
Peer reviewed version

Link to published version (if available):
10.1021/jacs.9b07564

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via American Chemical Society at https://pubs.acs.org/doi/10.1021/jacs.9b07564. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-Boronic Esters using Photoredox Catalysis

Daniel Kaiser, Adam Noble, Valerio Fasano, and Varinder K. Aggarwal*

School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.

Supporting Information Placeholder

ABSTRACT: 1,2-Bis-boronic esters are versatile intermediates that enable the rapid elaboration of simple alkene precursors. Previous reports on their selective mono-functionalization have targeted the most accessible position, retaining the more hindered secondary boronic ester. In contrast, we have found that photoredox-catalyzed mono-deboronation generates primary β-boryl radicals that undergo rapid 1,2-boron shift to form thermodynamically favored secondary radicals, allowing for selective transformation of the more hindered boronic ester. The pivotal 1,2-boron shift, which has been demonstrated to be stereoretentive, enables access to a wide range of functionalized boronic esters and has been applied to highly diastereoselective fragmentation and transannular cyclization reactions. Furthermore, its generality has been shown in a radical cascade reaction with an allylboronic ester.

Photoredox chemistry enables radical species to be generated from a broad range of functional groups under exceptionally mild conditions.1 We and others have shown that readily available alkylboron reagents, including boronic esters2 and trifluoroborate salts,3 undergo deboronative single-electron oxidation to give alkyl radical intermediates that engage in Giese-type additions.4,5,6,7,8 Related heteroatom-transfers are rare but have been proposed for halogen9 and silicon groups.9 There have been isolated reports of 1,2-boron migrations, including via cationic10 or anionic intermediates,11 and a single report by Batey in 1999 which showed that β-boryl radicals are capable of undergoing intramolecular homolytic substitution.12 In our proposed strategy, a radical migration of the boronic ester group would enable a cascade sequence of 1,2-shift and subsequent reaction of the resulting thermodynamically favored secondary alkyld radical (Scheme 1C, path A). This would lead to a product in which it appeared as if the more hindered secondary boronic ester had been activated, providing the opposite selectivity to that typically observed for functionalizations of 1,2-bis-boronic esters.6,13 We now report that, in photoredox-catalyzed deboronative Giese reactions of 1,2-bis-boronic esters, following activation of the less hindered primary boronic ester, the exclusive product obtained is that derived from substitution of the secondary boronic ester.

Our initial investigations of the reaction of 1,2-bis-boronic ester 1a were based on our recent report of a deboronative cyclobutane synthesis, where phenyllithium was successfully employed to form a highly reducing boronate complex (Table 1).2d Thus, a...
boronate complex was formed by reaction of 1a with phenyllithium (A) in THF, and a solution of photoredox catalyst (4CzIPN), tert-butyl acrylate, and tert-butanol in DMF was added. The subsequent reaction under blue light irradiation afforded the product of functionalization at the secondary position (3a) in a promising 48% yield (entry 1). Two characteristics of this initial reaction are noteworthy: (i) no trace of regioisomeric product 4 was detected in the crude reaction mixture, confirming that a 1,2-boron shift occurred to form the more stable secondary radical; and (ii) we observed 12% of doubly functionalized product 5 and recovered 27% of 1a. This suggested low selectivity between single and double addition of A to 1a. Hoping to increase the selectivity, we turned to more sterically hindered aryllithium reagents (B–G, entries 2–7). Pleasingly, this approach proved successful, with ortho-substituted aryllithiums suppressing the formation of 5. From this series of reactions, B emerged as the ideal reagent in terms of yield (68%), cost and reproducibility. A subsequent screen of solvents identified acetonitrile as optimal (entry 8). Finally, a slight increase in concentration (compare entries 8–10) gave 3a in 90% isolated yield, while the absence of BuOH (required for protonation of the enolate intermediate; entry 11), light (entry 12) or photocatalyst (entry 13) led to dramatically diminished yields.

With the optimized conditions in hand, we investigated the scope of bis-boronic esters (Scheme 2A). Initially, we probed the effects of steric hindrance on the reaction efficiency and were pleased to see that products with α-secondary (3b) and α-tertiary centres (3c) were formed readily. Moreover, substrates containing a tertiary boronic ester (3d–3f) provided excellent yields of the products of tertiary functionalization. It should be noted that for substrates showing considerable steric bias between the two boronic ester groups (e.g., 3e), using phenyllithium instead of B provided almost identical results (81% compared to 85% for B). Surprisingly, phenyl-containing 3g was only isolated in moderate yield (35%) and an equimolar amount of starting material was recovered. We speculated that competitive addition of the transient radical intermediate to the aryl ring could (i) lead to unspecific degradation, as indicated by the low mass balance; and (ii) slow down turnover of the photocatalyst, thereby allowing the boronate complex intermediate to decompose over time. When a homologated substrate was used, product 3h was afforded in considerably increased yield (66%), suggesting the vicinity of the phenyl moiety was in fact inhibiting formation of 3g. Unfortunately, styrene-derived bis-boronic esters failed to give the desired products. In addition to substrates of varying steric demand, various functional groups were also tolerated, including esters (3i), nitriles (3j) and silyl ethers (3k)—the former two requiring the use of less hindered aryllithium D in order to suppress competing α-deprotonation. Additionally, using two equivalents of aryllithium allowed isolation of secondary carbamate 3l in moderate yield. Bis-boronic esters derived from 3-carene and camphene were also competent substrates, affording the corresponding products 3m and 3n in good yields, with excellent diastereoselectivity observed for the latter product. The 1,2-bis-boronic ester derivative of β-pinene (1o) provided monocyclic product 3o in 53% yield. This compound is the product of ring-opening of the strained cyclobutane moiety after 1,2-boron shift, highlighting the radical nature of this transformation.

Table 1. Optimization Studies

<table>
<thead>
<tr>
<th>Entry</th>
<th>ArLi</th>
<th>Solvent</th>
<th>c (M)</th>
<th>3a (%)</th>
<th>1a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>DMF</td>
<td>0.05</td>
<td>48</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>DMF</td>
<td>0.05</td>
<td>68</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>DMF</td>
<td>0.05</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>DMF</td>
<td>0.05</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>DMF</td>
<td>0.05</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>DMF</td>
<td>0.05</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>DMF</td>
<td>0.05</td>
<td>29</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>MeCN</td>
<td>0.05</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>MeCN</td>
<td>0.1</td>
<td>100 (90)</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>MeCN</td>
<td>0.2</td>
<td>89</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>MeCN</td>
<td>0.1</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>MeCN</td>
<td>0.1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>MeCN</td>
<td>0.1</td>
<td><1</td>
<td>33</td>
</tr>
</tbody>
</table>

*Reactions were run on 0.2 mmol scale. * Determined by GC/MS analysis; values in parentheses correspond to isolated yields. Without ‘BuOH. * Determined by GC/MS analysis; values in parentheses correspond to isolated yields. Without 4CzIPN.

Our interest subsequently shifted to investigation of the radical acceptor (Scheme 2B). Radical conjugate addition to a range of electron-deficient alkenes afforded the desired products (3p–3s) in good to excellent yields. Styrene derivatives were also found to be competent radical acceptors, with pentfluorostyrene efficiently affording 3t. On the other hand, 4-vinylpyridine, a comparatively weaker acceptor, only reacted with more nucleophilic tertiary radicals, forming 3u in 75% yield. Employing an enantiopure dehydroalanine derivative provided product 3v in only moderate yield, but with complete diasterecontrol. While the aforementioned reactions all require protonation to form the corresponding products, we were interested in exploring alternative modes of termination. In this sense, enolate 3w was synthesized via two mechanistically distinct addition-elimination sequences from either the allylic sultone (radical elimination, 45%) or the allylic acetate (polar elimination, 55%). Following our recent report on radical addition-polar cyclization cascades, formation of cyclopropane 3x was also shown to be a viable pathway for this transformation. Additionally, acridine reacted readily with the secondary radical generated from 1a, providing 3y in excellent yield.
As a demonstration of the synthetic utility of this methodology, we sought to highlight its application in the synthesis of valuable structures (Scheme 2C). By using a diboration/photoredox-catalyzed deboronative Giese reaction/oxidation/lactonization sequence, we were able to transform unfunctionalized alkenes into lactones 6a and 6b in good yields over four steps.

Based on previous reports on the oxidation of boronate complexes,2,3 and the observed regioselectivity of our reaction, we propose the mechanism depicted in Scheme 3. Initial oxidation of primary boronate complex 2 by the excited state photoredox catalyst generates a primary radical with concomitant loss of an equivalent of arylboronic ester 7.15 Subsequent equilibration of the radical species through 1,2-boron shift of 8 affords thermodynamically favored secondary radical 9. Addition of 9 to the radical acceptor forms electron deficient radical 10, which accepts an electron from the reduced form of the photoredox catalyst. Finally, anion 11 is protonated to afford product 3.

At this point, we were intrigued as to whether our approach could be extended to the selective functionalization of 1,2,3-trisboronic esters (Scheme 4A). We therefore subjected 12 to our reaction conditions and were pleased to isolate 13, the product of sequential double 1,2-shift of two boronic esters in 79% yield. Notably, this product is formed with impeccable selectivity, highlighting the thermodynamic control that favors the most stabilized radical center as the site of reaction.

Given the ease in which 1,2-bis-boronic esters can be prepared from readily available alkenes, we were keen to explore substrates...
derived from dienes, which could potentially undergo radical cascade reactions. We were attracted by cyclooctadiene derivatives, which could undergo transannular radical reactions (Scheme 4B). Pleasingly, under the standard conditions, diborated cyclooctadiene (14) reacted to give bicyclic product 15 in 51\% yield and with excellent diastereoselectivity, alongside uncyclized product 16 (33\%). This unusual radical cyclization can be viewed as both a 5-exo- and 5-endo-trig cyclization, accounting for its relatively low rate of ring closure ($k = 3.3 \times 10^4 \text{ s}^{-1}$),16 and consequently significant formation of the direct trapping product 16.17

Scheme 4. Additional Studies.

We subsequently turned our attention to the 1,2-boron shift. If this occurs via an intramolecular homolytic substitution, we reasoned that it could proceed with high stereospecificity. Thus, we investigated the stereochemical outcome of the reaction using diastereomically pure 1z, derived from α-pinene (Scheme 5A). The expected product of 1,2-shift and subsequent ring opening (3z) was obtained in 52\% yield and with >20:1 d.r., in which the boronic ester migrated with high stereochromical fidelity. Further support for this was provided by the formation of 3m from diborated 3-carene (Scheme 2A), in which boron migration occurred with complete stereospecificity but subsequent reaction of the resulting tertiary radical proceeded with poor diastereoselectivity.

Unequivocal proof for the 1,2-boron shift was obtained by treatment of allylboronic ester 17 with Langlois’ reagent under Nicewicz’s hydrotrifluoromethylation conditions, which gave 20 in 96\% yield (Scheme 5B).19 This reaction proceeds via addition of a trifluoromethyl radical to 17 to provide secondary β-boryl radical 18. 1,2-Transposition of the boronic ester affords the thermodynamically favored tertiary radical 19, which undergoes hydrogen atom transfer (HAT) with thiophenol to form 20. The high regioselectivity observed implies that 1,2-boron shift from a tertiary (18) to a secondary position (19) is much more rapid than HAT with thiophenol, which has a rate of $k = 1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ for secondary alkyl radicals.19 Further insight into the facile nature of the 1,2-shift was provided by modelling the process using DFT, which revealed a barrier of only 8.1 kcal mol-1 for migration of a secondary boronic ester to a primary radical (Scheme 5C). Finally, boron-isotope labelling studies using mono-labelled 1,2-bis-boronic ester 10B-1b yielded unlabelled product 3b and labelled arylboronic ester 10B-7, confirming that boronate complex formation with aryllithium B occurs exclusively at the primary boronic ester (Scheme 5D).

Scheme 5. Investigations into the 1,2-Boron Shift.

In conclusion, we have described the use of boronate complexes derived from 1,2-bis-boronic esters in photoredox-catalyzed radical transformations. This reaction demonstrates, for the first time, a radical 1,2-boron shift under thermodynamic control, allowing for counter-intuitive selective functionalization of the more hindered position of 1,2-bis-boronic esters. We have demonstrated a broad substrate scope and highlighted the diversity of the method in ring fragmentation and transannular reactions. Furthermore, the stereoretentive nature of the 1,2-boron shift was shown and we have showcased the application of this approach in different settings by extending it to radical cascades with allylboronic esters.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures and characterization data for new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author
We thank H2020 ERC (670668) for financial support. D.K. thanks the Austrian Science Fund (FWF) for an Erwin Schrödinger Fellowship (J 4202-N28). V.F. thanks the EPSRC for a Doctoral Prize Fellowship. We thank Dr. Amadeu Bonet for useful discussions.

ACKNOWLEDGMENT

The authors declare no competing financial interests.

REFERENCES

(11) Tao, Z.; Robb, K. A.; Panger, J. L.; Denmark, S. E. Enantioselective, Lewis Base-Catalyzed Carbosulfenylation of Alkenylboronates by 1,2-Borone Migration. J. Am. Chem. Soc. 2018, 140, 15621. Although an anionic pathway for boryl migration was proposed, it is possible that the reaction occurs through a radical process similar to that described in this paper.

(13) For the only examples of selective functionalization of the secondary position of 1,2-bis-boronic esters, see: (a) Blaisdell, T. P.; Morken, J. P. Hydroxyl-Directed Cross-Coupling: A Scalable Synthesis of Debromohamigeran E and Other Targets of Interest. J. Am. Chem. Soc. 2015, 137, 8712. (b) Yan, L.; Morken, J. P. Site-Selective Mono-Oxidation of 1,2-Bis(boronicates). Org. Lett. 2019, 21, 3760. For an example of selective deboronative functionalisation of internal position of a 1,2,3-triboronic ester, see: (c) Davenport, E.; Fernandez, E. Transition-Metal-Free Synthesis of Vicinal Triborated Compounds and Selective Functionalisation of the Internal C-B Bond. Chem. Commun. 2018, 54, 10104.

(14) See Supporting Information for details.

(15) Aryl boronic ester 7 (Ar = 2,4,6-triisopropylphenyl) was isolated in 82% yield from the reaction of 1d with tert-butyl acrylate.

(17) Performing the reaction under more dilute conditions (0.02 M) led to an enhanced ratio (15:16 = 4.1:1). However, the overall efficiency suffered and 15 was isolated in a similar yield of 53%

