
Peer reviewed version
License (if available): CC BY-NC-ND
Link to published version (if available): 10.1016/j.epsl.2019.03.001

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0012821X19301426. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
For submission to Earth and Planetary Science Letters

Post-depositional overprinting of chromium in foraminifera

Serginio R.C. Remmelzwaal (a*), Aleksey Yu. Sadekov (b,c), Ian J. Parkinson (a), Daniela N. Schmidt (a), Danna Titelboim (d), Sigal Abramovich (d), Anne Roepert (e), Michiel Kienhuis (e), Lubos Polerecky (e), Heather Goring-Harford (f), Katsunori Kimoto (g), Katherine A. Allen (h), Kate Holland (i), Joseph A. Stewart (a), Jack J. Middelburg (e).

(a) School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
(b) Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
(c) School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
(d) Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Mailbox 653, Beer-Sheva 84105, Israel
(e) Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O Box 80.021, 3508 TA Utrecht, The Netherlands
(f) Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom
(g) Research Center for Global Change (RCGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
(h) School of Earth and Climate Sciences, University of Maine, 5790 Bryand Global Sciences Center, Orono, ME 04469-5790, United States of America
(i) Research School of Earth Sciences, The Australian National University, 2601 Canberra, ACT, Australia

*corresponding author: serginio.remmelzwaal@bristol.ac.uk
Abstract

Present-day ocean deoxygenation has major implications for marine ecosystems and biogeochemical cycling in the oceans. Chromium isotopes are used as a proxy to infer changes in past oceanic redox state. Chromium isotopes in carbonates, including the prime proxy carrier foraminifera, were initially thought to record the seawater composition during crystallisation. However, the uptake of Cr into foraminiferal tests and carbonates is still poorly understood and recent studies question this assumption. We assess whether Cr in foraminiferal calcite is taken up during biomineralisation, has a post-depositional origin or is a combination of the two. Laser Ablation-MC-ICP-MS analyses and NanoSIMS imaging of individual tests were used to characterise the distribution of Cr in both planktic and benthic foraminifera. Foraminifera in sediment core-top samples have up to two orders of magnitude more Cr than sediment trap, plankton net, and culture samples. In cultured specimens, Cr is incorporated in foraminiferal tests at low concentrations (0.04 – 0.13 ppm) with a distribution coefficient of ~250 ± 43 (2SE) which is an upper estimate due to substantial loss of dissolved Cr during the experiment. Part of the Cr signal in sedimentary foraminifera may be primary, but this primary signal is likely often overprinted by the uptake of Cr from bottom and pore waters. In sediment samples, there is no significant isotopic offset between individual species and bulk foraminiferal calcite from the same size fraction. The >500 μm fraction has a heavier isotopic composition than the smaller 250 – 500 μm fraction with an offset of -0.3 to -0.5‰ due to an increase in surface area to volume. We propose that Cr in foraminifera is predominantly post-depositional and records bottom/pore water signals. This is contrary to current interpretations of the foraminiferal Cr isotope proxy as a surface seawater redox proxy.

Keywords: Chromium, foraminifera, diagenesis, distribution coefficient, laser ablation, nanoSIMS
1. Introduction

Anthropogenic global warming has caused dissolved oxygen levels in the oceans to drop globally by 2% over the past decades (Schmittko et al., 2017). This loss of oxygen is projected to continue at up to 0.64 µM per year (Stramma et al., 2012). As ocean deoxygenation threatens marine ecosystems (Keeling et al., 2010), a more robust understanding of the effects of deoxygenation on biogeochemical cycling, the carbon pump and marine life is important. One way of untangling the effects of deoxygenation is by looking at the response during past climate perturbations.

Chromium occurs in two valence states in the marine environment, Cr(III) and Cr(VI), and is therefore sensitive to redox changes (e.g. Elderfield, 1970; Cranston and Murray, 1978; Bonnand et al., 2013; Reinhard et al., 2014; Wang et al., 2016). In modern well-oxygenated seawater, chromium is predominantly present as Cr(VI)-oxyanions, whereas Cr(III) is insoluble and will adhere to particles, thus forming a sink to the seafloor and depleting low-oxygen seawater in Cr (Cranston and Murray, 1978). Recently, phytoplankton have been found to be able to reduce Cr(VI) and could therefore act as an additional sink for Cr in surface waters (Semeniuk et al., 2016). Chromium speciation is redox coupled to Mn and Fe (e.g. Schroeder and Lee, 1975; Cranston and Murray, 1978), and is therefore thought to track oxygenation dynamics in the present and past.

Additional to Cr concentrations, Cr isotopes have been suggested as a way to reconstruct past oxygenation. There are four stable Cr isotopes of which 52Cr and 53Cr are the most abundant, and so stable Cr isotope variations are assessed using the 53Cr/52Cr ratio expressed as δ^{53}Cr = [(53Cr/52Cr$_{\text{sample}}$) / (53Cr/52Cr$_{\text{NBS 979}}$) - 1] x 1000 (e.g. Bonnand et al., 2011). Reduction of Cr(VI) to Cr(III) can produce isotopic fractionation of up to 7‰, enriching the remaining Cr(VI) pool in 53Cr (Ellis et al., 2002), although the isotopic fractionation associated with Cr(VI) reduction is likely smaller in open ocean settings due to less reducing conditions (Scheiderich et al., 2015; Paulukat et al., 2016; Goring-Harford et al., 2018). For O$_2$ concentrations above 44 µmol kg$^{-1}$ there is no correlation between seawater δ^{53}Cr values and dissolved O$_2$ content and hence Cr(VI) likely only reduces at oxygen concentrations below
Carbonate chromium isotope ratios are thought to reflect seawater values (Tang et al., 2007; Frei et al., 2011; Bonnand et al., 2013) through the substitution of the carbonate ion by CrO$_4^{2-}$. Therefore, fossilised remains of marine calcifiers such as foraminifera can act as archives of past climate proxies. To use the foraminiferal chromium records in the past, it is imperative to piece together the origin of chromium in the test and what controls its uptake.

In order to apply a new isotope system to an archive, a number of parameters need to be well established, such as biotic influences on uptake, location of the isotope within the host material, and post-depositional alteration.

Previous studies into the fractionation of Cr isotopes in biogenic carbonates have yielded widely variable results. Scleractinian corals made of aragonite show a large disequilibrium with seawater, resulting in a fractionation from -0.5 to +0.33‰ relative to seawater (Pereira et al., 2016). Bulk carbonate samples of mainly macroalgal origin from the Caribbean, and therefore also likely aragonitic, have Cr isotope values offset from seawater by -0.46‰ (Holmden et al., 2016). A systematic enrichment of lighter Cr isotopes in carbonates relative to seawater was confirmed by a study of biogenic carbonates from several oceanic provinces (Farkaš et al., 2018). A recent study assessing the fractionation associated with Cr uptake by calcite-foraminifera (Wang et al., 2017) concluded that it is unclear whether the chromium isotopic composition of foraminifera reflects surface seawater δ^{53}Cr values, as different species from the same sample site and the same depth habitats showed significant variations in δ^{53}Cr in this study. As the study presented by Wang et al. (2017) analysed multiple species of foraminifera larger than 125 µm, mixing a wide range of sizes, it does not consider any effects that growth rates or species-specific differences in biomineralization may have on δ^{53}Cr. Post-depositional exchange with bottom and pore waters could alter the δ^{53}Cr isotope composition; size driven changes in foraminiferal surface area to volume ratios (A/V) would facilitate different impacts on the residual values with smaller specimens more prone to this effect. This behaviour has also been observed for Mg (Schmidt et al., 2008).
To fully assess the potential of Cr isotopes in foraminifera as a palaeoproxy, Cr uptake by foraminifera from their ambient environment needs to be determined. Previous estimates of distribution coefficients of Cr ($D_{Cr} = [Cr]_{foraminifer} / [Cr]_{seawater}$) in foraminiferal calcite range from approximately 303 to 4000, and are based on core-top planktic foraminifera and seawater Cr concentrations averaged over the Pacific and Atlantic Ocean basins (Wang et al., 2017). Distribution coefficients in other biogenic carbonates range from 7143 – 65643 in macroalgal carbonates to 107 – 329 in scleractinian corals (Holmden et al., 2016; Pereira et al., 2016) and are higher than inorganic precipitation experiments (Tang et al., 2007; Rodler et al., 2015) in which $D_{Cr(VI)}$ values range from approximately 0.1 to 3.4.

Cultures of foraminifera under controlled conditions allow for a more accurate determination of the distribution coefficient in foraminifera whilst ruling out any post-depositional enrichment in Cr and any effects caused by the heterogeneity of Cr in seawater (Bonnand et al., 2013; Scheiderich et al., 2015; Paulukat et al., 2015; Economou-Eliopoulos et al., 2016; Paulukat et al., 2016; Pereira et al., 2016; Holmden et al., 2016).

Another critical factor in applying the Cr proxy to the fossil record is the lack of understanding of where in a foraminiferal test the Cr resides. Wang et al. (2017) concluded that <14% of Cr is adsorbed to clay particles and that the remaining Cr is in the carbonate in sedimentary foraminifera. However, Holmden et al. (2016) raise the issue that it is unclear whether uptake of Cr into carbonates takes place during precipitation or after deposition in the sediment. A recent study confirms that the primary marine Cr in marine biogenic carbonates signal may be diagenetically overprinted (Farkaš et al., 2018). Here we seek to address the above-mentioned open questions to determine the faithfulness of Cr in foraminifera as a proxy for oxygen concentration, as well as its potential and limitations. First, we assess the distribution of Cr across foraminiferal test walls at high spatial resolution using laser ablation multi-collector ICP-MS (LA-MC-ICP-MS) and nanoscale SIMS (NanoSIMS) to determine the location of the Cr in the foraminiferal carbonate. We cultured benthic foraminifera to better constrain the distribution coefficient for Cr into foraminiferal calcite. We compared Cr concentrations between core-top, sediment trap, plankton net, and cultured samples to improve our understanding of the modes of
Cr uptake into foraminifera. Finally, we assessed potential growth rate impacts by analysing a range of different mono-specific size classes and surface area to volume ratios to address post-depositional effects on Cr isotopic composition depending on particle sizes.

2. Material and Analytical Methods

2.1. Material

Foraminiferal specimens from four different sample types were used for this study: core-tops, plankton nets, sediment traps, and growth cultures (Table 1). Cultures were performed on benthic foraminifera *Amphistegina spp.* from Israel, and planktic *O. universa* and *G. ruber* from the Caribbean (Allen et al., 2016; Holland et al., 2017). *Amphistegina lobifera* specimens were collected from several sites along the Mediterranean coast of Israel (Nahsholim and Tel Shikhmona) and *Amphistegina spp.* were collected from the Red Sea coast of Israel (Eilat). Seawater for the culture medium of these benthic foraminifera was collected in cubitainers from Tel Shikhmona (Mediterranean Sea).

The planktic foraminifera *T. sacculifer* and *O. universa* were picked from core-tops SO456 and SO488 from the NW Australian margin. *T. sacculifer* and *G. ruber* were picked from core-top GeoB3915 located off the North-Brazilian coast. The planktic foraminifera *O. universa*, *G. menardii*, *G. ruber*, *G. truncatulinoides* and a mix of benthic foraminifera were picked from core-top samples from the Caribbean (Karibik; Caromel et al., 2014) and North Atlantic (T86-15S; Troelstra et al., 1987).

Sediment trap samples from off the coast of Cape Blanc in Mauretania (CB14) were picked for specimens of the planktic *G. truncatulinoides* and *T. sacculifer*. Specimens of *T. sacculifer* and *G. bulloides* were obtained from plankton net samples from the East China Sea (KT02-15B).

2.2. Culturing *Amphistegina spp.* in chromium-doped seawater
To create the culture medium, LiCl (Merck EMSURE ACS Reag. Ph Eur) was added to 10 L of Mediterranean seawater to create a 500 µM Li solution. Lithium is used to distinguish newly formed foraminiferal chambers from chambers that formed prior to culturing, following Titelboim et al. (2017), where chambers with a high Li content formed during the culture experiments and low Li concentrations were formed before the experiments. Measurements on chambers with low Li concentrations were not considered in our partitioning studies. The Li-doped seawater was then divided into acid-cleaned 2 L HDPE bottles. Three 2 L aliquots were doped with 280 nmol, 560 nmol, and 840 nmol Cr from a chromate standard (Sigma-Aldrich TraceCERT 1000 mg/L chromate in water), respectively. This resulted in seawater with Cr concentrations of 2.75, 5.66, 6.73, and 8.39 nM, respectively. Two litres of seawater undoped with Cr served as a control on the experiment. Live specimens of *Amphistegina spp.* from Israel were picked, cleaned with a brush, and checked for activity. Twenty specimens were transferred to a sealable glass beaker containing the culturing medium with appropriate Cr concentration. All culture incubations were replicated. The foraminifera from the Mediterranean and Red Sea were kept separate. The seawater was refreshed once every week, and all experiments were performed at a temperature of 26 °C. Oxygen levels were monitored by Winkler titrations and with a PreSens Pst3 Oxygen Dipping Probe throughout the one month of culturing. The oxygen concentrations in the 1x [Cr] seawater for Mediterranean foraminifera were 171.3 and 172 µM at the beginning of the experiment measured by Winkler titration and dipping probe, respectively. The initial oxygen concentration in the 1x [Cr] seawater for Red Sea foraminifera measured by dipping probe was 155 µM. After the experiment, the specimens were cleaned and mounted whole onto carbon tape for LA-MC-ICP-MS analyses at the University of Cambridge, as described below (section 2.3.).

One litre of the Li-doped seawater and three 100 mL aliquots of the Li and Cr-doped seawater were filtered and immediately acidified. An additional 1 L of Li-doped seawater and three 100 mL aliquots of Li and Cr-doped seawater were filtered but not acidified until the end of the experiment to track any potential changes in Cr content in the culture medium. The undoped seawater was analysed by ThermoFisher Scientific Neptune MC-ICP-MS at the National Oceanography Centre in Southampton following Goring-Harford et al. (2018). Doped seawater was analysed by ThermoFinnigan Element...
ICP-MS at the University of Bristol. Doped seawater was diluted in 2% HNO₃ by 4000 times. Synthetic standards containing Cr and other trace elements at a range of concentrations were used for calibration.

It is necessary to maintain tightly regulated Eh-pH levels to maintain a high concentration of dissolved Cr (Bonnand et al., 2013), which is difficult in a laboratory environment given the presence of living organisms in a relatively small volume of water and their symbiont activity and their own CO₂ flux. Therefore, to be confident about our D_{Cr} we measured final Cr concentrations in the culture medium, which ranged from 2.75 to 8.39 nM. This is less than expected given the amount of chromate solution that was added to the seawater and implies that we were either not able to maintain the stable Eh-pH levels required to prevent precipitation of Cr (Bonnand et al., 2013) or that there was Cr loss due to adsorption to vial walls. Our incubations fall within the range of natural seawater, with concentrations of ~ 1.2 - 9.5 nM (e.g. Scheiderich et al., 2015; Paulukat et al., 2016) and given the uncertainties in the rate of loss of Cr our D_{Cr} is an upper estimate. Higher Cr concentrations in the culture medium would result in even lower distribution coefficient values and, therefore, would further underscore our findings of low D_{Cr} in living larger benthic foraminifera.

2.3. Laser Ablation-MC-ICP-MS of foraminifera

Single species foraminiferal tests were picked from core-top, sediment trap, plankton net and cultured samples. The tests were cleaned by ultrasonication following Sadekov et al. (2008). The last three chambers of each test were removed using a surgical scalpel, resulting in 8-21 test fragments per analysis. These chamber fragments were mounted concave-side (inner surface) up on black carbon tape. The cultured Amphistegina were mounted whole and were analysed 10-21 times per culture set. High-resolution LA-MC-ICP-MS analyses were performed at the Department of Earth Sciences at the University of Cambridge and the School of Earth Sciences at the University of Western Australia using a pulsed Analyte G2 Excimer Laser (Teledyne Photon Machines Inc.; λ = 193 nm) connected to a ThermoFisher Scientific Neptune Plus MC-ICP-MS. An MC-ICP-MS with a jet interface and in high-resolution mode was used to increase sensitivity and remove interferences. Samples were ablated from
the inner surface to the outer surface of the foraminiferal test along with the standards NIST SRM glasses 612 and 614, and a coral, JCp-1. The reproducibility of chromium concentrations for NIST SRM 612 was 36.45 ± 0.19 ppm (2SE), 0.91 ± 0.01 ppm (2SE) for NIST SRM 614, and 0.04 ± 0.004 ppm (2SE) for JCp-1. Our values are close to published Cr concentrations of 36.4 ± 1.5 ppm (2SE) for NIST SRM 612, 1.19 ± 0.12 ppm (2SE) for NIST SRM 614 and 0.14 ± 0.015 ppm (2SE) for JCp-1 (Inoue et al., 2004; Jochum et al., 2011). The species 48Ca, 50Cr, 51V, 52Cr, 53Cr, 55Mn and 56Fe were measured in planktic foraminifera (core-top, sediment trap, plankton net, culture samples) as well as cultured benthic foraminifera (Table 1). Data reduction of depth profiles removed the mean background intensity and standardised data to 48Ca and NIST SRM 612 and 614 (Sadekov et al., 2008). Each depth profile took 10-24 s to measure, depending on the thickness of the test, and each single measurement within a depth profile was made over an average of 0.5 s. Laser spot sizes varied between 85 to 150 µm to best fit the test fragments (Table 1) and were standardised against standards using the same spot size. Prior to analysis the test fragments were pre-ablated to remove the outer 1 µm of the surface for additional cleaning purposes (Sadekov et al., 2008).

2.4. NanoSIMS imaging of planktic foraminiferal test walls

Cleaned foraminifera tests were placed on parafilm, embedded in resin (Araldite 2020) discs of 1 cm diameter and 5 mm height, and cured at 20 °C for 48 hours. The discs were polished using silicon carbide wet grinding paper with decreasing coarseness (HERMES, WS Flex 18C, 230 mm, P 800 and ATM, SIC wet grinding paper, grain 4000) to expose cross sections perpendicular to the test walls of the embedded foraminifera. When the exposure was sufficient, as determined by light microscopy, final polishing was carried out using agglomerated alpha alumina powder (Struers AP-A powder, grain size 0.3 µm) and SiO$_2$ powder (Logitech SF1 Polishing Suspension, grain size 0.035 µm). Polished samples were subsequently cleaned in ethanol in an ultrasonic bath for 5 seconds and coated with a 20 nm Au layer using a sputter coater (JEOL JFC-2300HR high resolution fine coater, JEOL FC-TM20 thickness
controller). For orientation purposes the samples were imaged with a table-top SEM (JEOL JCM-600PLUS NeoScope Benchtop SEM).

Nanoscale secondary ion mass spectrometry was performed with a nanoSIMS 50L instrument (Cameca) operated at Utrecht University. Using an element standard (SPI Supplies, 02757-AB 59 Metals & Minerals Standard), magnetic field and exact positions of the electron multiplier detectors were adjusted to enable detection of secondary ions \(^{24}\text{Mg}^+ \), \(^{44}\text{Ca}^+ \), \(^{52}\text{Cr}^+ \), \(^{55}\text{Mn}^+ \) and \(^{56}\text{Fe}^+ \). The correct tuning for \(^{52}\text{Cr} \) was verified by initially measuring \(^{50}\text{Cr} \) from both the SPI standard and the sample, which gave the correct \(^{50}\text{Cr}/^{52}\text{Cr} \) atom ratio of 0.052. Before each measurement, the sample area of interest (square of 40-70 \(\mu \)m in size) was pre-sputtered with a primary O’ ion beam of 280 pA (using diaphragms D0-2 and D1-1) for 8-10 min until the secondary ion count rates stabilised. Subsequently, secondary ion images were acquired by rastering the primary O’ ion beam of about 50 pA over the sample surface (square of 30-45 \(\mu \)m in size) and detecting the ions with a dwelling time of 2-5 ms/pixel and with the diaphragm and slit settings of D0-2, D1-3, ES-3, AS-2 and EnS-1. For these settings, the nominal size of the primary O’ ion beam was 400-600 nm. Due to the very low count rates of the trace elements Cr, Mn and Fe, measurements took between 5 and 14 hr per sample area. Overall, five wall sections from a Holocene \(T. \) sacculifer from the Karibik core-top sample (Caromel et al., 2014; section 2.1.) were imaged. Processing and analysis of the nanoSIMS data was done using Look@nanoSIMS, as previously described by Polerecky et al. (2012).

2.5. Chromium analysis of planktic foraminifera by (MC-)ICP-MS

Approximately 0.1 g of multiple planktic foraminiferal species (\(O. \) universa, \(G. \) menardii, \(G. \) ruber, \(G. \) truncatulinoides) were picked from core-top samples from the Caribbean (Karibik; Caromel et al., 2014) and North Atlantic (T86-15S; Troelstra et al., 1987) in different size fractions (>500 \(\mu \)m and 250 - 500 \(\mu \)m). Samples obtained for Cr isotope analysis were cleaned by gently cracking open the foraminiferal tests followed by rinsing with MilliQ water and methanol to remove clay particles, and with alkali buffered \(\text{H}_2\text{O}_2 \) to remove organic matter (Barker et al., 2003). Baturin and Dubinchuk (2011)
reported 8-40 ppm Cr in ferromanganese nodules, which suggests there is a small contribution of authigenic Cr in ferromanganese coatings on the outside of the foraminiferal shell to the overall Cr content in foraminifera. On average, ferromanganese coatings contribute 1 ppm Mn to the total Mn content in our foraminiferal samples (Supplementary Material). Assuming an average Mn concentration of 15.2% in ferromanganese nodules (Baturin and Dubinchuk, 2011), ferromanganese coatings on foraminifera contribute up to 0.0003 ppm Cr, which is negligible compared to the overall foraminiferal Cr concentration in our samples. Acid leaches with 0.001M nitric acid and reductive steps with a citric acid, ammonia and hydrazine mixture also introduced non-foraminiferal Cr (Supplementary Material). We therefore decided not to remove these to preserve as much of the sample as possible for analysis. The samples were then dissolved in 0.5M acetic acid. An aliquot of 0.01 g of sample was dried down to incipient dryness and re-dissolved and diluted in 2% HNO₃ to produce a 100 ppm Ca solution. Matrix-matched synthetic standards doped with 100 ppm Ca and containing trace elements at a range of concentrations were used as calibration. Chromium and rare earth elements and Yttrium (REE-Y) concentrations were measured in O₂ collision mode on an Agilent 7500s ICP-QQQ-MS at the School of Environment, Earth and Ecosystem Sciences at the Open University. Chromium concentrations were reproducible within ~2% and REE-Y were reproducible within ~9% using replicate measurements of dolomite standard reference JDo-1. REE-Y measurements were made for sequential leaching experiments to monitor the presence of a ferromanganese coating as REEs reside mostly in the coating (Palmer, 1985). Chromium isotopes were measured on a ThermoFisher Scientific Neptune MC-ICP-MS at the University of Bristol using a ^{50}\text{Cr}^{-^{54}}\text{Cr} double-spike technique following Bonnard et al. (2011). The contribution of the blank is negligible, with a total procedural blank for Cr of ~0.2 ng. The standard JDo-1 was subjected to the same cation exchange chromatography protocol as the samples and the average value of JDo-1 was δ^{53}\text{Cr} = 1.716 ± 0.069‰ (2σ, n = 10). The external reproducibility of 50 ng of NBS 979 was δ^{53}\text{Cr} = 0.049 ± 0.072‰ (2σ, n = 30). Our values for JDo-1 and NBS979 are within uncertainty of previously published values (Bonnand et al., 2011).

3. Results

11
3.1. Chromium uptake by benthic foraminifera

Amphistegina spp. and *A. lessonii* Cr concentrations increase with rising Cr concentrations in the culture medium (Figure 1). The outliers in the dataset have larger errors than the data falling within clusters, which potentially could have been caused by contamination. Chromium concentrations of bulk single foraminifera were obtained by averaging LA-ICP-MS profiles. Average Cr concentrations in *Amphistegina* strongly correlate with total Cr concentrations in the culture medium ($R^2 = 0.78$; $p = 0.002$; Figure 2), showing that availability of Cr exerts a direct control on uptake by foraminifera. The distribution coefficient was 250 ± 43, as determined from the slope of a linear regression between the Cr concentrations in the test walls and in the culture medium. Undoped Mediterranean coastal seawater at Nachsholim (Israel) has a δ⁵³Cr value of 1.14 ± 0.06‰ (2SD) and Cr concentrations of 2.75 nM. Some of the scatter is likely due to decreasing Cr concentrations in the culture medium.

3.2. Spatial distribution and concentrations of chromium in planktic foraminifera

The distribution of Cr in core-top foraminifera, determined by LA-MC-ICP-MS, ranges from homogeneous to strong enrichments in Cr towards the rim of the test in core-top foraminifera (Figure 3; Supplementary Material). The total range of chromium concentrations in foraminifera reveal differences of up to two orders of magnitude. On average, core-top foraminifera have elevated Cr levels (~0.82 ppm) compared to ~0.09 ppm in foraminifera that come from sediment traps, plankton nets, and cultures (Figure 4).

The relatively homogeneous distribution of Cr through the test shown by laser ablation data is confirmed by NanoSIMS analysis of a Caribbean core-top *T. sacculifer*. However, the higher spatial resolution of the NanoSIMS reveals elevated Cr concentrations in prominent Mg-rich bands that align with the primary organic sheet (POS), as identified by grooves in the calcite (Figure 5). While the Cr-rich bands were always co-localised with elevated Mg, Mn and Fe concentrations, only some of the Mg and Mn bands had elevated Cr concentrations (Figure 5).
The LA-MC-ICP-MS data reveal that when Cr is plotted against Fe/Ca and Mn/Ca ratios there are two distinct populations, with non-sedimentary foraminifera generally plotting at lower Fe/Ca and Mn/Ca ratios than the core-top foraminifera (Figure 6a and 6b). In both populations, Cr concentrations correlate strongly with Fe/Ca of the foraminifera ($R^2 = 0.85$ and 0.95; $p < 0.00001$), suggesting a common uptake pathway into the foraminiferal test. In contrast, there is only a strong correlation between Cr and Mn/Ca for the non-sedimentary foraminifera. The plots also reveal that some core-top foraminifera plot close to the non-sedimentary data, and fall on a distinct trend between the two populations. In general, the foraminifera with both high Cr concentrations and high Fe concentrations have low Mn concentrations (Figure 6c). These correlations are confirmed by the NanoSIMS analysis of core-top foraminifera (Figure 5) and shows that also Cr and Mn/Ca strongly correlate within a single $T. sacculifer$ specimen.

3.3. Chromium isotopic composition of core-top planktic foraminifera

Chromium concentrations in core-top samples from the Caribbean are higher (0.15 – 0.38 ppm) compared to those from the North Atlantic (0.06 – 0.08 ppm) while δ^{53}Cr was ~ 0.4‰ lower. Specimens from the >500 μm fraction have δ^{53}Cr values 0.3 – 0.5‰ higher than those from the 250 – 500 μm size fractions in both the Caribbean and North Atlantic (Figure 7). Offsets in Cr concentrations associated with size fractions of foraminifera are less clear. While the smaller foraminifera, and particularly $G. ruber$, may have higher Cr concentrations in the Caribbean, this is not the case for foraminifera from the North Atlantic where Cr concentration are within analytical uncertainty for all species analysed. There is a lack of species-specific fractionation and differences in isotopic composition are therefore not affected by different foraminiferal habitats or biology.

4. Discussion

Our new data allow for an assessment of the utilisation of Cr and its isotopes in foraminifera as a palaeoproxy for oceanic redox conditions. Specifically, we can assess the uptake mechanism of Cr, its
distribution within foraminiferal calcite, and whether there is any fractionation of Cr isotopes by foraminifera.

4.1. Chromium uptake by benthic and planktic foraminifera

The distribution coefficients for the larger benthic foraminifera *Amphistegina* spp. \((D_{Cr} = 250 \pm 43)\) are comparable to scleractinian corals \((D_{Cr} = 107 – 329; \text{Pereira et al., 2016})\), despite the difference in crystal structure between aragonite and calcite (Soldati et al., 2016). Our data also approach the lower end of previous estimates for planktic foraminiferal distribution coefficients from core-top samples (Wang et al., 2017), molluscs (Farkaš et al., 2018), and bivalves (Frei et al., 2018), but are significantly lower than distribution coefficients for sedimentary macroalgal carbonates with a \(D_{Cr}\) of 7143 – 65643 (Holmden et al., 2016). The \(D_{Cr}\) estimates based on core-top foraminifera are generally substantially higher and range between 303 and 4000 (Wang et al., 2017). However, these foraminiferal core-top calibrations are based on average seawater Cr concentrations from the Atlantic and Pacific Oceans (Wang et al., 2017) and given the heterogeneity of modern surface seawater (e.g. Goring-Harford et al., 2018) need to be approached with caution. There is a notable difference in the range of distribution coefficients associated with cultured foraminifera \((D_{Cr} = 107 – 329)\) and sedimentary carbonate \((D_{Cr} = 303 – 65643)\).

On average, core-top specimens have an order of magnitude higher concentrations (0.82 ppm) than non-sedimentary foraminifera, which have 0.09 ppm Cr (Figure 4). The laser ablation data are not influenced by coatings on the outside of the test and remnants of clay in pores of the core-top foraminifera would not have caused such an increase. Therefore, our laser ablation measurements and culture experiments imply that most Cr (~89%) in foraminifera is likely to be derived through some post-depositional processes, as suggested by Holmden et al. (2016). This is confirmed by a high Cr concentration of 1.16 ppm in a mix of core-top benthic foraminifera. Concentrations similar to those of non-sedimentary foraminifera were also found in our culturing experiments and in non-sedimentary aragonitic scleractinian corals (0.04 – 0.07 ppm; Pereira et al., 2016). These data suggest that at seawater Cr
concentrations of 2 – 10 nM (e.g. Scheiderich et al., 2015; Paulukat et al., 2016) both forms of carbonate incorporate a limited amount of Cr. However, our culturing experiments suggest that incorporation is controlled by a partition coefficient, so that primary Cr concentrations in foraminifera increase with increasing seawater concentrations.

4.2. Spatial distribution of chromium in planktic foraminifera

Chromium is present across the whole test (Figure 3). The enrichment in chromium near the rims of some of the tests (Figure 3) indicates a potential penetration into the test from the bottom and pore water in which they reside, supporting post-depositional processes as a main source of Cr into the test (Figure 4). The considerable spatial variability in some laser ablation depth profiles warranted increased spatial resolution analyses by NanoSIMS. NanoSIMS imagery showed increased Cr counts in the most prominent cyclical Mg-rich bands (Figure 5). These bands are associated with chamber formation and appear to be light-triggered (Fehrenbacher et al., 2017). While NanoSIMS is extremely sensitive to surface topography, and could artificially produce enriched layers caused by cracks in the surface, we were extremely careful during sample preparation not to damage the surface. The initial inner calcite layer makes up a small fraction of the total foraminiferal shell compared to the rest of the ontogenetic calcite and potential gametogenic calcite, and is thought to be enriched in trace elements (Eggins et al., 2003; Erez, 2003). The fact that not all Mg-rich bands were accompanied by increased Cr counts was potentially due to the relatively low Cr concentrations (<1 ppm; Figure 7) combined with the sensitivity of the NanoSIMS. The enrichment of Cr in Mg-rich bands was not detected by laser ablation techniques, likely due to the lower spatial resolution of the laser (1-4 µm) compared to the NanoSIMS (400-600 nm), the former averaging out the distinct Cr-rich layers within the bulk calcite during analysis.

There are two possible interpretations for these higher Cr concentrations. Firstly, the higher concentration could be post-depositional Cr overprints. Interestingly, the Cr-rich bands aligned with discontinuities in the calcite that are remnants of the position of the primary organic sheets (POS).
(Figure 5). This suggests Cr in core-top foraminifera may have penetrated the tests through cracks which acted as access points for pore waters and thus provides an alternative pathway for Cr (and likely other elements) to diffuse through the test. Erez (2003) hypothesised that a potential initial calcification mechanism may be through endoplasmatic granules or organic matrix, which would lead to higher trace element concentrations. Therefore, an alternative hypothesis for the alignment of Cr-rich bands with regions associated with the primary organic sheet is an enrichment of Cr in the inner calcite layer. Jacob et al. (2017) suggest that the initial stages of foraminiferal biomineralisation occur via metastable carbonate phases such as vaterite, and potentially also amorphous calcium carbonate. Vaterite is fibrous and has nanopores, which likely contain organic material (Li et al., 2011; Jacob et al., 2017), increasing the potential of high Cr concentrations.

4.3. Source of Cr in the geological archive

Plots of Fe/Ca, Mn/Ca and Cr in core-top foraminifera obtained by laser ablation methods clearly demonstrate that these foraminifera fall into two separate populations: one with high Fe/Ca and Mn/Ca ratios and one that overlaps with non-sedimentary foraminifera from plankton tows, cultures and sediment traps (Figure 6). Our data indicate that Cr is initially taken up by foraminifera upon precipitation of their carbonate shell, at low concentrations comparable to those observed in non-sedimentary samples. This signature is preserved in some core-top foraminifera but is often overprinted by exchange with bottom and pore waters after deposition in the sediment, which increases the Cr concentration. Core-top foraminifera with a high Cr content have high Fe and low Mn concentrations, which reinforces the observation that foraminiferal Cr is independent of Mn and may be influenced by oxyhydroxides low in Mn (Figure 6c). Minerals common in the environment containing both Fe, Mn and Cr include Fe-Mn and Cr(III)-Fe(III) oxyhydroxides (Tang et al., 2010). The highest Cr and Fe contents in non-sedimentary foraminifera are found in the upwelling zone off the coast of Mauritania (Table 1), which receives large amounts of Fe and other metals from Saharan dust (e.g. Hatta et al., 2015). The strong correlation between Fe and Cr within non-sedimentary and core-top foraminiferal tests suggests that they have a similar pathway into the foraminiferal calcite. However, core-top
foraminifera define two distinct populations; a high Cr concentration population that also have elevated Fe/Ca and Mn/Ca ratios and a population that is more similar to the non-sedimentary foraminifera with low Cr concentrations (Figure 6), which suggests two episodes of Cr uptake. The strong correlation between Cr and Fe/Ca as well as Mn/Ca within a single core-top planktic foraminifer is visible in the NanoSIMS analysis (Figure 5), and is indicative of the second episode related to post-depositional Cr incorporation. Chromium(III)-Fe(III) oxyhydroxides are a reaction product of Cr(VI) reduction by Fe(II) (Ellis et al., 2002). Iron and Mn bearing oxyhydroxides could influence foraminiferal δ53Cr by the reduction of Cr(VI) to Cr(III) by Fe(II) and the oxidation of Cr(III) to Cr(VI) by Mn in pore and bottom waters (e.g. Schroeder and Lee, 1975; Døssing et al., 2011). A potential pathway for elevating Cr and Fe concentrations in pore and bottom waters is through solubilisation of Cr(III) and Fe(III) bound to Cr(III)-Fe(III) oxyhydroxides through oxidation by Mn or by ligand complexation (Saad et al., 2017). The reduction of Cr(VI) by Fe(II) would produce heavier δ53Cr values in the remaining Cr(VI) pool, whereas the addition of isotopically light Cr(III) due to oxidation of Cr(III) by Mn would drive the Cr(VI) pool to lighter δ53Cr values.

The post-depositional enrichment of Cr is substantially greater than the Cr uptake associated with the live phase, and therefore core-top and down-core foraminifera most likely carry a bottom and pore water Cr isotopic signature rather than a sea surface Cr isotopic value. The overlap between some low Mn-Fe core-top foraminifera and non-sedimentary specimens may provide a useful criterion for distinguishing foraminifera affected by post-depositional uptake of Cr into their tests.

4.4. Chromium isotopic composition of core-top planktic foraminifera

Given the impact of post-depositional processes on foraminiferal Cr concentrations the question arises as to how much the same processes alter the Cr isotopic composition of foraminifera. The absence of species-specific fractionation (Figure 7) between foraminifera of the same size class indicates that the Cr isotopic composition in core-top foraminifera is not determined by biological processes, as we assessed specimens from different water depths and ecologies. This is in contrast to other isotope
systems which are heavily influenced by biological processes (e.g. Schmidt et al., 2008). While *G. ruber* and *O. universa* live in the upper mixed layer and have symbionts which add to the foraminifer’s control on changing the oxygen concentration around the test, *G. menardii* and *G. truncatulinoides* dwell without symbionts below the thermocline for a significant amount of time during calcification, and would therefore experience the lower oxygen concentrations of the deep chlorophyll maximum, at least for parts of their life (Hemleben et al., 1989).

Our foraminiferal Cr isotope data suggest that the size of core-top foraminifera influences the susceptibility of the test calcite to post-depositional exchange with Cr in pore and bottom waters. Larger foraminifera have δ^{53}Cr values closer to nearby reported relatively heavy seawater values, whereas smaller foraminifera have a lighter Cr isotopic composition and more closely resemble bulk silicate earth. We expect pore waters to be closer in δ^{53}Cr to bulk silicate earth values (-0.124‰; Schoenberg et al., 2008) due to the large quantities of isotopically light Cr(III) available for remobilisation in the sediment. The post-depositional addition of isotopically light Cr is possible through the oxidation of authigenic Cr(III) phases with light δ^{53}Cr values by Mn to Cr(VI) which can readily be incorporated in the carbonate. Although a second mechanism could be the solubilisation of Cr(III) through ligand complexing (Saad et al., 2017), it is not yet clear how these complexes can be incorporated into a carbonate lattice.

A potential abiotic control on the relationship between size and Cr is the change in surface area to volume ratio, an impact also seen in foraminiferal Mg (Schmidt et al., 2008). The inverse relationship between test diameter and δ^{53}Cr is associated with a higher surface area to volume ratios (A/V) in smaller specimens. As such, their calcite volume is more susceptible to alteration by post-depositional Cr enrichment via exchange with Cr in bottom and pore waters, as seen in other isotope systems such as B (e.g. Hönisch and Hemming, 2004; Ni et al., 2007). The addition of isotopically light Cr through these post-depositional processes would also provide an explanation for the apparent -0.46‰ fractionation in macroalgal sediments and surface seawater in the modern Caribbean Sea (Holmken et al., 2016). To assess this interpretation, A/V calculations were based on the test volume determined
from the same samples by Caromel et al. (2014). Surface areas were calculated assuming a spherical shape for *O. universa* and *G. ruber*, a discoidal shape for *G. menardii* and a conical test for *G. truncatulinoides*. Our data illustrate that foraminifera record a similar isotopic offset between size fractions, even with widely differing shell shapes, pore volumes and thicknesses. Due to their shape, the discoidal *G. menardii* are more prone to changes in A/V than the spherical *O. universa*, globular *G. ruber*, and conical *G. truncatulinoides* (Figure 8). These surface area approximations are a minimum estimate for *G. ruber*, which is highly porous and has an open test structure and as such is more prone to overprinting. Both *G. menardii* and *G. truncatulinoides* have lower-Mg calcite and robust tests, and are therefore less susceptible to dissolution and post-depositional overprinting. Despite these differences in shape, all planktic foraminifera show a sharp change in slope in the A/V ratio between 250 – 300 μm. Foraminifera smaller than 250 μm are likely to record even larger isotopic offsets due to the increase of the A/V ratio with decreasing test size (Figure 8). Assuming a linear dependence of the Cr isotopic composition of *G. menardii* and *G. truncatulinoides* on the A/V ratio for the lowest end-member of the size fractions, i.e. 250 and 500 μm), the variability in foraminiferal Cr isotopes reported by Wang et al. (2017) can be explained by potential differences in the sizes of the foraminifera analysed (Figure 8). The negative modelled δ⁵³Cr values for foraminifera smaller than approximately 250 μm are similar to the δ⁵³Cr composition of ferromanganese crusts, which ranges from −0.85 to −0.15‰ (Wei et al., 2018), while modelled foraminiferal δ⁵³Cr compositions for larger specimens are more similar to seawater δ⁵³Cr (Figure 8; Bonnard et al., 2013; Scheiderich et al., 2015; Paulukat et al., 2016; Goring-Harford et al., 2018). Foraminifera larger than 500 μm are therefore more likely to record a primary Cr signature, with a maximum isotopic offset of 0.1 – 0.2‰ (Figure 8).

5. **Conclusions**

Both laser ablation and NanoSIMS analyses show that Cr is distributed across the whole foraminiferal shell. Multiple analyses of foraminiferal Cr suggest that most Cr in foraminifera is added after burial in the sediment. There is no interspecies isotope fractionation, which is consistent with a mostly post-depositional origin of Cr in foraminifera. Sedimentary foraminifera have, on average, an order of
magnitude more Cr than foraminifera collected before deposition. Cultured benthic foraminifers have
a D$_{Cr}$ of up to 250 ± 43, which is comparable with scleractinian corals, and Cr concentrations ranging
between 0.04 to 0.13 ppm under natural seawater Cr concentrations. Given uncertainties in our
experiments, the D$_{Cr}$ is the upper boundary of possible values. Overall, foraminiferal Cr (and Cr in
carbonates in general) therefore does not record the sea surface Cr composition. Instead, it records the
Cr composition of bottom and pore waters at the time of deposition. This is corroborated by two distinct
populations in Cr to Fe/Ca and Mn/Ca cross-plots, which also suggest a post-depositional overprint in
core-top foraminifera. However, this study suggests that Fe and Mn content of foraminifera might
provide a valuable means to distinguish samples which may still contain the primary Cr signals recorded
during shell formation. The overlap between some core-top and non-sedimentary specimens may
provide a tool for assessing the impact of post-depositional incorporation of Cr into foraminiferal tests.
Isotopic compositional changes related to size of the test may be caused by surface area/volume ratio
effects on the exchange with Cr in pore and bottom waters.

6. Acknowledgements and author contributions

This work was supported by NERC GW4+ studentship 1509236 awarded to SR, by the Wolfson
Research Merit Award from the Royal Society to DNS, by NWO large infrastructure subsidy
175.010.2009.011 awarded to JJM for the NanoSIMS facility, and by the Netherlands Earth System
Science Center. The study was designed, and data were interpreted by SR, DNS, IJP and AYS. Laser
ablation data were collected by AYS and SR. The work by AS was funded through ERC grant 2010-
NEWLOG-ADG-267931 awarded to Professor Harry Elderfield. The culture studies were carried out
by SR and DT using facilities provided by SA. NanoSIMS analysis was carried out by AR, LP, MK
and SR with the support of JJM. Plankton net and planktic foraminiferal culture samples were provided
by KK, KAA and KH. Foraminiferal cleaning studies were conducted by SR, IJP and JS. SR, AYS, IJP,
DNS, AR, LP and JJM wrote the manuscript. The authors would like to express their gratitude to Yiyi
Jin, Mahzabeen Mahfuz, Florence Aves, and Sam Hammond for their invaluable assistance in the lab
and would like to thank Gerald Ganssen and Barbara Donner for sharing samples. The authors also
thank Wolfgang Kuhnt and Ann Holbourn for their assistance during the Sonne-185 cruise funded by the German Ministry of Education, Science and Technology (BMBF-grant 432 03G0185A, Sonne-185 cruise).

7. References

Schmidtke, S., Stramma, L., and Visbeck, M., 2017. decline in global oceanic oxygen content during

8. Figures and Tables

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>Species</th>
<th>Laser Spot Size (µm)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO456 0-1 cm</td>
<td>Core-top</td>
<td>T. sacculifer</td>
<td>150 x 150</td>
<td>NW Australian margin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O. universa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO488 0-1 cm</td>
<td>Core-top</td>
<td>T. sacculifer</td>
<td>150 x 150</td>
<td>NW Australian margin</td>
</tr>
<tr>
<td>GeoB3915</td>
<td>Core-top</td>
<td>T. sacculifer</td>
<td>150 x 150</td>
<td>Off Northern Brazil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. ruber</td>
<td>85 x 85</td>
<td></td>
</tr>
<tr>
<td>CB14</td>
<td>Sediment trap</td>
<td>G. truncatulinoides</td>
<td>85 x 85</td>
<td>Off Cape Blanc, Mauritania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. sacculifer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT02-15 B-2 10 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>130 x 130</td>
<td>East China Sea</td>
</tr>
<tr>
<td>KT02-15 B-2 50 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>130 x 130</td>
<td></td>
</tr>
<tr>
<td>KT02-15 B-2 75 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>130 x 130</td>
<td></td>
</tr>
<tr>
<td>KT02-15 B-2 100 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>130 x 130</td>
<td></td>
</tr>
<tr>
<td>KT02-15 B-5</td>
<td>Plankton net</td>
<td>G. bulloides</td>
<td>130 x 130</td>
<td></td>
</tr>
<tr>
<td>Amphistegina spp.</td>
<td>Culture</td>
<td>Amphistegina spp.</td>
<td>85 x 85</td>
<td>Israeli Red Sea and Mediterranean coast</td>
</tr>
<tr>
<td>O. universa</td>
<td>Culture</td>
<td>O. universa</td>
<td>130 x 130</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>G. ruber</td>
<td>Culture</td>
<td>G. ruber</td>
<td>130 x 130</td>
<td>Puerto Rico</td>
</tr>
</tbody>
</table>

Table 1: Foraminiferal samples used for measuring Cr by LA-MC-ICP-MS. These include core-top samples, sediment trap samples, plankton net samples as well as cultured benthic foraminifera (*this study*) and planktic foraminifera (*O. universa* and *G. ruber*; Allen et al., 2016; Holland et al., 2017).
Figure 1: The Cr concentrations of single foraminifera in cultures of the larger benthic foraminifer *Amphistegina spp.* measured by LA-MC-ICP-MS. Culturing conditions were under natural seawater (2.75 nM Cr), and seawater spiked with Cr to reach final concentrations of 5.66 nM, 6.73 nM, and 8.39 nM. Chromium concentrations in the foraminifers increase with increasing dissolved Cr concentrations in the water. Where error bars are not visible, the analytical uncertainties are smaller than the size of the data point.
Figure 2: Specimens of the foraminiferal species *Amphistegina* spp. from the Red Sea and *A. lobifera* from the Mediterranean were cultured in natural and chromate-spiked Mediterranean seawater with concentrations between 2.75 and 8.39 nM Cr. Large black diamonds represent average Cr concentrations and small black diamonds are all Cr concentration measurements in the *Amphistegina* spp. cultures from the Red Sea, whereas large grey diamonds are average Cr concentrations and small grey diamonds are all Cr concentration measurements in the *A. lobifera* cultures from the Mediterranean. The solid black line is the linear regression of the data, forced through the origin, and has a slope of 0.013 ± 0.006 (2SE) with *p* = 0.0015 and *R*² = 0.78. The dashed lines outline the 95% confidence interval of all the data around the slope. The correlation between the average total Cr concentration in seawater and in the foraminiferal test results in a distribution coefficient of D_{Cr} = 250 ± 43 (2SE) after unit conversion of [Cr]_{seawater} into ppm. Where error bars are not visible, the analytical errors are smaller than the size of the data point.
Figure 3: Three laser ablation (LA-MC-ICP-MS) profiles of Cr concentrations, and Fe/Ca through planktic foraminiferal calcite (*T. sacculifer* and *O. universa*) in two core-top samples (GeoB3915 and SO456). These are representative of the Cr profiles in foraminifera, displaying distributions ranging from homogeneity throughout the test to strong enrichment at the rim of the test. An overview of all planktic foraminiferal Cr concentration profiles obtained through LA-MC-ICP-MS can be found in the Supplementary Material.
Figure 4: Chromium concentrations of individual planktic foraminifera measured by LA-MC-ICP-MS in core-top, sediment trap, plankton net, and culture samples. Chromium concentrations are higher in core-top samples than in non-sedimentary (sediment trap, plankton net, cultured) foraminifera. Where error bars are not visible, the analytical uncertainties are smaller than the size of the data point.
Figure 5: NanoSIMS images and analysis of core-top *T. sacculifer* specimens from the Caribbean (Caromel et al., 2014). NanoSIMS image panels show 52Cr, 24Mg, 55Mn, and 56Fe to 44Ca ratios within the test walls. All trace elements were enriched in a layer associated with the POS. The apparent increase in Cr/Ca ratios at the rim of the foraminiferal tests is an analytical artefact of the transition from higher Cr and lower Ca counts in the resin to lower Cr and higher Ca counts in the test, caused by the limited spatial resolution of the nanoSIMS beam used in this study (400 - 600 nm). This artefact occurs for all element/Ca ratios. Regions of interest (ROIs), indicated by the white outlines in the left panels, were drawn to calculate average Cr/Ca, Mn/Ca and Fe/Ca ratios in the ‘bulk’ test and the Cr-rich bands. ROIs were divided into 3-4 approximately equal parts to estimate variability within an ROI. Within the bulk tests, the correlations between Cr/Ca, Mn/Ca and Fe/Ca are significant, whereas there is no apparent correlation with Mg/Ca. The Cr-rich bands associated with the POS do not follow the trends defined by the bulk test.
Figure 6: a. Cross-plot of average Cr concentrations and Fe/Ca obtained by LA-MC-ICP-MS in single foraminifera. Core-top samples are in grey and non-sedimentary foraminifera are in red. There are two populations with distinct trends in the core-top samples of which one overlaps with the non-sedimentary foraminifera. b. Cross-plot of average Cr concentrations and Mn/Ca obtained by LA-MC-ICP-MS of single foraminifera. Core-top samples are in grey and non-sedimentary foraminifera in red. There is no trend in the core-top samples. There is, however, a significant trend within non-sedimentary foraminifera. c. There is no correlation between Mn/Ca and Fe/Ca. Chromium is present in high concentrations in foraminifera with high Fe concentrations. Samples with a high Fe and Cr content have lower Mn concentrations.
Figure 7: The Cr content (left panels) and δ^{53}Cr composition (right panels) of foraminifera of different sizes from the Caribbean and North Atlantic (T86-15S). There are no vital effects between different species of foraminifera of the same size fraction. There is, however, an isotopic offset between size fractions. Seawater δ^{53}Cr values are from Scheiderich et al. (2015) and Holmden et al. (2016). Where error bars are not visible, the analytical uncertainties are smaller than the size of the data point.
Figure 8: a. Simulated surface area to volume (A/V) ratios based on volume – test diameter measurements by Caromel et al. (2014) show that A/V ratios in planktic foraminifera increase markedly in smaller size fractions (< 500 µm). Smaller foraminifera are therefore more susceptible to diagenetic processes. b. A model of linear dependence of foraminiferal Cr isotopes on the A/V ratio shows that the largest changes in isotopic composition would occur at smaller test diameters. The original Cr isotope data on which the linear model is based are encircled. Microscope images of planktic foraminifera to illustrate the shapes of the foraminiferal used for modelling A/V ratios are from Caromel et al. (2014).
Core top planktic foraminiferal samples from the Caribbean were crushed, homogenised, and split for sequential leaching experiments to assess the impact of each progressive cleaning step in the protocol by Barker et al., (2003) on the Cr concentration in foraminifera. First, samples were only crushed and dissolved in 0.5 M acetic acid. The second sample batch was subjected to rinses with MilliQ water and methanol to remove clay particles prior to dissolution with 0.5 M acetic acid. A third batch was rinsed, and oxidised with alkali H_2O_2 to oxidise organic matter. A fourth batch was rinsed for clays, oxidised and then treated with a 0.001M nitric acid leach after the oxidative step. A fifth batch was subjected to a reductive clean with a citric acid, ammonia and hydrazine mixture followed by a second 0.001M nitric acid leach in addition to the previous steps.

Several batches of cleaned foraminifera were analysed by different techniques. Chromium concentrations in ICP-MS session 1 were analysed as described in section 2.5 on a ICP-MS QQQ at the Open University. Chromium concentrations in ICP-MS sessions 2 and 3 (and Mn concentrations) were measured using a Thermo-Fisher Element 2 ICP-MS at the University of Bristol. These samples were diluted to matrix-match (80 µg/g [Ca]) with gravimetrically prepared synthetic standard solutions run regularly between samples. Analytical precision using this technique is less than ±1% for both Cr/Ca and Mn/Ca based on repeat measurements (n=6) of NIST RM 8301f carbonate standard. Chromium concentrations were also measured by isotope dilution on a ThermoFisher Scientific Neptune MC-ICP-MS at the University of Bristol after separation of Cr from the matrix (see section 2.5).
Figure S1: Foraminiferal Cr concentrations (left panel) decreases when clays are removed and when an oxidative clean (with alkali H$_2$O$_2$) without acid leach is performed. The oxidative clean with an additional acid leach (with 0.001M nitric acid) leads to inconclusive results whether Cr increases or decreases, and a reductive clean (with a citric acid, ammonia and hydrazine mixture) adds substantial amounts of Cr. This increase is less pronounced in ID analyses, possibly due to the larger sample size needed for this analytical technique. By contrast, Mn concentrations reduce with progressive cleaning (right panel). Inadvertent addition of Cr is likely caused by high Cr concentrations of the hydrazine mixture. The introduction of Cr during the cleaning procedure from the oxidative step with acid leach onwards in combination with the relatively low concentrations of Cr in ferromanganese coatings suggests that contamination with non-foraminiferal Cr is minimised when samples are solely rinsed and cleaned with alkali H$_2$O$_2$.
Table S1: The average Cr concentrations of the core-top, sediment trap, plankton net, and culture samples measured by LA-MC-ICP-MS. Chromium concentrations are mostly higher by up to two orders of magnitude in core-top samples than in foraminifera that have not reached the seafloor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>Species</th>
<th>Average [Cr] (ppm)</th>
<th>(2SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO456 0-1 cm</td>
<td>Core-top</td>
<td>T. sacculifer</td>
<td>1.25</td>
<td>0.10</td>
</tr>
<tr>
<td>SO456 0-1 cm</td>
<td>Core-top</td>
<td>O. universa</td>
<td>0.78</td>
<td>0.08</td>
</tr>
<tr>
<td>SO488 0-1 cm</td>
<td>Core-top</td>
<td>T. sacculifer</td>
<td>0.77</td>
<td>0.05</td>
</tr>
<tr>
<td>GeoB3915</td>
<td>Core-top</td>
<td>T. sacculifer</td>
<td>0.38</td>
<td>0.03</td>
</tr>
<tr>
<td>CB14</td>
<td>Sediment trap</td>
<td>T. sacculifer</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CB14</td>
<td>Sediment trap</td>
<td>G. truncatulinoides</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>KT02-15 B-2 10 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>0.16</td>
<td>0.00</td>
</tr>
<tr>
<td>KT02-15 B-2 50 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>0.14</td>
<td>0.00</td>
</tr>
<tr>
<td>KT02-15 B-2 75 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>KT02-15 B-2 100 m</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>KT02-15 B-5</td>
<td>Plankton net</td>
<td>T. sacculifer</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>G. ruber culture</td>
<td>Culture</td>
<td>G. ruber</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>O. universa culture</td>
<td>Culture</td>
<td>O. universa</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>1 x Cr (Mediterranean)</td>
<td>Culture</td>
<td>A. lobifera</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>50 x Cr (Mediterranean)</td>
<td>Culture</td>
<td>A. lobifera</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>100 x Cr (Mediterranean)</td>
<td>Culture</td>
<td>A. lobifera</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>150 x Cr (Mediterranean)</td>
<td>Culture</td>
<td>A. lobifera</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>1 x Cr (Red Sea)</td>
<td>Culture</td>
<td>Amphistegina spp.</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>50 x Cr (Red Sea)</td>
<td>Culture</td>
<td>Amphistegina spp.</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>100 x Cr (Red Sea)</td>
<td>Culture</td>
<td>Amphistegina spp.</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>150 x Cr (Red Sea)</td>
<td>Culture</td>
<td>Amphistegina spp.</td>
<td>0.11</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table S2: Oxygen concentrations in the (Cr spiked and natural) culture medium (Mediterranean seawater) for the larger benthic foraminifera *Amphistegina spp.* from the Red and Mediterranean Seas throughout the duration of the culture.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mediterranean A. lobifera</th>
<th>Red Sea Amphistegina spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1 [O₂]_{sw} (µM)</td>
<td>Day 7 [O₂]_{sw} (µM)</td>
</tr>
<tr>
<td>1x [Cr] seawater</td>
<td>172</td>
<td>73</td>
</tr>
<tr>
<td>50x [Cr] seawater</td>
<td>162</td>
<td>74</td>
</tr>
<tr>
<td>100x [Cr] seawater</td>
<td>177</td>
<td>163</td>
</tr>
<tr>
<td>150x [Cr] seawater</td>
<td>154</td>
<td>155</td>
</tr>
<tr>
<td>1x [Cr] seawater</td>
<td>155</td>
<td>61</td>
</tr>
<tr>
<td>50x [Cr] seawater</td>
<td>179</td>
<td>73</td>
</tr>
<tr>
<td>100x [Cr] seawater</td>
<td>170</td>
<td>140</td>
</tr>
<tr>
<td>150x [Cr] seawater</td>
<td>147</td>
<td>154</td>
</tr>
<tr>
<td>Sample</td>
<td>Expected [Cr]$_{sw}$ (nM)</td>
<td>Measured [Cr]$_{sw}$ (nM)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Mediterranean A. lobiifera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x [Cr]$_{seawater}$</td>
<td>2.8</td>
<td>2.75</td>
</tr>
<tr>
<td>50x [Cr]$_{seawater}$</td>
<td>140</td>
<td>5.66</td>
</tr>
<tr>
<td>100x [Cr]$_{seawater}$</td>
<td>280</td>
<td>6.73</td>
</tr>
<tr>
<td>150x [Cr]$_{seawater}$</td>
<td>420</td>
<td>8.39</td>
</tr>
<tr>
<td>Red Sea Amphistegina spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x [Cr]$_{seawater}$</td>
<td>2.8</td>
<td>2.75</td>
</tr>
<tr>
<td>50x [Cr]$_{seawater}$</td>
<td>140</td>
<td>5.66</td>
</tr>
<tr>
<td>100x [Cr]$_{seawater}$</td>
<td>280</td>
<td>6.73</td>
</tr>
<tr>
<td>150x [Cr]$_{seawater}$</td>
<td>420</td>
<td>8.39</td>
</tr>
</tbody>
</table>

Table S3: Expected Cr concentrations in the (Cr spiked and natural) culture medium (Mediterranean seawater) based on the Cr concentration of natural Mediterranean seawater are higher than the Cr concentrations measured. The distribution coefficient (D$_{Cr}$) show foraminifera are enriched in Cr relative to concentrations in its environment.
Table S4: The δ^{53}Cr composition and Cr content of core-top foraminifera of different size fractions from the Caribbean and the North Atlantic (T86-15S). These show no isotopic offsets between species within a size fraction, but offsets between different size fractions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Size Fraction</th>
<th>[Cr] (ppm)</th>
<th>δ^{53}Cr (%)</th>
<th>2SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karibik (Caribbean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed planktic foraminifera</td>
<td>>500 µm</td>
<td>0.27</td>
<td>0.38</td>
<td>0.13</td>
</tr>
<tr>
<td>Mixed benthic foraminifera</td>
<td>>500 µm</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. universa</td>
<td>>500 µm</td>
<td>0.15</td>
<td>0.30</td>
<td>0.13</td>
</tr>
<tr>
<td>G. menardii</td>
<td>>500 µm</td>
<td>0.28</td>
<td>0.26</td>
<td>0.08</td>
</tr>
<tr>
<td>G. menardii</td>
<td>250 – 500 µm</td>
<td>0.3</td>
<td>-0.04</td>
<td>0.24</td>
</tr>
<tr>
<td>G. ruber</td>
<td>250 – 500 µm</td>
<td>0.38</td>
<td>-0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>T86-15S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. truncatulinoides</td>
<td>>500 µm</td>
<td>0.08</td>
<td>0.81</td>
<td>0.15</td>
</tr>
<tr>
<td>G. truncatulinoides</td>
<td>250 – 500 µm</td>
<td>0.06</td>
<td>0.33</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Figure S2: Images of core-top *T. sacculifer* tests by SEM and NanoSIMS. NanoSIMS images show log-transformed counts of secondary ions $^{44}\text{Ca}^{+}$, $^{52}\text{Cr}^{+}$, $^{24}\text{Mg}^{+}$, $^{55}\text{Mn}^{+}$ and $^{56}\text{Fe}^{+}$ measured in areas indicated by red squares in the SEM images. Scale bar = 5 µm.
Figure S3: Laser profiles of Cr concentrations through core-top and sediment trap foraminifera. Foraminifera are analysed from the inner wall of the test outwards which means that the more time has elapsed the further towards the outer wall of the foraminifer the measurement has been taken.