
Gibbs, S. J., Sheward, R., Bown, P. R., Poulton, A. J., & Alvarez, S.
(2018). Warm plankton soup and red herrings: Calcareous
nannoplankton cellular communities and the Paleocene-Eocene
Thermal Maximum. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 376(2130), Article
20170075. https://doi.org/10.1098/rsta.2017.0075

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1098/rsta.2017.0075

Link to publication record on the Bristol Research Portal
PDF-document

This is the final published version of the article (version of record). It first appeared online via the Royal Society
at https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0075 . Please refer to any applicable terms of use of
the publisher.

University of Bristol – Bristol Research Portal
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/brp-terms/

https://doi.org/10.1098/rsta.2017.0075
https://doi.org/10.1098/rsta.2017.0075
https://research-information.bris.ac.uk/en/publications/b4685451-189f-4692-9d00-cf94014dfbbe
https://research-information.bris.ac.uk/en/publications/b4685451-189f-4692-9d00-cf94014dfbbe


rsta.royalsocietypublishing.org

Research
Cite this article: Gibbs SJ, Sheward RM,
Bown PR, Poulton AJ, Alvarez SA. 2018 Warm
plankton soup and red herrings: calcareous
nannoplankton cellular communities and the
Palaeocene–Eocene Thermal Maximum. Phil.
Trans. R. Soc. A 376: 20170075.
http://dx.doi.org/10.1098/rsta.2017.0075

Accepted: 21 May 2018

One contribution of 11 to a discussion meeting
issue ‘Hyperthermals: rapid and extreme
global warming in our geological past’.

Subject Areas:
palaeontology, biogeochemistry, geology

Keywords:
Palaeocene–Eocene Thermal Maximum,
calcareous nannoplankton, palaeobiology,
shelf, oligotrophic gyres, feedback

Author for correspondence:
Samantha J. Gibbs
e-mail: s.gibbs@noc.soton.ac.uk

†Present address: Environmental Science
Program, Mount Allison University, Sackville,
New Brunswick E4 L 1A5, Canada.
‡Present address: The Lyell Centre for Earth
and Marine Science and Technology,
Heriot-Watt University, Edinburgh EH14 4AP,
UK.

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.4174835.

Warm plankton soup and red
herrings: calcareous
nannoplankton cellular
communities and the
Palaeocene–Eocene Thermal
Maximum
Samantha J. Gibbs1, Rosie M. Sheward1,†, Paul

R. Bown2, Alex J. Poulton3,‡ and Sarah A. Alvarez4

1Ocean and Earth Sciences, National Oceanography Centre,
Southampton, University of Southampton, Southampton SO14 3ZH,
UK
2Department of Earth Sciences, University College London,
Gower Street, LondonWC1E 6BT, UK
3National Oceanography Centre, Southampton SO14 3ZH, UK
4School of Geographical Sciences, University of Bristol, University
Road, Bristol BS8 1SS, UK

SJG, 0000-0001-7042-7147

Past global warming events such as the Palaeocene–
Eocene Thermal Maximum (PETM—56 Ma) are
attributed to the release of vast amounts of carbon into
the ocean, atmosphere and biosphere with recovery
ascribed to a combination of silicate weathering
and organic carbon burial. The phytoplanktonic
nannoplankton are major contributors of organic and
inorganic carbon but their role in this recovery process
remains poorly understood and complicated by their
contribution to marine calcification. Biocalcification
is implicated not only in long-term carbon burial
but also both short-term positive and negative
climatic feedbacks associated with seawater buffering
and responses to ocean acidification. Here, we use
exceptional records of preserved fossil coccospheres to
reconstruct cell size distribution, biomass production
(particulate organic carbon, POC) and (particulate)
inorganic carbon (PIC) yields of three contrasting
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nannoplankton communities (Bass River—outer shelf, Maud Rise—uppermost bathyal,
Shatsky Rise—open ocean) through the PETM onset and recovery. Each of the sites shows
contrasting community responses across the PETM as a function of their taxic composition
and total community biomass. Our results indicate that nannoplankton PIC:POC had no
role in short-term climate feedback and, as such, their importance as a source of CO2 to
the environment is a red herring. It is nevertheless likely that shifts to greater numbers of
smaller cells at the shelf site in particular led to greater carbon transfer efficiency, and that
nannoplankton productivity and export across the shelves had a significant modulating effect
on carbon sequestration during the PETM recovery.

This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global
warming in our geological past’.

1. Introduction
Past transient global-warming events such as the Palaeocene–Eocene Thermal Maximum (PETM)
approximately 56 million years ago are attributed to the release of vast amounts of carbon
into the ocean, atmosphere and biosphere with the recovery of the Earth system largely
ascribed to increased weathering of silicates and/or increased rates of organic carbon burial
[1,2]. However, the relative contributions of these feedback mechanisms and how and when
they operated within the tens to hundreds of thousands of years that followed the onset
of these events are still poorly constrained [1,3]. Evidence is primarily drawn from biogenic
carbon, carbonate and barite accumulation rates, carbon isotopes, palaeoecological trends and
Earth system models [1–4]. The biotic proxies rely heavily on the robust and ubiquitous
fossil records of calcareous nannoplankton (predominantly coccolithophores), planktonic and
benthic foraminifera, and dinocysts. Despite some incongruities, the analysis of assemblage
compositions and abundances has led to broad agreement on the marine response to the
PETM, with increased productivity in coastal and continental margin regions but decreased
productivity in the open ocean [4–8]. Palaeoecological analysis of nannoplankton has unpinned
documentation of the spatial heterogeneity of biotic response at the PETM [4,7–12] but there
have also been attempts to quantify rates of production/export through the event [4], and
to uncover evidence of disruption of calcification brought on by changing atmospheric and
ocean chemistry [4,13–15]. These endeavours are challenging given the potential biases in
the fossil record, which become particularly acute during the PETM, as carbonate dissolution
caused widespread modification of the preserved record and introduced uncertainties regarding
carbonate production versus preservation [4]. Furthermore, the specific role of calcareous
nannoplankton in any productivity-feedback on climate remains elusive because speculation
surrounds the duplicity of nannoplankton calcification, with its theoretical counteracting effect
on the short-term buffering capacity of surface waters (e.g. [16–21]), and whether this might
have acted to reduce the effectiveness of plankton involvement in atmospheric CO2 drawdown
during the event. One avenue that has remained largely unexplored, however, is the extraction
of detailed information on the cellular characteristics of these ancient plankton and how cells
and communities of cells varied in space and time through these intervals of tumultuous
environmental change. In particular, we have yet to document cell-size distributions or ratios
of organic to inorganic carbon across ancient nannoplankton species and communities. As
such, we currently have little to no appreciation of the calcareous nannoplankton contribution
to carbon sequestration during extreme transient events like the PETM that we know are
characterized by large shifts in assemblage composition. Here, we take advantage of exceptionally
preserved nannoplankton records with unusually abundant occurrences of entire exoskeletons
(coccospheres) that allow us to make direct measurements of cellular traits, such as cell volume
and calcite mass, and, for the first time, to quantify cell-size frequency distributions across
communities through the PETM event. Further, we extrapolate from these unique data to
reconstruct population biomass for three distinct oceanographic settings (shelf, off-shelf and open
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ocean), assessing the impact of climate change on these cellular characteristics and the significance
of the changes for carbon sequestration and the Earth system feedbacks which operated during
the recovery.

2. Material and methods

(a) Material
Our analytical approach (see §2c) requires the integration of PETM coccosphere measurements
with fossil calcareous nannoplankton (‘nannofossil’) assemblage data. Fossil coccospheres allow
us to document cell size, coccosphere geometry and exoskeletal calcite mass, and assemblage data
provide relative abundance distributions of nannoplankton communities across both space and
time. Preservation of coccospheres is not typical in nannofossil records and requires targeting
samples that satisfy a number of taphonomic requirements, usually including clay-rich host
sediments, shallow burial-depths and low bioturbation-intensity [22]. Here our coccosphere data
come from sites with exceptional nannofossil preservation, including Bass River and Wilson
Lake (New Jersey), Lodo and Tumey Gulches (California), ODP Site 401 (Bay of Biscay), and
Kilwa (Tanzania) [22] (examples in figure 1). High numbers of PETM-interval coccospheres were
present at all these sites and some data were previously presented in [23,24]. Our (published)
assemblage data come from three sites that lie in distinctly different settings of the PETM marine
realm: Bass River, a mid-latitude, high-productivity shelf setting off the North American seaboard
(onshore drillsite, ODP Leg 174AX [4]); Maud Rise, an off-shelf, high-latitude site in the south
Atlantic sector of the Southern Ocean (ODP Site 690 [4]); and Shatsky Rise, an open-ocean,
central gyre, low-latitude site in the Pacific (ODP Site 1209 [4,7]). For comparative purposes, the
assemblage data are grouped into three key time-slices relative to the stratigraphy of the carbon
isotope excursion (CIE) that defines the PETM [25–27]—the pre-CIE (the averaged assemblage
composition from immediately below the first expression of the carbon isotope excursion),
the peak of the PETM event (averaged assemblage composition across samples from within
the core of the CIE before isotopic levels began to increase into the recovery interval), and the
PETM recovery interval (averaged assemblage composition across samples within the core of
the recovery phase where carbon isotope values were returning to, but had not yet reached, a
stable post-event level).

(b) Fossil coccospheres, cell geometries and estimates of cellular PIC and POC levels
Fossil coccospheres were imaged from simple smear slides [28] using light microscopy at ×1000
magnification following the imaging and measurement procedures of [23] and [29]. Two images
were taken of each coccosphere, one focused on the maximum outer coccosphere circumference,
allowing for the coccosphere and cell dimensions to be measured (the internal dimension
representing the position of the original cell), and the second focused on the proximal surface
of the coccolith tube-cycle of a representative coccolith on the coccosphere surface, allowing for
the coccolith dimensions to be measured. We collected additional disarticulated coccolith size
data for each taxon from the same samples in order to determine the complete range of coccolith
sizes present in each assemblage. As cell size and coccosphere size typically vary proportionally
with coccolith dimensions [23,29,30], this enabled us to incorporate cell sizes that may not have
been fully represented in the preserved coccosphere record (see §2c). We have supplemented
these light microscope data with measurements and general observations from scanning electron
microscope (SEM) imaging of rock-chip surfaces that allow in situ observations of nannofossils
and coccospheres (see [31]).

The fossil record of coccospheres is dominated by coccolithophore taxa that form placolith-
type coccoliths, which physically overlap and interlock to form a mechanically robust covering
around the cell [22,23,30]. These placolith taxa are also often numerically dominant in
nannoplankton assemblages and so for the majority of the PETM taxa we have direct coccosphere
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Coccolithus pelagicus BR349.82 m Coccolithus pelagicus BR351.95 m Coccolithus pelagicus LO29

Biantholithus astralis BR351.95 m
Coccolithus pelagicus TDP14/9

Toweius pertusus WL107.5 m

Toweius rotundus
TDP9-1,20 cm

Toweius small
WL352.7 m

Toweius
small

BR351.95 m

Toweius small
WL107.5 m Fasciculithus

tympaniformis LO29
Discoaster multiradiatus

LO29

Braarudosphaera perampla TDP16B/12-2, 9 cmToweius small
WL352.7 m

Toweius pertusus
BR357.74 m

1 µm

1 µm

Craticullithus
cancellus TDP14/9

Zygrhablithus
bijugatus LO29

Neochiastozygus imbriei WL107.5 m Braarudosphaera aff. B. bigelowii L029

Discoaster salisburgensis
TDP16B/22-1, 90 cm

Figure 1. A representative selection of PETM coccosphere types and sizes, all shown on the same scale (scale bars are 1 µm).
Also included are examples of a collapsed murolith coccosphere of Neochiastozygus imbriei, a disarticulated holococcolith of
Zygrhablithus bijugatus and nannoliths ofDiscoaster salisburgensis andD.multiradiatus and Fasciculithus tympaniformis. Sample
prefixes: WL—Wilson Lake, BR—Bass River, LO—Lodo Gulch, TDP—Tanzania Drilling Project.

measurements. The remaining nannoplankton groups present at this time form murolith
coccoliths (disc-like morphologies), holococcoliths (often broadly disc-like) and nannoliths
(non-coccolith morphologies), which lie side-by-side to form coccospheres structurally-bound
by organic materials [22]. These taxa rarely or never survive as coccospheres in the fossil
record and so we rely on modern analogue species, the observation of collapsed coccospheres,
and/or geometric considerations in order to reconstruct coccosphere and cellular attributes
(see electronic supplementary material). One exception to this is the Braarudosphaeraceae
group whose coccospheres relatively frequently occur as fossils and for which we have direct
measurements. The only common PETM holococcolith is the unusually large and robust
species Zygrhablithus bijugatus and we have observed several collapsed coccospheres that
have guided our coccosphere reconstructions. The PETM nannolith groups are dominated by
Discoaster, Fasciculithus and Sphenolithus, all of which are extinct and have no appropriate
extant analogue species. We have made the necessary assumptions that there are fundamental
constraints on cell geometry imposed by nannolith morphology (especially lith curvature)
and that most cells would have been spherical or sub-spherical as this is the most common
cell shape across extant (and fossil) coccolithophores. Together, these direct coccosphere
measurements and reconstructions allow us to document cell size (Θ), the taxon-specific
relationship (the ‘geometry’) between number of coccoliths per cell (CN), coccolith length
(CL) and Θ (table 1), and to calculate particulate organic carbon (POC) per cell and
particulate inorganic carbon (PIC) per cell from these parameters (see electronic supplementary
material).
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Figure 2. Illustrative schematic of the method used to reconstruct the frequency distribution of taxon cell size within each
interval using fossil coccosphere geometry data. Firstly, the cell size distribution for each taxon is reconstructed based on
measured fossil coccosphere geometry (a–d). The frequency distribution of number of coccoliths per cell (CN) shown in (a) is
applied to each size bin of the coccolith length (CL) measured from loose coccoliths in the same assemblage (b, black histogram
data) to calculate the number of cells of a particular taxon with specific combinations of CN and CL. The cell size of these
combinations is calculated using a power-law relationship between cell size (Θ ), CL and CN derived from fossil coccosphere
measurements (c). The abundance of cells in each size class is then compiled to produce a frequency histogram of cell size for
this taxon (d, orange histogram, as compared to the histogram of only measured fossil coccosphere cell sizes in black). Cell
size histograms are then produced in the same way for all other taxa in the community. Site-specific community cell size is
then reconstructed by weighting each taxon histogram by their relative cellular abundance in the community during each time
interval (e) before stacking the frequencies in each size class (f ) to produce an overall community cell size distribution.

(c) Reconstructing community cell size distribution and biomass
The distribution of cell sizes within a nannoplankton community is dependent on the frequency
distribution of cell sizes within each species and the relative abundance of each of these
species. Therefore, in order to reconstruct the cell-size frequency distribution of nannoplankton
communities at our three sites (Bass River, Shatsky Rise, Maud Rise) we (i) derived the frequency
distribution of cell sizes within each taxonomic group; (ii) normalized each cell-size histogram
to the relative cell abundance of each taxonomic group; and then (iii) combined the abundance-
normalized histograms of each taxonomic group to generate the cumulative cell-size frequency
distribution for the total community.

For each taxon the method proceeds as follows (figure 2):

1. Plot the frequency distribution of CN from fossil coccosphere geometry data (figure 2a).
2. Plot the frequency distribution of loose coccolith lengths (CL) from the same samples

(figure 2b). Measurements from an additional 100–300 loose coccoliths per taxon provide
a necessary check on the expected range of cell sizes in each assemblage because
preserved coccospheres tend to underrepresent the larger size classes.
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3. Apply the CN frequency plot across each CL size bin, as extensive coccosphere
geometry characterization of extant coccolithophores in culture show that the frequency
distribution of CN is consistent across the range of coccolith lengths [29]. As an illustrative
example, imagine that 120 coccoliths in the assemblage fall within the 6.0–6.5 µm coccolith
length category (e.g. figure 2b), and we know, from our CN frequency plots of this taxon
that 20% of the coccoliths (i.e. 24 coccoliths) in any CL size bin are associated with
cells that have 12 coccoliths per cell; this CN–CL combination would represent 2 cells
formed of 12 coccoliths that are 6.0–6.5 µm in length. Of the remaining 96 coccoliths,
the CN histogram tells us that 18 coccoliths (15%) would be associated with cells that
have 10 coccoliths per cell, thus representing 1.8 cells, and so on across the remaining CN
distribution. This is repeated for all of the CL size bins until we know how many cells in
the population of this taxon have x number of coccoliths of x µm in length.

4. Calculate the cell size of these CL–CN combinations using the taxon-specific power-law
relationship (the ‘geometry’) that exists between CN, CL and Θ (figure 2c; table 1). This
produces a histogram of cell size for each taxon (figure 2d). For the non-placolith taxa we
applied a more basic geometry, derived using just one value of estimated CN but again
using measured loose coccoliths.

5. Introduce assemblage data by first converting lith per cent abundances into cell
abundance using average lith number per cell per taxon (table 1).

6. Integrate resultant cell abundance and size distributions by weighting each cell-size
histogram by its abundance in the community (figure 2e) and stacking the resultant
histograms to produce the overall community cell size distribution (figure 2f ).

7. Transform community cell size histograms into equivalent cell biomass where the area
under the curve corresponds to the total biomass of 100 cells (expressed as organic carbon
per cell) and the relative position along the axis corresponds to biomass distribution by
equivalent cell size. The further to the right along the axis, the greater the proportion of
biomass partitioned within larger cells.

(d) Calibrating nannofossil assemblages and nutrient availability
Our final step (step 8) scales the biomass plots according to estimated nannoplankton-biomass
carrying capacity (effectively the nutrient availability) of the seawater at each site through time.
We do this by adjusting the vertical amplitude of the biomass histograms in order to scale the total
area under the curves with the relative level of surface-seawater biomass estimated for each site
and for each time-slice. First, we place our sites on a common scale according to what the taxic
composition of the assemblages tell us about nutrient regime. Specifically, we use the relative
abundances of warm-water, oligotrophic-favouring-nannofossil taxa (Discoaster, Fasciulithus,
Sphenolithus and Coccolithus) versus cooler-water, mesotrophic-favouring taxa (Toweius and
Chiasmolithus) to form a palaeoenvironmental metric (the Palaeoenvironmental Index—PI)
(modified from [4]; figure 3). Coccolithophores are strongly responsive to nutrient availability,
favouring the same conditions as the majority of plankton, and they typically increase in
abundance at the same time of year as increasing nutrients [33–35]. Therefore, we use the PI
values as a means of quantifying relative differences in nutrient regime between our sites, with the
differences in magnitude of the metric broadly consistent with our understanding of their latitude,
nutrient availability and response to the PETM environmental change. This approach is also in
general agreement with a previous attempt to scale export productivity changes across the PETM
using biogenic barite [3]. We then calibrate our PI by placing estimated levels of nannoplankton
standing cell-abundances per litre seawater (converted into biomass and expressed as organic
carbon per millilitre of seawater) against our metric using modern shelf and gyre sites as
equivalent end-member oceanographic settings. The values we use may not be wholly analogous
for the Palaeogene oceans and biota, where, in particular, diatoms were less abundant, but they
are a first order estimate of realistic variations. At the lower end of the scale for the pre-CIE PI
value at the Shatsky Rise gyre site, we have placed a conservative estimate of 25 cells per millilitre
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Figure 3. Calibrating the nannofossil-based palaeoenvironmental index (PI) with estimated levels of biomass in seawater,
expressed as particulate organic carbon (POC, pmol C ml−1). PI is calculated from nannofossil relative abundance data as
total mesotrophic/eutrophic water-favouring nannofossil taxa divided by mesotrophic/eutrophic water-favouring taxa plus
oligotrophic-favouring taxa with a value approaching 100 indicating dominance by mesotrophic/eutrophic favouring taxa. In
(a), the red lines indicate the pre-CIE PI and resultant estimated POC values for each site and the times increases in POC for each
site are relative to thesepre-CIE values. Theblue circles highlight the tie-points described in the text to construct the estimatedPI
to POC relationship. The dashed horizontal lines show the PI values for the non-tie-point time-slices from the three sites and the
vertical dashed lines show the resultant estimated POC values. In (b) are the PI versus POC tie-points (both shown here on a log
scale) with their equivalent cell numbers illustrating the close relationship between POC and cell numbers but demonstrating
subtle differences that are because of variations in cell volume between the different tie-points.

based on measures of 25–35 cells ml−1 in modern subtropical gyres [36]; 25 cells ml−1, using our
Shatsky pre-CIE cell size community structure, corresponds to a total community biomass yield
(our estimated nannoplankton carrying capacity) of 313 pmol POC ml−1. We then impose an
arbitrary reduction of a third of community biomass into the peak PETM, where nannofossil
communities indicate reduced nutrient availability caused by warming and stratification [7].
Towards the upper end of the PI scale, we use a conservative 100 cells ml−1 for the pre-CIE PI
value at Bass River, which corresponds to a community biomass of 630 pmol POC ml−1. This
is based on normal (non-bloom), coccolithophore cell-counts ranging from 70 to 100 cells ml−1

from the temperate, productive shelf-seas off the UK [35]. We then impose a conservative fivefold
increase in community biomass reflecting the increased nutrient runoff across the event [7,26],
based on the range of chlorophyll a measured on the UK shelf from the summer productivity
minimum to the spring increase in nutrients, a range of 0.1 to 8.0 mg m−3 [37]. This is consistent
with accumulation rate estimates of carbonate at Bass River, where rates increased from 0.16
to 1.86 g m−2 kyr−1 from pre-CIE to the peak of the CIE, approximately an order of magnitude
increase, although some increase is due to enhanced carbonate preservation [26]. As PIC:POC
in coccolithophores is generally close to 1 (figure 3) we can use carbonate accumulation to
infer associated minimum levels of surface water POC. Using these values of community
biomass/carrying capacity, the Shatsky Rise and Bass River end-members top and tail the PI
calibration and allow us to scale the biomass histograms across the time-slices as well as placing
biomass estimates on the intermediate PI values recorded at Maud Rise (figure 3).

3. PETM cellular communities and their biomass
The coccospheres we have imaged and measured from a range of sites provide us with accurate
taxon-specific geometry characteristics, i.e. the fundamental coccosphere traits of how coccoliths
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surround each cell and the cell-to-coccolith size relationship, as well as the frequency distributions
of those relationships. The deviation of taxon averages from the overall trend line between cell
size and coccolith size illustrates the taxon-specific ranges in geometries for our Palaeogene
nannofossils, which are principally a function of varying numbers and degrees of overlap of
coccoliths on the coccospheres (figure 4a,b). Those taxa that lie below the trend line have either
high numbers of small coccoliths per cell (e.g. Biscutum) or relatively low levels of coccolith
overlap on their coccospheres (e.g. Umbilicosphaera) (figure 4b). Correspondingly, the taxa that lie
above the trend line have fewer, larger coccoliths for a given cell size (e.g. Chiasmolithus) or greater
coccolith overlap (e.g. Biantholithus) (figure 4b). These subtle differences in the relationships
between CN, CL and Θ give rise to the taxon-specific power relationships (table 1). Converted to
cellular PIC and POC, these coccosphere data reveal that most cells lie at, or close to, a PIC:POC
ratio of 1 (70% fall between 0.5 and 1.5), irrespective of cell size (figure 4c,d). Some taxa show
averages that lie away from this line, for example, relatively lightly calcified forms with lower
PIC:POC (e.g. Campylosphaera and Biscutum) lie below the 1 : 1 line, with ratios down to 0.06
(approximately 1 : 17), and more heavily calcified taxa (e.g. Braarudosphaera and Biantholithus) lie
above the line with cells achieving, in some instances, unusually high PIC:POC ratios of up to 14.
The similarity in position of taxon averages between figure 4b and 4c is in part because the POC
axis and cell-size axis are recording essentially the same parameter, as our calculation of POC is
based on cell volume [38]. But the position of the coccospheres on the CL and PIC axes shows that
taxa with fewer, larger coccoliths tend to have higher PIC:POC than those with greater numbers
of smaller coccoliths. Because of this, the murolith taxa, with larger reconstructed cell sizes and
higher numbers of smaller coccoliths, fall below the 1 : 1 line, averaging PIC:POC of between
0.8 and 0.36 (equivalent to a maximum of 1 : 3). Likewise, although the individual nannoliths of
Fasciculithus and Sphenolithus are relatively heavily calcified, their high numbers on large cells
result in estimated PIC:POC that is lower than might have been supposed, still close to the 1 : 1
line (PIC:POC estimates of 1.2–1.3).

The integration of cell sizes and calculated PIC and POC in our cellular community
reconstructions illustrates that the size distributions across Palaeogene communities are strongly
biased towards relatively small cell sizes, with modal cell diameters of 4–5 µm at all sites, although
there is a broader cell-size range at open-ocean Shatsky Rise (figure 5a). Superficially, all three
sites appear to show little variation in cell size distribution through time with no significant
changes standing out. However, cell diameter hides the fact that larger cells, even if at low
abundance, volumetrically outweigh smaller cells and this is clearly the case when we transform
cell diameter data into cell biomass. This first set of biomass plots (figure 5b) illustrates the
disproportionate contribution of the rarer but larger cells in the distribution of biomass across
the cell-size range at a constant abundance. The impact of large cells is particularly prominent
at Maud Rise, where the presence of Chiasmolithus results in the majority of community biomass
packaged into a few, large cells. Likewise, at Bass River and Shatsky Rise, we see a significantly
more balanced distribution of biomass across the community than is suggested by the cell
diameters alone.

Across the time-slices at Shatsky Rise and Maud Rise, the community biomass structure
of 100 cells remains relatively similar (total biomass shows little change), even though the
taxa contributing biomass change significantly. For example, at Maud Rise, Chiasmolithus and
Zygrhablithus show a large shift in abundance between the pre-CIE and peak-CIE time-slices but
this has little effect on the overall biomass distribution across cell sizes. A greater difference
through time is seen at Bass River, where biomass associated with larger cells declines in the
PETM peak and recovery resulting in a greater than halving of total biomass per 100 cells. These
plots with constant cell number are useful because they graphically illustrate how different the
communities are between the sites in terms of how biomass is packaged across cells. However,
they provide no information on variations in standing stock from site to site. Therefore, in
figure 5c we have scaled the biomass plots according to estimated nutrient availability for each
site and for each time-slice. The Bass River and Maud Rise communities show higher levels
of inferred biomass per unit seawater than Shatsky Rise, up to at least 10 times higher in the
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Figure 4. Coccosphere biometric data and calculated PIC and POC per cell for 2,426 PETM coccospheres. In (a) are plotted cell
diameter (Θ ) against coccolith length (CL) for each coccosphere, and the number of coccoliths per coccosphere (CN) indicated
by the colour. The cell diameter of Biscutum are the diameters of spherical equivalents (because Biscutum cells are ovoid to
cigar-shaped). In (b), the same data are shown with the means of each taxon highlighted (stars) and the 5–95% spread of the
taxon size data indicated by the black bars. The colour of the star indicates average CN. A broad correlation between coccosphere
Θ and CL is a persistent feature of coccosphere geometry (linear trend-line in a and b), with larger coccospheres typically
associated with larger coccoliths. The notable scatter in the relationship betweenΘ and CL is a result of varying CN. In (c), all
coccospheres have been converted into cell volume and estimated POC per cell and CL and CN have been combined to calculate
PIC per cell. Diagonal lines indicate PIC to POC ratios. In (d) the PIC:POC of the coccospheres are shown as a frequency plot with
the 5th and 95th percentiles indicated and the theoretical ratio of 1.86 where photosynthesis balances calcification resulting in
no net carbon fixation [21]. The error/uncertainty black bars in (c) are the cumulative highest and lowest PIC and POC values
we can calculate using all the uncertainties/errors listed below. Errors/uncertainties include direct measurements ofΘ from
the coccospheres (minimal measurement error with high reproducibility). Uncertainty with the counting CN is minimal for low
coccolith number—up to 9—increasing as the CN increases, up to an uncertainly of approximately ±2 at a CN around 18
upwards [23], resulting in under or overestimate in PIC of approximately±7% to approximately±10%. Uncertainty associated
with converting inner coccolith cycle (the parameter we can measure accurately on the coccospheres) to total CL (which is
obscured by coccolith overlap) is approximately 15%. Uncertainty associated with application of shape factors suggested by
ref. [32] to be approximately 20%. Uncertainties in estimating POC from errors inΘ measurement are as above and uncertainty
in the ref. [38] equation uses the published 95% confidence intervals.
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Figure 5. Reconstructed cellular communities and their biomass across three time-slices of the PETM—the pre-CIE (labelled
background), the onset to peak of the CIE (labelled peak), and the recovery—from Bass River, Shatsky Rise (ODP Site 1209) and
Maud Rise (ODP Site 690). In (a) are size frequency histograms of cell diameter (of 100 cells) with mean cell diameter noted
in the vertical black line and value, separated into taxon by colour and with a prefix: U—Umbilicospheara, S—small Toweius,
T—Toweius, Co—Coccolithus, C—Campylosphaera and Cruciplacolithus, Ch—Chiasmolithus, B—Biscutum. In grey are the cell
diameters for taxon that do not preserve as coccospheres: N—nannoliths (includingDiscoaster, Sphenolithus and Fasciculithus),
M—muroliths, and Z—Zyghrablithus. In (b), cell diameter has been converted into cell biomass with the total area under the
curves equalling total cell biomass and the distance along the x axis indicating how that biomass is distributed according to cell
size. The value given is the total biomass of 100 cells. In (c), biomass from (b) has been scaled according to estimated changes in
nutrient availability at each site and across the event. Again, the area under the curve corresponds to total biomass. The values
on the right give amount of (pmol) POC per millilitre (top), number of cells per millilitre (middle), and community PIC:POC (the
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member community dominated by a low diversity mesotrophic-eutrophic subset of the community. In brackets for the other
two values are the times change from pre-CIE values. The values that are italicized indicatewhich valueswere used as tie-points
in figure 3. For Bass River, the time-slices include data averaged across 358.94–357.56, 357.38–356.83, and 352.59–349.03 mbs;
for Site 1209 across 216.80–216.36, 216.35–216.22, and 216.17–215.47 mcd, and for Site 690 across 172.33–171.43, 170.61–170.21,
and 169.40–167.14 mbsf.
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recovery interval. Bass River shows a marked increase in total biomass through the time-slices,
which was part of our initial assumptions underlying figure 3. However, because of the shift
in community cell size structure, this increase in biomass is accompanied by a huge increase
in cell numbers, with a conservative estimate of a 13-fold increase (up to 1300 cells ml−1) from
pre-CIE values. This influx of small eutrophs (Toweius) is consistent with other evidence for
an increase in productivity at Bass River, including total inorganic carbon accumulation [26]
and biogenic magnetite [39]. If the productivity was strongly seasonal, as it may have been at
Bass River where runoff was dependent on seasonal variations in precipitation [41], then these
levels of cell numbers could certainly have approached a reasonable definition of a ‘bloom’. If
blooms did occur (see further discussion below), the communities were likely dominated by a
mesotroph-eutroph subset of the assemblage, particularly Toweius, a scenario that is analogous
to modern seasonal, nutrient-driven blooms of eutrophs in the related family Noelaerhabdaceae
(e.g. Emiliania and Gephyrocapsa), which can reach in excess of a million cells per litre during a
bloom [41,42].

A very different picture emerges at Shatsky Rise, a Pacific gyre site, where baseline standing
stocks of cells would have been initially low and declined further at the peak of the PETM.
Although similar overall size distributions were maintained throughout the event, this resulted
in proportionally fewer cells when community biomass declined. The overall cell size character of
the Shatsky Rise communities was very different to Bass River, with higher relative abundances
of oligotrophs, such as Discoaster (and other nannoliths), and mesotrophs dominated by the large
species Coccolithus pelagicus. A greater proportion of the POC was therefore packaged into larger
cells. The same is true of the off-shelf site at Maud Rise where an increase in the large mesotrophic
Chiasmolithus results in higher average cell-size and biomass. The Maud Rise communities do
show some degree of change in cell-size distribution through the event, with an increase in cell
numbers and a shift towards small-celled mesotrophs during the recovery phase, but not to the
same extent as is seen at Bass River. The overall biomass estimates scaled to POC are, however,
likely an overestimate at Maud Rise, with the higher PI values skewed because of temperature
effects on the index.

The overall PIC:POC of these communities varies little across the event and between sites
(figure 5). Bass River shows an increase from 0.86 to 1.06, reflecting a decline in contribution
from lower PIC:POC nannoliths and holococcoliths in the community. The PIC:POC of just the
Toweius taxa (shown in brackets in figure 5) illustrates a possible end-member bloom scenario.
The Shatsky Rise community PIC:POC values are lower throughout the event (0.77–0.83) because
of the persistent contribution of nannoliths, muroliths and holococcoliths, and the placoliths
Campylosphaera and Cruciplacolithus. Maud Rise shows the largest change in PIC, from 0.89 to
1.12, mainly because of the increase in Chiasmolithus.

4. Discussion

(a) Calcareous nannoplankton productivity, calcification and climate feedbacks
It is likely that increased sequestration of carbon was a critical sink for high CO2 across the
PETM, in addition to the silicate weathering feedback that alone cannot account for the rapidity of
climate recovery [1,2]. What remains uncertain is the extent to which calcareous nannoplankton
productivity, export and burial influenced this process. Calcareous nannoplankton contribute
both to the organic carbon pump and the carbonate counter pump and therefore play a
multifarious role in carbon sequestration (e.g. [16–21]). They provide a direct, long-term sink
for carbon through the production and burial of organic and inorganic matter and indirectly
influence carbon export through the provision of ballasting minerals [17,19]. However, variations
in coccolithophore calcification have been implicated in shorter-term surface water CO2 buffering,
because calcification reduces the rate at which the surface ocean can absorb atmospheric
CO2—the ‘CO2-calcification’ feedback [18,19].
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Our new data provide additional dimensions to the assessment of nannoplankton response
and function at the PETM, allowing us to assess potential shifts in PIC:POC, cell-size distribution
and biomass production. In the sections below we consider the potential influence of these
combined factors on the production and export of carbon to the deep sea and hence the sign
and strength of the resulting climate feedbacks.

(b) The role of nannoplankton PIC:POC in surface ocean buffering—the ‘CO2-calcification’
feedback

A CO2-driven reduction in coccolithophore calcification and hence increase in buffering capacity
of surface waters would constitute a negative feedback to rising atmospheric CO2 and vice
versa, although the reality/magnitude of these feedbacks are contentious with a range of
responses reported from culture experiments and the fossil record [19]. Culture manipulation
experiments focusing on a limited number of extant taxa have largely, but not exclusively,
reported reduced calcification under elevated CO2 treatments, leading to a negative CO2-
calcification feedback hypothesis [16,19,43]. However, the opposite has also been argued, with [21]
suggesting that increased coccolith calcification during high CO2 intervals at glacial terminations
may have constituted a positive feedback to increasing CO2(atm) on millennial timescales. At
the PETM, while there are significant migration and population shifts across the event [7,8,44],
there is little evidence for direct effects on calcification from surface water acidification [2,24]
and therefore little obvious CO2-calcification feedback. There are reports of morphologically-
modified liths in one or two taxa (e.g. Discoaster, [14]) and minor changes in coccolith
thickness [24], but these would have had little effect on the amounts of calcite being produced
by these taxa, and overall the total nannoplankton population appears to have been little
affected [15,44,45].

Our documentation of the PIC:POC character of the PETM nannoplankton community is
the most comprehensive to date of its kind, and outstrips even our knowledge of modern
coccolithophores. We have PIC:POC estimates for approximately 20 taxa from coccosphere
observations and for nine taxa from coccosphere reconstructions, representing the majority of
PETM diversity. The overwhelming outcome of this compilation is that the PIC:POC of most
species is similar, with most lying within a narrow range from 0.5 to 1.5. The dominant taxa
all have very similar PIC:POC with the more extreme end-member taxa limited to rare and/or
sporadic occurrences (figure 4c,d). Therefore, even though our reconstructions of nannoplankton
biomass across the PETM include evidence of significantly large changes, these do not translate
into significant community PIC:POC variation, either through the time interval or even between
our high-productivity and oligotrophic end-member sites. Overall, there is little scope for
significant shifts in community PIC:POC unless the communities transitioned towards unrealistic
species compositions; such as ones dominated by, for example, murolith-bearing coccolithophores
(giving rise to lower PIC:POC) or Biantholithus or Braarudosphaera (giving rise to much higher
PIC:POC). In reality, most sites at this time, regardless of latitude or nutrient regime, are
dominated by varying proportions of Toweius and Coccolithus [44], both of which have similar
cellular PIC:POC (despite different cellular levels of PIC and POC), with some degree of
contribution by other placoliths, murolith and nannolith-bearing species. Our observations also
indicate that shifts in community PIC:POC do not remotely approach the ratio of 1.86 where
the balance of photosynthesis and calcification, in the most extreme scenario, results in no net
carbon fixation [21]. The only other attempt to reconstruct coccolithophore PIC:POC through time
reported similarly small variations across two Quaternary glacial termination events [21]. It is
therefore hard to envisage how such small changes in PIC:POC could significantly alter overall
nannoplankton calcite production and any minor variations in the amounts being produced per
cell would be far outweighed by changes in species growth rates [24,29] or overall productivity.
Given the narrow confines of nannoplankton PIC:POC diversity, the most significant influence on
the rain ratio and associated buffering capacity would come from varying the ratio of calcifying
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to all non-calcifying plankton, rather than any change within the nannoplankton themselves. For
comparison, modern-day-equivalent total surface-water PIC:POC values, i.e. coccolithophores
plus everything else, range from 0.001 to 0.4 [41,46], illustrating how small the coccolithophore
inorganic carbon contribution can be, even taking into account the differences in plankton
make-up between Palaeogene oceans and today. Therefore, while tendencies towards either
more heavily/lightly calcified genotypes or species [47,48] may well be a response to seawater
chemistry drivers, the hypothesis that the PIC:POC of nannoplankton/coccolithophores itself
represents a significant feedback in the buffering capacity of the surface ocean appears to be a
red herring.

(c) Nannoplankton cell size, biomass and export—the productivity feedback
The burial of organic and inorganic carbon in shelf environments increased by an order
of magnitude across the PETM [26,49] amplifying the carbonate burial response to silicate
weathering, and delivering a necessary additional sink for excess atmospheric CO2. This
increased burial of carbon, at least in part, could have resulted from higher levels of total plankton
production and export [3], including calcareous nannoplankton, fuelled by increased runoff
and nutrient supply [40]. The nannoplankton abundance data at Bass River confirm a shift to
assemblages indicative of higher productivity but our community cell size record highlights the
fundamental shift in population character, with a dramatic shift to smaller cell sizes and many
more cells, equivalent in estimated cell numbers to modern bloom conditions.

The controls on plankton export are complex but could this shift in biomass packaging
(towards smaller cells) further enhance the productivity feedback over and above the increased
numbers, for example, by changing the effects of grazing, remineralization, or ballasting? On the
one hand, smaller cells could be more easily recycled in surface waters, as well as being less
effective ballasting agents. However, more importantly, there are significantly more cells being
produced, increasing the likelihood of collision and aggregate formation, and hence enhancing
carbon export/transfer efficiency [50,51]. Similarly, if these elevated cell numbers are associated
with seasonally intensified bloom concentrations then this increase in biomass would promote
greater levels of grazing (and increase contact/encounter rates) and the formation of faecal pellets
that result in higher levels of transfer efficiency and less recycling.

(d) Evidence for changing export and transfer efficiency
It is difficult to unequivocally demonstrate the occurrence of bloom events in geological
successions because the fossil record is typically time-averaged and so incapable of capturing
very short-term phenomena (days to weeks). The exception to this are atypical laminated deposits
that continuously record depositional processes and which remain undisturbed by mixing
and/or bioturbation due to quiescent and hypoxic conditions. These exceptional sediments
preserve records of exported aggregates and faecal pellets that are rich in microfossils (especially
nannoplankton and diatoms) and in some cases the extent of these concentrations are considered
to represent the fallout from bloom events (e.g. [31,52–54]). Although none of our successions
are laminated in nature, both the Bass River and Lodo sediments are sufficiently undisturbed
to reveal concentrations of nannoplankton that must represent exported aggregates and faecal
pellets. In the case of Bass River, in particular, the coccolith concentrations are low diversity
or monospecific and always dominated by Toweius species (figure 6), precisely as would be
expected if these were blooms. This type of preservation is rare and often discontinuous (largely
dependent on levels of bioturbation/oxygenation) and so we have been unable to systematically
collect observations that provide comparative information throughout the PETM and across the
different sites. However, the bulk of our faecal pellet/aggregate observations do come from the
recovery interval of the PETM confirming that at this time there were low diversity assemblages,
dominated by the principal eutroph group, Toweius, and exported to the seafloor in relatively
large packages, indicative of effective transfer efficiency.
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Figure 6. Scanning electron micrographs of fresh rock surfaces from the PETM recovery interval of Bass River with
concentrations of coccoliths (mainly small and larger Toweius, including collapsed coccospheres), which represent aggregates
or faecal pellets providing snapshots of the surface water populations. (a) and (b) are from two aggregations in sample BR27
(349.82 mbs) and (c) is an aggregation in sample BR40 (352.49 mbs).

Away from the shelf sites, there is evidence of a range of potential biological influence on
carbon sequestration, dependent on oceanographic setting. Maud Rise appears to represent
an intermediate productivity state between the shelf and open-ocean sites, and our cell size
and biomass data would suggest a trend towards increasing biomass into the PETM event
and a shift towards small-celled mesotrophs during the recovery phase. This shift towards the
small mesotrophs is not as significant as that seen at Bass River, but nevertheless could be a
biological amplifier to carbonate accumulation and is supported at Maud Rise by high nannofossil
carbonate accumulation rates, perhaps again associated with increased runoff during the recovery
phase [55].

At open-ocean Shatsky Rise, we see no evidence of increases in nannoplankton production and
no major changes in cell size distribution during the recovery interval. Rather, the assemblage
data here reveal greater proportions of oligotrophs [7] reflecting increased stratification and
expansion of oligotrophic areas across the PETM [3,8,56]. In these settings it appears unlikely
that nannoplankton primary production had any direct feedback-role on increased seafloor
carbonate accumulation and that this was instead the result of enhanced calcite preservation
as the calcite compensation depth (CCD) shoaled and ocean carbonate saturation increased,
as is widely observed and modelled (e.g. [57,58]). Increased carbonate production could have
accentuated CCD shoaling or contributed to higher accumulation rates above the CCD, but we
think neither are likely given the minor changes in nannoplankton production and community
cell-size structure, mirrored in the overall low estimates of export productivity in open ocean
areas in general [3].
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5. Summary and conclusion
Our fossil coccosphere geometry data provide new insights into the cellular-level response of
this dominant plankton group during the PETM global warming event. We have been able to
reconstruct the evolving cell-size distribution, biomass partitioning, and biomass and inorganic
carbon yield of three contrasting fossil calcareous nannoplankton communities (shelf, off-shelf
and open ocean) through the PETM onset and recovery, revealing distinctly different responses
at each, consistent with previous palaeoecological data, and providing support for a significant
plankton productivity feedback at this time. We document differences in numbers of cells and
levels of cellular PIC and POC produced at our different sites, with the most dramatic changes
across the PETM at the palaeo-shelf Bass River location. During the recovery interval, the
Bass River nannoplankton community underwent a major shift towards increased production
of smaller cells. However, despite these large changes in taxic composition and community
structure, we see little significant difference in fundamental cellular PIC:POC, reflecting the
underlying observation that the PIC:POC of most nannoplankton species is very similar. Given
these results we consider the idea that nannoplankton PIC:POC might be a major control on
surface water buffering and CO2 drawdown, to be a red herring. Nevertheless, the cellular
abundance and cell size changes likely modified food chain structure and export efficiency,
providing a link between calcareous nannoplankton productivity, carbon sequestration and
climate recovery. While the ultimate burial of carbon is what is fundamental to CO2 removal
and climate regulation, we need to further examine the potential implications of how calcareous
nannoplankton/coccolithophore PIC and POC is packaged (how much and in what size cells) for
ballasting and grazing and hence carbon export and export efficiency.
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