq, default 

5,300,5, thseq, default 5,500,5).  The minimum should always be set below the minimum 

possible expected cluster radius and the maximum set to be above the expected maximum 

possible cluster radius. Increasing the overall range increases processing time accordingly. 

Lower values of increment increase the accuracy of the generated cluster proposals at the 

expense of computational speed. 

9. (Optional) Set the value of makeplot (1=true, 0=false). This parameter determines whether 

cluster maps will be generated (as opposed to simply extracting cluster descriptors) for each 

ROI (line 10: default 1). 

10. (Optional) Set the value of superplot (1=true, 0=false). This parameter determines whether a 

montage of the cluster maps for each ROI will be generated as a single .pdf (line 11: default 

1). 

11. (Optional) Set the value of skeleton (1=true, 0=false). This parameter determines whether a 

copy of the ROIs folder will be generated (as R_ROIs) which will only retain the highest 

scoring label proposal (for ease of storage and transport) (line 12: default 0). 

12. Save and close config.txt. 

Running the cluster analysis. Timing 45 min per ROI 

13. Open RStudio (Figure 3). 

14. Critical Step: Set the correct working directory. In the console interface type: setwd(“path to 

parent folder”). Under Windows, occurrences of the backslash, “\”,  in the path name must 

be replaced by forward slashes, “/”. For example: 

setwd(“C:/Users/Owen/Desktop/Condition i”) and press Return. 



 

 

15. Select the open icon in the RStudio interface and open run.R. The code will appear in your 

RStudio interface (Figure 3).  

16. On line 2 of run.R, set the folder name to match the folder containing the regions of interest. 

In our example “ROIs”. Additional folders can be added within the parent folder (e.g. ROIs2, 

ROIs3). If this is the case, these can be listed on line 2, separated by commas, in order to 

allow batch processing e.g. foldernames=c(“ROIs”, "ROIs2", “ROIs3”). 

17. Critical Step: Click on Source to launch the analysis (Figure 3). The progress of the analysis 

will appear on the console section of your RStudio interface. Once “>” appears in the 

console, the analysis is complete. Note that the processing time depends on the number of 

ROIs as well as the size of the data.txt files associated with each ROI. In each numbered 

subfolder within ROIs, the code will have generated a text file called r_vs_thresh.txt and a 

new subfolder called “labels” containing all the tested cluster proposals. 

TROUBLESHOOTING 

Post-processing. Timing 5 min 

18. Click on the open icon of the RStudio interface and select postprocessing.R. 

19. On line 2 of postprocessing.R, set the folder name to match the folder containing the regions 

of interest. In our example “ROIs”. Additional folders can be added within the parent folder 

(e.g. ROIs2, ROIs3). If this is the case, these can be listed on line 2, separated by commas, in 

order to allow batch processing e.g. foldernames=c(“ROIs”, "ROIs2", “ROIs3”). 

20. Click on “Source” to run the code (Figure 3). The code extracts the best proposal, obtaining 

key cluster descriptors (radii of the clusters: radii.txt, number of localisations per cluster: 

nmols.txt, number of clusters per ROI: nclusters.txt, percentage of localisations in clusters 

per ROI: pclustered.txt, total number of localisation per ROI: totalmols.txt and relative 

density: reldensity.txt) and saving them in the ROIs folder, along with .pdfs containing a 

histogram of each descriptor and, if specified, the superplot (Figure 5). The relative density is 

defined as the density of localisations within clusters (localistions per square micron) divided 

by the density outside of clusters. Note that in terms of biological interpretation, the 

number of localisations per cluster and per region cannot necessarily be directly equated to 

the real number of molecules due to the problems of labelling efficiency, endogenous 

protein expression, detection efficiency and fluorophore multiple blinking. Nevertheless, a 

modification of these descriptors between two conditions illustrates a relative change in 

clustering.  The code saves summary information about each specific region, including the 

best scoring proposal (e.g. in “ROIs/1/summary.txt” (Skeleton=0) or 

“R_ROIs/1/summary.txt” (Skeleton=1) in our example) and a .pdf image (e.g. in 

“ROIs/labels/1/plot.pdf in our example) of the resulting cluster map (Figure 5). If simulated 

data was analysed, the .pdf file will contain two cluster maps, the first corresponding to the 

true, simulated labelling and the second to the analysed labelling. Finally, the code saves the 

x, y positions of each detected cluster (cluster_statistics.txt). If the user wishes to analyse 

multi-scale clustering (cluster of clusters), the analysis could be re-run on the cluster centres, 

for example using Ripley’s K-function30, 33. 

TROUBLESHOOTING 



 

 

(optional) Displaying cluster descriptors Timing 10 min 

The Get_histograms.m code provided allows the generation of user definable 

histograms of all six key cluster descriptors, saved as .fig files to facilitate visualisation 

and interpretation of the data. This step is purely aesthetic. 

21. Open Matlab. 

22. Click on the “current folder” icon. Select the parent folder (“Condition i” folder in our 

example) (Figure 6). The files contained in this folder, including the .m files, will appear in 

the current folder section (on the left of the Matlab interface).  

23. Double click on the Get_histograms.m file to open the function in the editor.  

24. Enter the folder name containing the postprocessed data on line 4 (ROIs in our example) 

25. Enter the bin width which will be used to generate the histograms of each descriptor (lines 

7-12). 

26. Click Run. The code will generate formatted histograms of each descriptor. 

TROUBLESHOOTING 

Timing 
• Selecting and formatting regions of interest: 60 mins (for 30 regions) 

• Preparing analysis: 5 mins 

• Analysis processing time 45 mins (per region) 

• Post-processing and visualisation: 15 mins 

Troubleshooting 
 

Steps Problem Possible reason Solution 

1A.v Localisations within the 

live preview are very 

sparse or there are 

significant background 

localisations outside of 

the cell 

Low transfection 

efficiency or expression of 

the fluorescent construct, 

low labelling efficiency of 

the antibody or high 

levels of non-specific 

binding 

Optimise transfection protocol or 

immunolabelling procedure to 

produce higher signal and lower 

or lower background 

1A. xii .csv data file does not 

exist in the parent folder 

Incorrect path was 

entered when exporting 

the .csv file 

Export again with correct path to 

the parent folder 

1A. 

xxxii 

 

Or 

 

1B. xx 

When running 

formatting.R, the correct 

files are not created in 

the folder structure 

(Figure 4) 

Either Coord.txt or 

config.txt are missing 

from the parent folder. 

Make sure config.txt and Coord.txt 

are in the parent folder. 

Ensure the working directory has 

been set correctly 



 

 

1A. 

xxxii 

 

Or 

 

1B. xx 

When running 

formatting.R, The code 

did not generate a 

subfolder within the 

parent folder containing 

-regions of interest or 

the data.txt files do not 

contain localisation 

coordinates or 

uncertainties. 

The Coord.txt file is 

empty or formatted 

incorrectly, or the regions 

did not contain any 

localisations, or incorrect 

columns have been 

exported into the .csv. 

Check that the selected regions of 

interest contain localisations and 

that the coordinates of the centre 

of each ROI have been saved in a 

correctly formatted Coord.txt file. 

Also ensure that only the x,y and 

uncertainty columns were 

exported into the .csv file. 

17 When run.R is launched, 

the error message 

"cannot open file 

'internal.R': No such file 

or directory" appears in 

the RStudio console 

interface . 

The wrong working 

directory has been set in 

RStudio. 

Set the correct working directory 

in the Console interface by typing 

setwd(“path to parent folder”) 

and press Return. Under 

Windows, occurrences of the 

backslash, “\”, in the path name 

must be replaced by forward 

slashes, “/”. 

17 When run.R is launched, 

the error message 

"cannot open file 

'…config.txt': No such file 

or directory" appears in 

the RStudio console 

interface. 

The target folder of run.R 

(line 2) has been set 

incorrectly.  

 Specify the name of the folder 

where the simulated ROI 

subfolders are stored (line 2 of 

run.R). This folder must match the 

name of the folder in which the 

regions of interest are stored. 

17 During processing, an 

error message appears 

indicating an out of 

memory error. 

The allocated memory 

limit has been reached. 

Make sure your data.txt files are 

under 250kb. This can be achieved 

by further filtering in 

ThunderSTORM (e.g. by photon 

count), or specifying smaller 

regions of interest in 

formatting_params.txt and 

config.txt. 

20 

 

And  

 

26 

The cluster maps fail to 

find obvious clusters or 

detect clusters in visually 

random point patterns. 

1. Priors or 2. the range of 

radius and threshold used 

to generate proposals 

were not set 

appropriately, or 3. The 

spatial configuration of 

the localisations does not 

conform closely to the 

assumed Bayesian model 

of circular Gaussian 

clusters overlaid with a 

CSR background. 

1. If a visual inspection of the 

generated cluster map reveals 

extreme clustering or near-CSR, 

the prior on pbackground can be 

modified accordingly in config.txt 

and the analysis re-run. If there 

are extremely small or large 

clusters the prior histogram on the 

size distribution can be modified 

in config.txt.  

2. Increase the range of radius and 

threshold (note processing time 



 

 

will increase). 

3. The data is not appropriate for 

this analysis method. 

20 

 

And 

 

26 

Interpretation of 

resulting cluster maps is 

problematic due to 

issues surrounding 

labelling, sample 

preparation and imaging 

conditions 

Non-specific antibody 

binding, artefacts from 

permeabilisation, protein 

over-expression, 

fluorophore multiple-

blinking 

Repeat experiments using 

different antibodies, fluorophore 

or fluorescent proteins and check 

that clustering behaviour is 

consistent 

    

 

Expected Outcomes 
Figure 7 shows expected outcomes from our cluster analysis. In this case, the data was 

generated by dSTORM of ZAP-70 in primary human T cells forming a T cell immunological 

synapse60 on activating anti-CD3 and anti-CD28 coated glass coverslips as previously 

described for super-resolution11, 14, 15, 61, 62. Cells were left to form synapses, fixed and then 

immunostained with primary and secondary antibodies labelled with Alexa-647 and imaged 

in a standard dSTORM buffer. Images were acquired on a Nikon N-STORM microscope 

operated in a TIRF configuration and pre-processed using ThunderSTORM as described, 

including MEF. 

Figure 7a shows a representative reconstructed image from which ROIs were selected. The 

data set for this example analysis is available for download as Supplementary Information. 

The image shows the approximate localization density and level of background to be 

suitable for cluster analysis. Figure 7b shows an example of the generated cluster maps 

where each cluster is pseudo-coloured in an arbitrary colour. Figures 7c-h shows generated 

histograms for the 6 key cluster descriptors, with the means indicated by the dashed lines. 

The number of localisations per cluster and per region is only semi-quantitatively 

interpreted as the number of true molecules due to the unknown labelling efficiency, 

detection efficiency and multiple-blinking. Unclustered localisations are true localisations 

that are not clustered and should not be interpreted as experimental background noise. The 

cluster radius is defined as the standard deviation of the positions of the localisations 

associated with that cluster. 

In this example, the output indicates that ZAP-70 is clustered at the membrane at the T cell 

immunological synapse. It is well known that many signaling molecules cluster following 

stimulation through the T-cell receptor pathway. Other such examples include the TCR itself, 

Lck, LAT and SLP-76. Studies have shown that clustering can digitize cell signaling. 



 

 

Mechanisms for clustering are hypothesized to be protein-protein interactions, docking at 

newly available phosphorylated sites, membrane lipid microdomains or interactions with 

the dynamic cortical actin meshwork.  

Figure Captions 

Figure 1: Schematic of the Bayesian cluster analysis workflow. The schematic indicates the 

required data formats and inputs for each stage from localization, through data formatting 

and cluster analysis to post-processing and visualization. 

Figure 2: Schematic of the ImageJ interface while displaying the output of ThunderSTORM. 

The visualization window and controls required to select regions of interest for analysis have 

been highlighted. 

Figure 3: Schematic of the RStudio interface. Here, the main processing program, run.R, is 

open and ready for analysis. Major controls and windows are highlighted. 

 

Figure 4: Format of the folder structure ready for the Bayesian cluster analysis algorithm. 

This the folder and file structure after the running of formatting.R to define ROIs for 

experimental data. The parent folder (Condition i), contains (in this example) 5 sequentially 

named SMLM data sets, the user-generated Coord.txt file to specify which regions will be 

analysed and all the other necessary, supplied files. A subfolder (in this example “ROIs”) in 

turn contains a folder for each of the individual regions to be analysed, with each folder 

containing a file, data.txt, of the localisation coordinates and associated uncertainties. 

Figure 5: Format of the folder and file structure after processing and post-processing are 

complete.. The ROIs folder now contains text files listing the aggregated cluster descriptors 

from all analysed regions as well as basic histograms of these parameters. Each individual 

region folder also contains a generated cluster map (plot.pdf), and two a files, summary.txt 

and cluster-statistics.txt, which list key cluster descriptors for that specific region. The folder 

“labels” contains every tested cluster proposal and r_vs_thresh.txt contains the full set of 

scores for every tested cluster proposal. The highest scoring proposal is given in 

summary.txt. Schematic is in the case of skeleton=0 (FALSE). 

Figure 6. Schematic of the Matlab interface for generating optional histograms of the 

output data. The open and Run icons have been highlighted, along with the code itself. 

Figure 7: Expected outcome of the analysis algorithm when used on experimental 

dSTORM data. Cluster analysis of ZAP-70 at the T cell immunological synapse imaged by 

dSTORM, from a total of n = 28 selected regions from n = 12 cells. a) reconstructed 



 

 

ThunderSTORM image of a representative cell. b) representative 3 x 3 m cluster map 

generated by our algorithm. c) histogram of the number localisations per cluster. d) 

histogram of the radii of the detected clusters. e) histogram of the percentage of 

localisations found in clusters for each ROI. f) histogram of the relative density of molecules 

inside clusters as compared to outside for each ROI. g) histograms of the number of 

detected clusters per ROI. h) histogram of the total number of localisations per ROI. 
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