
Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1016/j.placenta.2018.12.004

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at DOI: 10.1016/j.placenta.2018.12.004. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Technical Note / Methodological Advances

Imaging the Placental Glycocalyx with Transmission Electron Microscopy

Anna C.M. Fabre-Gray¹, Colin J. Down¹,², Christopher R. Neal²,³, Rebecca R. Foster², Simon C. Satchell², Victoria L. Bills¹

¹ Department of Fetal Medicine, St Michael’s Hospital, University Hospitals Bristol NHS Foundation Trust, UK.
² Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
³ Wolfson Bioimaging Facility, University of Bristol, UK

CORRESPONDING AUTHOR:
Dr Colin Down
Address: Department of Fetal Medicine, St Michael’s Hospital, Southwell Street, Bristol. BS2 8EG. UK
Email: colin.down@bristol.ac.uk

ABSTRACT:
There is a significant glycocalyx present at the maternal-fetal interface of the human placenta, with increasing evidence to suggest it has an important role in placental function.

Glycocalyx is adversely affected by traditional tissue processing and fixation techniques. Using transmission electron microscopy, we present methodologies for reliably imaging and measuring glycocalyx of both the syncytiotrophoblast and fetal capillary endothelium in term healthy placentae.

These techniques can be used to study the role of the placental glycocalyx in both health and disease, including pre-eclampsia.

HIGHLIGHTS:

• Glycocalyx is present at the maternal-fetal interface of the human placenta
• A new method for the ultrastructural imaging of placental glycocalyx is presented
• Visualisation of placental glycocalyx is enhanced by these methods
• These techniques can be used to study the role of the placental glycocalyx

KEYWORDS: glycocalyx, placenta, transmission electron microscopy, pre-eclampsia

FUNDING: This work was supported by the David Telling Charitable Trust, Bristol, UK [grant number 427].

DECLARATIONS OF INTEREST: None

WORD COUNT: 1000

FIGURES: 2
INTRODUCTION

The endothelial glycocalyx is a negatively charged layer present at the luminal surface of endothelial cells (EC). It consists of membrane-bound core proteins with glycosaminoglycan (GAG) side-chains. Glycocalyx is important in EC regulation, with glycocalyx damage reported in many endothelial diseases [1, 2].

Glycocalyx is also present on other cell types, including the syncytiotrophoblast (STB) brush border of the human placenta [3]. The function of the placental glycocalyx is likely wide ranging including the regulation of permeability and transport mechanisms of the STB [4]. The placental glycocalyx is consequently an important area for research in diseases of pregnancy, especially pre-eclampsia (PE), which is characterised by widespread endothelial dysfunction. Several studies have now demonstrated changes in circulating glycocalyx components in PE [5, 6].

Due to the fragility of glycocalyx ex-vivo, direct imaging with transmission electron microscopy (TEM) is difficult, as traditional processing techniques result in glycocalyx compression or loss. Furthermore, the glycocalyx lacks an intrinsic electron density, requiring the addition of cations to label the anionic sugar residues [7]. Differences in methodology can largely account for the wide range in glycocalyx appearance and depth reported in other tissues [8].

Although the STB and capillary EC glycocalyx have previously been demonstrated by EM [4, 9], we present an alternate methodology which significantly enhances its visualisation, along with a technique to quantify and measure glycocalyx depth.

METHODS

This study was approved by a research ethics committee and participants provided written consent. Placentae were obtained from women with uncomplicated pregnancy undergoing elective caesarean section (CS) at term and processed immediately in one of two ways:
Immersion chemical fixation: With the maternal surface uppermost, 3 healthy placental regions were identified. The basal plate was dissected and 1 cm³ biopsies were obtained and briefly washed in Ringer’s solution, pH 7.3. Fixation was by immersion in freshly prepared 2.5% glutaraldehyde (GA), 0.1 M cacodylate buffer (CaC₉) plus a cationic dye; 1) 0.1% Alcian Blue (AB) and 75 mM L-lysine, 2) 0.3% lanthanum nitrate, 0.3% dysprosium chloride (LaDy) and 75 mM L-lysine or, 3) 0.1 % Ruthenium Red (RR) and 75 mM L-lysine or without cationic dye as a control. Tissue was fixed for 24 hours at 4°C, then washed in buffer, further trimmed to 1- 2 mm³ and post-fixed by incubation with 1% osmium tetroxide (OsO₄) and then 3% uranyl acetate (UA). Samples were dehydrated in graded ethanol, washed in propylene oxide and embedded in EPON resin.

Perfusion chemical fixation: Placental perfusion was performed using a protocol adapted from Leach et al [10]. The umbilical vein was cannulated with a 4 mm nasogastric tube and fetal blood flushed by perfusing 250 ml of Ringer’s solution at 60 mmHg. Fixative of 1% GA with 0.1% Alcian Blue in Ringer’s solution was then perfused. Biopsies were taken from 3 well-fixed regions and immersed in 1% GA in Ringer’s solution at 4°C for 24 hours. Post fixation processing and embedding was as above. Embedded specimens were sectioned at 75 nm and applied to copper grids and imaged by TEM (Technai 12 – FEI 120kV BioTwin Spirit). At least 3 high-power images were obtained from 3 randomly selected areas of STB brush-border and capillary EC.

Glycocalyx depth measurements were performed in FIJI (Image J) [11] by overlaying a 0.1 µm grid and measuring the perpendicular glycocalyx depth from the phospholipid-bilayer where it crosses a grid line. The mean number of glycocalyx measurements per image was nine. Glycocalyx depth is reported as mean ± SEM and comparison of the means is by one-way ANOVA and Tukey’s post hoc analysis.

RESULTS

Nine women were included in the study with a mean gestation at delivery of 39±2 weeks.
Syncytiotrophoblast Glycocalyx: Immersion fixation with an added cation demonstrated glycocalyx at the STB, appearing as an electron dense region, extending from the phospholipid bilayer of individual microvilli into the intervillous space (figure 1 A). When compared across one placenta, the measured depth was significantly different depending on the cationic probe used, $p < 0.0003$, (AB 76.8 ± 2.9 nm, RR 68.1 ± 2.2 nm, and LaDy 58.5 ± 4.3 nm) (figure 1 B-D). No glycocalyx was demonstrated on the specimen fixed in the absence of a cation (figure 1 E). The immersion fixation technique was reproduced across 5 placentae using AB with the mean observed STB glycocalyx depth 68.7 ± 6.2 nm.

Fetal Capillary EC Glycocalyx: EC glycocalyx could not be demonstrated on immersion-fixed samples, instead the capillary lumen was filled with plasma proteins and cellular debris. Perfusion fixation, however, was able to demonstrate glycocalyx at the EC luminal surface. Well-perfused capillaries (identified by the absence of fetal erythrocytes) were selected for analysis, with a mean glycocalyx depth of 55.3 ± 9.1 nm ($n=3$) (figure 2).

DISCUSSION

The glycocalyx is in a dynamic equilibrium of synthesis and degradation [12] and accurate preservation is therefore dependent on rapid fixation [13].

Tissue fixation with aldehydes occurs through the cross-linking of proteins [14]. The STB microvilli project into the intervillous space, allowing for plasma proteins to be removed by gentle washing and fixative to immediately access the microvillous surface. In contrast, the EC is separated by several microns of tissue, taking longer for aldehydes to fix and making it difficult to remove plasma proteins by immersion alone. Plasma may act to either compress or impede access of the cation to the glycocalyx [15].

Placental perfusion represents a method of removing plasma and delivering fixative directly to the EC, allowing direct visualisation of the fetal capillary glycocalyx clearly at the ultrastructural level.

The variation in glycocalyx depth by cationic dye is important and likely reflects the different ways in which probes interact with the glycocalyx, determined by differences in chemical composition, size and
charge [16]. This variation highlights the effects of different methodologies on the observed glycocalyx depth.

The potential importance of the glycocalyx is only just being realised. It is anticipated that the techniques for imaging and quantifying placental glycocalyx presented here can be used to accelerate our understanding of the function of glycocalyx in both normal pregnancy and disease.

REFERENCES

Figure 1. A. syncytiotrophoblast micro-villi brush border, with glycocalyx. Fixation in 2.5% GA, 0.1 M CaC, 75 mMol L-lysine and 0.1% AB. B-E. high power comparative images demonstrating glycocalyx staining with different cations across one placenta. Fixed with 2.5% GA, 0.1 M CaC and B. 0.1% AB and 75 mMol L-lysine, C. 0.1% RR and 75 mMol L-lysine D. 0.3% LaDy and 75 mMol L-lysine and E. no additional cation. Scale marker B-E is equal to 200 nm. GLX, glycocalyx; STBM, syncytiotrophoblast micro-villi.

Figure 2. A. fetal capillary endothelial cell demonstrating glycocalyx on the luminal surface. Fixed by perfusion with 1% GA, 0.1% AB in HEPES buffer. B. A high power composite of two micrographs demonstrating fetal capillary glycocalyx at a tight junction of two endothelial cells, fixed used the same perfusion technique. Glycocalyx depth is recorded as the perpendicular height from the phospholipid bilayer. The stained, wisp-like material in the vessel lumen may represent glycocalyx that was previously in a continuum with the now removed plasma. Nu, nucleus.