
Peer reviewed version
License (if available): CC BY-NC-ND
Link to published version (if available): 10.1016/j.tet.2019.130717

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://doi.org/10.1016/j.tet.2019.130717. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Structural and Synthetic Studies on Maleic Anhydride and Related Diacid Natural Products.

David M. Heard, a Emyr R. Tayler, a Russell J. Cox, b Thomas J. Simpson a and Christine L. Willis a*

a. School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
b. Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany

Email address: chris.willis@bristol.ac.uk We dedicate this paper to Professor Steve Davies in recognition of his extensive contributions to science and the wider community

Abstract: A concise approach has been developed for the total syntheses of tricladic acids A, B and C previously isolated from Tricladium castaneicola confirming the structures of these fungal natural products. The required (E)-1,3-diene scaffolds were generated with complete stereocontrol via coupling of the appropriate nitronate with an unsaturated bromo-diester which was prepared in 2 steps from citraconic anhydride. The reported structures of the anhydride waquafranone B and the parent diacid were synthesised leading to revision of the originally proposed structure of the natural product and, in accord with Sutherland, confirming that anhydrides with exo-dienes are unstable.

Biomimetic dimerisations of the proposed monomers of the nonadride scytalidin were investigated.

1. Introduction

Maleic anhydride natural products, characterised by a medium-ring carbocycle with at least one fused maleic anhydride moiety, are a large family of polyketide fungal metabolites which possess a range of herbicidal and fungicidal properties. Byssochlamy acid 1 from Byssochlamys fulva, 1–6 and glauconic acid 2 and glaucanic acid 3 both from Penicillium glaucum were amongst the first members of the family to be isolated. 7,8 Since then many more nonadrides have been reported including cornexistin 4 from Paecilomyces variotii which has generated significant interest as a potential wide-spectrum herbicide, due to its broad range of bioactivity and high tolerance by Zea mays. 9,10 Scytalidin 5 isolated from Scytalidium album has been shown to be active against a wide-range of wood rotting pathogens, whilst higher plants are unharmed. 11–13 In addition, the rubratoxins e.g. rubratoxin B 7 have been investigated for their anti-tumour properties. 14 Further examples of nonadrides include castaneolide 6 and heveadride 8. 15,16

Figure 1. Examples of nonadrides
In 1965 Barton and Sutherland\(^{17}\) proposed that the biosynthesis of 1, 2 and 3 proceeds via dimerisation of a C\(_9\)-anhydride monomer with different substitution patterns on the core framework arising from either “head-to-tail” or “head-to-head” couplings and was supported by the results of isotopic labelling studies.\(^{18,19}\) More recent work has focussed on genome sequencing, knock out experiments and heterologous expression combined with isolation of intermediates leading to further insights into the biosynthesis of nonadrides.\(^{20-25}\) Using heterologous expression in *Aspergillus oryzae* we have shown that the precursors for cyclisation are formed by an iterative highly reducing polyketide synthase supported by a hydrolase together with citrate-processing enzymes (Scheme 1). Carboxylic acids such as 9 have been shown to undergo spontaneous decarboxylation, yielding 11, and both isomers 10 and 11 may be formed in this fashion.\(^{26}\) Various dimerisation modes of 9 (or the decarboxylated monomer 11) with either itself or with 10 may then give rise to the carbocyclic ring of the nonadrides, with different substitution patterns obtained.

Scheme 1 Proposed biosynthesis of nonadrides and a biomimetic dimerisation

Recreation of this dimerisation step *in vitro* is an attractive strategy for the total synthesis of nonadrides. Early work by Sutherland showed that treatment of 12 with Et\(_3\)N in DMF could promote cyclisation giving iso-glaucanic acid 13 in 4\% isolated yield,\(^{27}\) and this work was further developed by Baldwin using Et\(_3\)N and MgCl\(_2\) in DMSO which gave 13 along with further products.\(^{28}\) Sulikowski tethered the two methylmaleic anhydride moieties together to enhance the efficiency of ring formation.\(^{29,30}\) In all cases, synthetic studies have focused on the homodimerisation of analogues of 11. No studies have been reported on the proposed dimerisation pathways involving monomer 10 with the exo-diene leading to scaffolds found in heveadride 8 or byssochlamic acid 1. This may be attributed, in part, to an early report from Sutherland which indicated that such compounds are unstable.\(^{27}\)

Pursuing an interest in the biosynthesis of maleidride natural products with fungicidal activities, herein we describe recent studies on the total syntheses of fungal dienoic acids tricladic acids A, B and C as well as the reported structure of waquafranone B isolated from *Wicklowia aquatica* and analogues of the exo-diene monomer 10 required for dimerisation studies.\(^{31,32}\)
2. Results and Discussion

2.1 Total synthesis of tricladic acids A, B and C

In 2015, a series of natural products including maleic anhydride derivatives tricladolides A-D 14-17 were isolated from the aquatic fungus *Tricladium castaneicola.* In addition, after an extensive purification protocol, three minor metabolites, tricladic acids A, B and C 18-20 were isolated and their structures tentatively assigned by spectroscopic methods and correlation with known compounds. The tricladic acids showed inhibitory activity against fungi such as *Phytophthora sp.* However, further investigations of their bioactivities were limited by both the difficulty in culturing aquatic hyphomycetes such as *T. castaneicola,* and the low titres of isolated natural products.

![Figure 2](image)

*Figure 2. Natural products isolated from *T. castaneicola***

We devised a synthetic strategy to each of the target tricladic acids based on the nitronate additions to bromide 22 first reported by Amri for the preparation of similar 1,3-dienes. Bromide 22 was prepared in 2 steps and 69% yield from citraconic anhydride 21 by esterification followed by Wohl-Ziegler bromination (Scheme 2). Reaction conditions were then optimised for the key coupling of bromide 22 and nitrohexane using different bases and solvents. The required diene 23 was isolated in 60% yield as a single isomer using Et3N (4 equivalents) and slow addition of bromide 22 in THF:water (see ESI for full details). The E-geometry of the endo double bond of 23 was confirmed by NOESY studies (correlation between 5-H and 1-H) and an EXSIDE experiment which showed J(CH) 7.5 Hz in accord with a cis relationship between the ester carbonyl and 4-H. Diester 23 was readily hydrolysed to the corresponding diacid 24 in 60% yield.

![Scheme 2](image)

Scheme 2. Synthesis of monomer 24 and tricladic acid C 20
This methodology was applied to the synthesis of each of the tricladic acids. Monobromination of octane 1,8-diol with HBr in toluene followed by displacement of the bromide with sodium nitrite gave the required alcohol 25 for the synthesis of tricladic acid C 20 (Scheme 2). Coupling 25 with bromide 22 followed by hydrolysis of the resultant diester 26 gave diacid 20 with spectroscopic data in accord with that reported for the natural product. 31

Tricladolide C 16 isolated from T. castaneicolor was racemic as determined by the Mosher’s method. By analogy, tricladic acid A 18 ([α]D -0.4, c 0.35, MeOH) was presumed to be close to racemic but not confirmed whilst tricladic acid B 19 was isolated as a 3:1 mixture of 95:9R enantiomers, again determined by the Mosher’s method. We developed approaches for their total syntheses which could be readily adapted for the preparation of either enantiomer of the natural products as shown in Scheme 3. A copper-catalysed addition of pent-4-enylmagnesium bromide to (S)-propylene oxide followed by acetylation of the resultant secondary alcohol gave unsaturated acetate 27. Protection of the alcohol was required for the next stage, to prevent oxidation to the corresponding ketone as reported by Hu and co-workers. 37 The required (R)-nitro-acetate 28 was prepared in 54% yield using t-butyl nitrite and TEMPO followed by reduction with NaBH4. A similar approach was used for the synthesis of (S)-nitro-acetate 30 starting from (S)-1,2-epoxybutane and 3-butenyl magnesium bromide giving 30 in 44% yield over the 4 steps. Reaction of bromide 22 separately with nitro-acetates 28 and 30 under the optimised conditions gave, after hydrolysis of their resultant dimethyl esters, (R)-tricladic acid A 18, [α]D -5, c 0.91 MeOH, and (S)-tricladic acid B 19. The spectroscopic data of both were in accord with those reported for the natural products isolated from T. castaneicolor. The specific rotation for synthetic (S)-tricladic acid B 19, [α]D +4, c 1.70, MeOH, was consistent with the proposal that the natural product was a 3:1 mixture of enantiomers in favour of the S enantiomer, [α]D +2, c 0.34, MeOH.

![Scheme 3. Enantioselective synthesis of tricladic acids A and B 18 and 19](image-url)
2.2 Synthesis and structural revision of waquafranone B

In 2010 analogues of heveadride 8 were isolated from the fungus *Wicklowia aquatica* along with the natural product waquafranone B 34 (Scheme 4). The structure was assigned by spectroscopic methods as an anhydride 34 with an exo-diene. However, whilst the reported HREIMS gave M+168.0786 in accord with the proposed molecular formula C9H12O3, the IR spectrum showed a carbonyl stretch at 1685 cm⁻¹ rather than as expected for an anhydride (cf. carbonyl stretches of the anhydrides tricladolides A-D 14-17, \(\nu_{\text{max}} \text{ ca.} 1820 \) and 1770 cm⁻¹) but more in accord with tricladic acids A, B and C 18-20 (\(\nu_{\text{max}} \text{ C=O, ca.} 1695 \) cm⁻¹). Thus, both diacid 33 and anhydride 34 were synthesised. Coupling 1-nitrobutane with bromide 22 followed by hydrolysis of the resultant diester 32 gave the required diacid 33. This was in accord with Sutherland who had reported that such anhydrides are unstable.

The \(^1\)H-NMR spectrum (CDCl₃) of anhydride 34 displayed alkenic signals at \(\delta \) 7.24, 6.59 and 6.13 whereas for waquafranone B these were reported to resonate at \(\delta \) 6.97, 6.45 and 5.62. The \(^1\)H-NMR spectrum of diacid 33 was found to be pH dependent and in CDCl₃ + 1 equivalent of DABCO gave alkenic signals at \(\delta \) 6.96, 6.43 and 5.56 which correlated well with the natural product. Furthermore, the \(^{13}\)C-NMR, IR and MS data were fully consistent with the reported data and hence we conclude that waquafranone B is diacid 33.

Scheme 4. Synthesis of diacid 33 and unstable anhydride 34

2.3 Synthesis of proposed monomers for scytalidin biosynthesis and biomimetic dimerisations

As anhydride 34 was unstable there was a concern that analogues may not be good substrates for the proposed “head-to-tail” dimerisations to byssochlamic acid 1 or scytalidin 5 scaffolds (Scheme 1) but the corresponding diacids or dimethyl esters may be alternatives. To examine the proposed “head-to-tail dimerisation”, scytalidin monomer 38 was prepared by modification of the approach of Baldwin and co-workers (Scheme 5). Thus, a solvent-free hydroboration of hex-1-yne with catecholborane in the presence of dimethylacetamide gave catecholboronic ester 36 which was used without purification in a Suzuki coupling with the known iodide 35 to give diene 37. Hydrolysis of 37 and ring closure under acidic conditions gave the required maleic anhydride derivative 38. In a control reaction 38 was treated with Et₃N and MgCl₂ in DMSO for 16 hours at room temperature and iso-glaucanic acid analogue 39 was isolated in 10% yield in accord with the results of Baldwin. When the reaction
was repeated using a 1:1 mixture of anhydride 38 and either dimethyl ester 23 or diacid 24, homodimerisation product 39 was isolated in similar yields as in the control experiment and the other component, either 23 or 24, was recovered unchanged. A similar result was achieved even when the concentration of 38 was kept low by slow addition via a syringe pump.

Next anhydride 40 with the exo-diene was prepared by treatment of diacid 24 with AcCl in CH₂Cl₂ at -30 °C and used immediately in the dimerisation reaction with maleic anhydride 38 at -30 °C giving a very complex mixture of products. Neither starting material (38 and 40) nor any clean products could be isolated.

3. Conclusion

In conclusion, a concise approach has been developed for the total syntheses of the tricladic acids A, B and C 16, 17 and 18 isolated from T. castaneicola confirming the structures of the natural products. Coupling the appropriate nitronate with bromide 22 generated the required (E)-1,3-diene scaffolds with complete stereocontrol. This approach was used for the synthesis of the reported structure, anhydride 34, of waquafranone B as well as the parent diacid 33 which led to reassignment of the structure of the natural product. In accord with Sutherland, we found that anhydrides with an exo-1,3-diene were unstable. Biomimetic “head-to-tail” dimerisations of monomer 38 with either diester 23 or diacid 24 lead to homodimerisation of 38 giving isoglaucanic acid analogue 39 and recovered 23 or 24 whereas reaction of 38 and 40 led to a complex mixture of products. Such dimerisations would need significant optimisation if to be of value in the synthesis of nonadrides.
4. Experimental Section

4.1 General Experimental

All reagents were sourced from commercial suppliers and were used without further purification unless stated otherwise. All reactions using anhydrous solvents were performed using standard Schlenk syringe-septa techniques, with flame dried glassware under a positive pressure of nitrogen. Anhydrous THF, Et₂O, hexane, toluene, acetonitrile and CH₂Cl₂ were dried by passing through a modified Grubbs system of alumina columns, manufactured by Anhdyrous Engineering and stored over 3 Å molecular sieves. Dry DMF was obtained from Sigma-Aldrich, dry DMSO and acetone from Acros Organics, each were used without further purification or drying. Diisopropylamine and triethylamine were distilled over CaH₂ prior to use in moisture-sensitive reactions. All stated temperatures below ambient are the temperatures of the cooling baths, unless otherwise stated. Flash column chromatography was performed according to the procedures used by Still et. al.¹⁹ using silica gel 60 (Fisher Scientific or Aldrich) and a suitable eluent. TLC analysis was performed with aluminium backed silica TLC plates (Merck-Kieselgel 60 F₂₅₄) with a suitable solvent system and was visualised using UV fluorescence (254 & 366 nm) and/or developed with potassium permanganate solution. NMR spectra of 18 and 19 were obtained after purification by HPLC (Phenomenex Kinetex C18 column, 250 × 21.2 mm, 5 µm pore size), eluting with 20-60% acetonitrile in water with 0.05% formic acid at 16 mL min⁻¹.

Infra-red spectra were recorded on a Perkin Elmer Spectrum 100 FTIR with an ATR accessory and frequencies are reported in wavenumbers (cm⁻¹).¹H and ¹³C NMR spectra were recorded using Jeol ECS 400 MHz, Varian 400-MR (400 MHz), Varian VNMRS500a (500 MHz), Varian VNMRS500b (500 MHz), Bruker Advance III HD 500 Cryo (500 MHz), Varian VNMRS600 Cryo (600 MHz), and Bruker Avance III HD 700 (1.7mm micro-cryo) (700 MHz) spectrometers at ambient temperature. Chemical shifts (δ) are quoted in parts per million (ppm) and coupling constants (J) are in Hertz (Hz), rounded to 0.5 Hz intervals. Two-dimensional NMR techniques (HSQC, COSY, HMBC) were used routinely for structural assignment. Use of NOESY, TOCSY and EXSIDE techniques is indicated as appropriate. Residual solvent peaks were used as the internal reference for proton and carbon chemical shifts. HRMS ESI were performed on either a Bruker Daltonics Apex 4, 7 Tesla FTICR or microTOF II. Samples were submitted in MeOH or CH₂Cl₂. Specific rotations ([α]D20) were measured on a Bellingham and Stanley Ltd. ADP220 polarimeter and are quoted in (° ml)(g dm)⁻¹.

Dimethyl (E)-2-hexylidene-3-methylenesuccinate 23

1-Nitrohexane (180 mg, 1.37 mmol) and triethylamine (440 mg, 4.3 mmol) were dissolved in a mixture of H₂O (7 ml) and THF (7 ml). The solution was stirred for 2 h at room temperature. Allyl bromide 22 (249 mg, 1.05 mmol) dissolved in THF (7 ml) was added over 2 hours at 0 °C. The resultant orange solution was stirred for 16 h at room temperature then diluted with water (10 ml). The aqueous layer was extracted with diethyl ether (3 × 75 ml). The organic extracts were combined and concentrated in vacuo. The residue was purified by column chromatography using ethyl acetate/petroleum ether (1-4% ethyl acetate) to give 23 as a colourless oil (152 mg, 60%). δH (400 MHz, CDCl₃) 6.99 (1H, t, J 7.0, 4-H), 6.49 (1H, d, J 1.5, 1-HH), 5.58 (1H, d, J 1.5, 1-HH), 3.74 (3H, s, OCH₃), 3.72 (3H, s, OCH₃), 2.16 (2H, app. q, J 7.5, 5-H₂), 1.48-1.38 (2H, m, 6-H₂), 1.33-1.23 (4H, m, 7-H₂ and 8-H₂), 0.87 (3H, m, 9-H₃); δC (100 MHz, CDCl₃) 166.9 (3-C=O), 166.6 (2-C=O), 146.7 (C-4), 135.4, 129.9 (C-2 and C-3), 129.5 (C-1), 52.3 (OCH₃), 52.1 (OCH₃), 31.6 (C-7), 29.6 (C-5), 28.5 (C-6), 22.5 (C-8), 14.1 (9-H₁); vₚₑₚₑ ₠ₚₑₑ; HRMS (ESI) calc for C₁₃H₂₀O₄ [M+H] 241.1434, found 241.1436.
Diester 23 (295 mg, 1.20 mmol) was dissolved in ethanol (12 mL) and sodium hydroxide (18 mL, 2 M) added. The reaction mixture was stirred at room temperature for 16 h, then aqueous sodium sulfate (4%, 25 mL) added and the reaction mixture acidified to pH 1 with hydrochloric acid (6 M). The aqueous mixture was extracted with diethyl ether (4 × 20 mL), and the combined organic layers dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by column chromatography using ethyl acetate/petrol/acetonic acid (25-40% ethyl acetate, 1% acetic acid) to yield diacid 24 as a white solid (158 mg, 60%). δH (400 MHz, MeOD) 6.95 (1H, t, J 7.5, 4-H), 6.44 (1H, s, 1-HH), 5.60 (1H, s, 1-HH), 2.18 (2H, app. q, J 7.5, 5-H2), 1.46 (2H, m, 6-H2), 1.38-1.25 (4H, m, 7-H2 and 8-H2), 0.90 (3H, t, J 6.5, 9-H3); δC (100 MHz, MeOD) 168.2 (C=O), 167.9 (C=O), 145.6 (C-4), 136.4 (C-3), 130.8 (C-2), 128.3 (C-1), 31.2 (C-7), 29.0 (C-5), 28.0 (C-6), 22.0 (C-8), 12.9 (C-9); νmax (film) 2956, 2928, 2859, 2650, 1683, 1620, 1426, 1281; HRMS (ESI) calc for C₁₅H₁₅NO₄ [M+Na]+ 307.1591, found 307.1593.

Dimethyl (E)-2-(8-hydroxyoctylidene)-3-methylenesuccinate 26

Nitroalkanol 25 (251 mg, 1.43 mmol, 1.3 equiv.) and triethylamine (0.54 mL, 0.39 g, 3.8 mmol, 3.5 equiv.) were dissolved in THF (7.5 mL) and water (7.5 mL) and stirred for 2 h. Bromide 22 (263 mg, 1.10 mmol, 1 equiv.) in THF (3 mL) was added at 0 °C, and the reaction mixture stirred for an additional 16 h at room temperature. The orange solution was diluted with water (20 mL) and extracted with diethyl ether (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by column chromatography using ethyl acetate/petrol (25-50% ethyl acetate) to yield diester 26 (167 mg, 54%) as a colourless oil. δH (400 MHz, CDCl₃) 6.91 (1H, t, J 7.5, 4-H), 6.41 (1H, d, J 1.5, 1-HH), 5.51 (1H, d, J 1.5, 1-HH), 3.66 (3H, s, OCH₃), 3.64 (3H, s, OCH₃), 3.51 (2H, t, J 6.5, 11-H3), 2.26 (1H, s, OH), 2.09 (2H, q, J 7.5, 5-H3), 1.46 (2H, m, 6- H2), 1.36 (2H, p, J 7.0, 6-H2), 1.29-1.19 (6H, m, 7-H2, 8-H2, 9-H2); δC (100 MHz, CDCl₃) 166.7 (3-C=O), 164.4 (2-C=O), 146.5 (C-4), 135.1 (C-2), 129.7 (C-3), 129.5 (C-1), 62.6 (C-11), 52.1 (OCH₃), 51.9 (OCH₃), 32.6 (C-10), 29.4 (C-5), 29.2, 29.1, 28.5, 22.6 (C-6, C-7, C-8 and C-9); νmax (film) 3515, 2931, 2857, 1714, 1437, 1255, 908, 730; HRMS (ESI) calc for C₁₅H₂₄NaO₅ [M+Na]+ 307.1516, found 307.1514.

(E)-2-(8-Hydroxyoctylidene)-3-methylenesuccinic acid (Tricladic Acid C) 20

Diester 26 (150 mg, 0.53 mmol) was dissolved in ethanol (15 mL) and sodium hydroxide (15 mL, 2 M) added. The reaction mixture was stirred at room temperature for 16 h, then aqueous sodium sulfate (4%, 40 mL) added and the reaction mixture acidified to pH 1 with hydrochloric acid (6 M). The aqueous mixture was extracted with diethyl ether (4 × 25 mL), and the combined organic layers dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by column chromatography using ethyl acetate/petrol/acetonic acid (75% ethyl acetate, 1% acetic acid) to give diacid 20 (120 mg, 90%) as a colourless oil. δH (400 MHz, MeOD) 6.92 (1H, t, J 7.5, 4-H), 6.42 (1H, d, J 1.5, 1-HH), 5.57 (1H, d, J 1.5, 1-HH), 3.50 (2H, t, J 6.5, 11-H3), 2.16 (2H, q, J 7.5, 5-H3), 1.52-1.39 (4H, m, 6-H2 and 10-H2), 1.38-1.22 (6H, m, 7-H2, 8-H2 and 9-H2); δC (100 MHz, MeOD) 169.6 (3-C=O), 169.3 (2-C=O), 147.1 (C-4), 137.7 (C-2), 132.1 (C-3), 129.8 (C-1), 62.9 (C-11), 33.5 (C-10), 30.4 (C-5), 30.3, 30.2 (C-7 and C-8), 29.6 (C-6), 26.7 (C-9); νmax (film) 2931, 2858, 2489, 2230, 2072, 1686, 1621, 1329, 1177, 1056, 971; HRMS (ESI) calc for C₁₅H₁₁O₅ [M-H]⁻ 255.1238, found 255.1235. NMR data in accordance with literature of the isolated natural product.³¹

(R)-2-Acetoxyoct-7-ene 27

5-Bromo-1-pentene (4.6 mL, 5.80 g, 39 mmol) was dissolved in dry THF (30 mL). A small portion of which was added to a suspension of magnesium turnings (1.80 g, 75 mmol) in THF (45 mL) under a nitrogen atmosphere. The solution was sonicated for 5 minutes to initiate the Grignard reaction. Once
initiated, the remaining 5-bromo-1-pentene was added dropwise over 20 minutes. The reaction mixture was stirred for 1 h. The reaction mixture was cooled to −30 °C before CuI (150 mg, 0.78 mmol) was added. (R)-Propylene oxide (1.05 mL, 0.87 g, 15.0 mmol) was added and the reaction was warmed to −15 °C. The reaction was stirred for a further 2 h and then quenched with saturated aqueous NH₄Cl (10 mL). After warming to room temperature, diethyl ether was added (30 mL) and the layers were separated. The organic layer was washed sequentially with water (30 mL) and brine (30 mL). The combined aqueous layers were washed with diethyl ether (3 × 75 mL). The organic extracts were combined, dried over MgSO₄ and concentrated in vacuo. The crude residue and acetyl chloride (2.10 mL, 2.30 g, 30.0 mmol) were dissolved in diethyl ether (45 mL). Pyridine (2.4 mL, 2.4 g, 30 mmol) was added to the reaction mixture resulting in the formation of a white suspension. The solution was heated to reflux at 35 °C until TLC analysis (10% ethyl acetate, hexane) indicated that the starting material was consumed (1 h). After cooling the reaction mixture to room temperature, aqueous HCl (1 M, 40 mL) was added. The aqueous layer was separated and extracted with diethyl ether (3 × 75 mL). The organic extracts were combined, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (3% ethyl acetate) to give 27 as a colourless oil (2.10 g, 82%); [α]D25 = +3.0 (c. 1.00, CHCl₃); δH (400 MHz, CDCl₃) 5.73 (1H, dt, J 17.0, 10.0, 6.5, 7-H), 4.93 (1H, dq, J 17.0, 2.0, 8-HH), 4.87 (1H, dd, J 10.0, 2.0, 1.5, 8-HH), 4.62 (1H, sext, J 6.0, 2-H), 1.98 (2H, m, 6-H₁), 1.96 (3H, s, 10-H₂), 1.54-1.21 (6H, m, 3-H₂, 4-H₂, 5-H₂), 1.13 (3H, d, J 6.0, 1-H₂); δC (100 MHz, CDCl₃) 170.8 (C-9), 138.7 (C-7), 114.4 (C-8), 71.0 (C-2), 35.7 (C-3), 33.6 (C-6), 28.7 (C-5), 24.8 (C-4), 21.4 (C-10), 20.0 (C-1); v_max (film) 3074, 2977, 2932, 1735, 1640, 1240; HRMS (ESI) calc for C₁₆H₃₈O₂Na [M+Na⁺] 238.1199, found 238.1194.

(R,E)-2-Acetoxy-8-nitrooct-7-ene

Acetylated alcohol 27 (1.20 g, 7.00 mmol), tert-butyl nitrite (1.80 mL, 1.60 g, 15.0 mmol) and TEMPO (268 mg, 1.72 mmol) were dissolved in 1,4-dioxane (18 mL) and heated to reflux in air at 90 °C for 16 h. The orange solution was washed through a Celite® pad, concentrated in vacuo and purified by column chromatography using petroleum ether/diethyl ether (14-25% diethyl ether) to give the title compound as an orange oil (1.16 g, 77%). [α]D25 = +14 (c. 1.00, CHCl₃); δH (400 MHz, CDCl₃) 7.18 (1H, dt, J 13.0, 7.0, 7-H), 6.91 (1H, dt, J 13.0, 1.5, 8-H), 4.78 (1H, sext, J 6.5, 2-H), 2.19 (2H, qd, J 7.0, 1.5, 6-H₁), 1.91 (3H, s, 10-H₂), 1.55-1.25 (6H, m, 3-H₂, 4-H₂, 5-H₂), 1.10 (3H, d, J 6.0, 1-H₂); δC (100 MHz, CDCl₃) 170.4 (C-9), 142.6 (C-7), 139.6 (C-8), 70.4 (C-2), 35.4 (C-3), 28.3 (C-6), 27.5 (C-5), 24.8 (C-4), 21.1 (C-10), 19.7 (C-1); v_max (film) 2977, 2936, 1729, 1648, 1522, 1351, 1242; HRMS (ESI) calc for C₁₃H₂₇NO₄Na [M+Na⁺] 238.1055, found 238.1056.

(R)-2-Acetoxy-8-nitrooctane 28

To a solution of the above nitroalkene (400 mg, 1.86 mmol) in THF:methanol (10:1, 18 mL) at 0 °C under a nitrogen atmosphere, NaBH₄ (140 mg, 3.72 mmol) was added in five portions. The reaction was stirred for 1 h at 0 °C. The resultant orange solution was quenched with saturated aqueous NaHCO₃ (5 mL), diluted with water (50 mL) and extracted with ethyl acetate (4 × 50 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography using hexane/ethyl acetate (12% ethyl acetate) to give nitroalkane 28 as a colourless oil (284 mg, 70%). [α]D25 = +21 (c 0.66, CHCl₃); δH (400 MHz, CDCl₃) 4.88 (1H, sext, J 6.5, 2-H), 4.37 (2H, t, J 7.5, 8-H₂), 2.02 (3H, s, 10-H₂), 2.00 (2H, quin, J 7.5, 7-H₂), 1.60-1.27 (8H, m, 3-H₂, 4-H₂, 5-H₂, 6-H₂), 1.20 (3H, d, J 6.5, 1-H₂); δC (100 MHz, CDCl₃) 170.8 (C-9), 75.6 (C-8), 70.8 (C-2), 35.7 (C-3), 28.6 (C-5), 27.3 (C-7), 26.1 (C-6), 25.0 (C-4), 21.4 (C-10), 20.0 (C-1); v_max (film) 2975, 2860, 2933, 1731, 1552, 1372, 1244; HRMS (ESI) calc for C₁₀H₁₉NO₃Na [M+Na⁺] 240.1212, found 240.1209.
Dimethyl (R,E)-2-(6-acetoxyheptylidene)-3-methylenesuccinate 29

Nitroalkane 28 (200 mg, 0.92 mmol) and triethylamine (0.58 mL, 0.42 g, 4.10 mmol) were dissolved in THF (8 mL) and water (8 mL). The solution was stirred for 2 h at room temperature. Allyl bromide 22 (175 mg, 0.74 mmol) in THF (2 mL) was added over 2 h at 0 °C with a syringe pump and stirred for an additional 16 h at room temperature. The yellow solution was diluted with water (30 mL) and extracted with diethyl ether (4 × 75 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified by column chromatography using petroleum ether/ethyl acetate (9:1) to give triester 29 as a colourless oil (150 mg, 65%). [α]D²⁵ = +16 (c 0.66, CHCl₃); δH (400 MHz, CDCl₃) 6.97 (1H, t, J 7.5, 4-H), 6.49 (1H, d, J 1.5, 1-HH), 5.57 (1H, d, J 1.5, 1-HH), 4.85 (1H, sext, J 6.5, 10-H), 3.74 (3H, s, OCH₃), 3.71 (3H, s, OCH₃), 2.16 (2H, q, J 7.5, 5-H₂), 2.01 (3H, s, 13-H₃), 1.59-1.38 (4H, m, 7-H₂, 9-H₂), 1.34-1.25 (4H, m, 6-H₂, 8-H₂), 1.18 (3H, d, J 6.5, 11-H₃); δC (100 MHz, CDCl₃) 170.7 (C-12), 166.7 (3-C=O), 166.4 (2-C=O), 146.2 (C-4), 135.2 (C-2), 129.9 (C-3), 129.4 (C-1), 70.9 (C-10), 52.2 (2-OCH₃), 52.0 (3-OCH₃), 35.8 (C-9), 29.4 (C-5), 29.1 (C-6), 28.5 (C-7), 25.1 (C-8), 21.4 (C-13), 19.9 (C-11); νmax (film) 2934, 2859, 1721, 1623, 1462, 1381, 1242, 1199; HRMS (ESI) calc for C₁₇H₃₆O₆Na [M+Na]+ 349.1627, found 349.1625.

(R,E)-2-(6-Hydroxyheptylidene)-3-methylenesuccinic acid (Tricladic acid A) 18

Triester 29 (140 mg, 0.45 mmol) was dissolved in ethanol (5 mL) and added to aqueous sodium hydroxide (10 mL, 2 M) at 0 °C over 20 minutes. The solution was stirred at room temperature for 16 h. The reaction mixture was acidified to pH 1 with aqueous HCl (6 M). The solution was extracted with diethyl ether (4 × 50 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified by preparative HPLC, and is in accordance with literature.³¹

(S,E)-3-Acetoxy-8-nitrooct-7-ene

(S)-3-Acetoxyoct-7-ene (1.35 g, 7.93 mmol), tert-butyl nitrite (2.0 mL, 1.2 g, 16.0 mmol) and TEMPO (513 mg, 3.28 mmol) were dissolved in 1,4-dioxane (20 mL) and heated to reflux in air at 90 °C for 16 h. The orange solution was washed through a Celite® pad, concentrated in vacuo, and purified by column chromatography using petroleum ether/diethyl ether (14:25% diethyl ether) to give the title compound as an orange oil (1.18 g, 69%). [α]D²⁵ = −11 (c 1.00, CHCl₃); δH (400 MHz, CDCl₃) 7.17 (1H, dt, J 13.5, 7.5, 7-H), 9.91 (1H, dt, J 13.5, 1.5, 8-H), 2.20 (2H, m, 6-H₂), 1.94 (3H, s, 10-H₃), 1.53-1.39 (6H, m, 2-H₂, 4-H₂, 5-H₂), 0.80 (3H, t, J 7.5, 1-H₃); δC (100 MHz, CDCl₃) 170.6 (C-9), 142.3 (C-7), 139.8 (C-8), 74.5 (C-3), 33.0 (C-4), 28.2 (C-6), 27.0 (C-2), 23.6 (C-5), 20.7 (C-10), 9.3 (C-1); νmax (film) 2939, 2878, 1728, 1649, 1522, 1351, 1241; HRMS (ESI) calc for C₁₅H₂₁NO₃Na [M+Na]+ 238.1055, found 238.1057.

(S,E)-3-Acetoxy-8-nitrooctane 30

To a solution of the above nitroalkene (1.00 g, 4.60 mmol) in THF:methanol (10:1, 45 mL) at 0 °C under a nitrogen atmosphere, NaBH₄ (263 mg, 6.97 mmol) was added in five portions. The reaction was stirred for 1 h at 0 °C. The resultant red solution was quenched with saturated aqueous NaHCO₃ (10 mL),
diluted with water (100 mL) and extracted with ethyl acetate (4 × 75 mL). The combined organic layers were washed with brine (30 mL), dried MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography using hexane/ethyl acetate (10-12% ethyl acetate) to give nitroalkane 30 as a colourless oil (706 mg, 70%). \([\alpha]_D^{22} = -11 (c 1.00, \text{CHCl}_3); \delta_\text{n} (400 \text{ MHz, CDCl}_3) 4.73 (1\text{H, quin, } J 6.0, 3-\text{H}), 4.31 (2\text{H, } t, J 7.0, 8-\text{H}), 1.98 (3\text{H, s, } 10-\text{H}); 1.94 (2\text{H, quin, } J 7.5, 7-\text{H}), 1.55-1.42 (4\text{H, m, } 2-\text{H}, 4-\text{H}), 1.38-1.22 (4\text{H, m, } 5-\text{H}, 6-\text{H}), 0.81 (3\text{H, t, } J 7.5, 1-\text{H}); \delta_{c} (100 \text{ MHz, CDCl}_3) 170.9 (C-9), 75.5 (C-3), 33.3 (C-4), 27.3 (C-7), 27.0 (C-2), 26.1 (C-6), 24.6 (C-5), 21.2 (C-10), 9.6 (C-1); \nu_{\text{max}} (\text{film}) 2938, 2864, 1721, 1623, 1240; HRMS (ESI) calc for C₁₂H₁₅NO₄Na [M+Na⁺] 240.1212, found 240.1208.

Dimethyl (S, \(E\))-2-(5-acetoxyheptylidene)-3-methylenesuccinate 31

Nitroalkane 30 (300 mg, 1.38 mmol, 1.1 equiv.) and triethylamine (0.87 mL, 0.63 mg, 6.20 mmol, 5 equiv.) were dissolved in THF (12 mL) and water (12 mL). Following 2 h of stirring a red solution was observed. Bromide 22 (285 mg, 1.20 mmol) in THF (3 mL) was added over 2 h at 0 °C with a syringe pump and stirred for an additional 14 h at room temperature. The yellow solution was diluted with water (40 mL) and extracted with diethyl ether (4 × 75 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by column chromatography using petroleum ether/ethyl acetate (9-17% ethyl acetate) to give triester 31 as a colourless oil (266 mg, 71%). \([\alpha]_D^{22} = -8 (c 1.00, \text{CHCl}_3); \delta_\text{n} (400 \text{ MHz, CDCl}_3) 6.97 (1\text{H, } t, J 7.5, 4-\text{H}), 6.49 (1\text{H, d, } J 1.5, 1-\text{HH}), 5.56 (1\text{H, d, } J 1.5, 1-\text{HH}), 4.78 (1\text{H, quin, } J 6.0, 9-\text{H}), 3.74 (3\text{H, s, OCH}_3), 3.72 (3\text{H, s, OCH}_3), 1.56-1.40 (6\text{H, m, } 6-\text{H}, 8-\text{H}, 10-\text{H}), 1.36-1.23 (2\text{H, m, } 7-\text{H}), 0.86 (3\text{H, t, } J 7.5, 11-\text{H}); \delta_{c} (100 \text{ MHz, CDCl}_3) 170.9 (C-12), 166.7 (C=O), 166.4 (C=O), 146.0 (C-4), 135.2 (C-2), 130.0 (C-3), 129.5 (C-1), 75.2 (C-9), 52.2, 52.0 (2-OCH₃ and 3-OCH₃), 33.3 (C-8), 29.4 (C-5), 28.5 (C-6), 27.0 (C-10), 25.1 (C-7), 21.2 (C-13), 9.6 (C-11); \nu_{\text{max}} (\text{film}) 2948, 2860, 1721, 1623, 1240; HRMS (ESI) calc for C₁₃H₁₉O₄Na [M+Na⁺] 349.1627, found 349.1632.

(S,\(E\))-2-(6-Hydroxyoctylidene)-3-methylenesuccinic acid ((S)-Triladic acid B) 19

Triester 31 (210 mg, 0.67 mmol) was dissolved in ethanol (7 mL) and added to aqueous sodium hydroxide (14 mL, 2 M) at 0 °C over 0.3 h. The solution was stirred at room temperature for 16 h. The reaction mixture was acidified to pH 1 with aqueous hydrochloric acid (6 M). The solution was extracted with ethyl acetate (4 × 75 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography using petroleum ether/ethyl acetate/acetic acid (70% ethyl acetate, 0.8% acetic acid) to give 19 as a viscous oil (124 mg, 72%). \([\alpha]_D^{22} = +4 (c 1.70, \text{MeOH}); \delta_\text{n} (400 \text{ MHz, CDCl}_3) 6.96 (1\text{H, } t, J 7.5, 4-\text{H}), 6.44 (1\text{H, d, } J 1.5, 1-\text{HH}), 5.61 (1\text{H, d, } J 1.5, 1-\text{HH}), 3.43 (1\text{H, m, } 9-\text{H}), 2.21 (2\text{H, q, } J 7.5, 5-\text{H}), 1.50-1.25 (8\text{H, m, } 6-\text{H}, 7-\text{H}, 8-\text{H}, 10-\text{H}), 1.14 (3\text{H, t, } J 7.5, 11-\text{H}); \delta_{c} (100 \text{ MHz, CDCl}_3) 168.4 (3-C=O), 168.1 (2-C=O), 145.4 (C-4), 136.7 (C-2), 131.0 (C-3), 128.2 (C-1), 72.3 (C-9), 36.2 (C-8), 29.7 (C-10), 29.1 (C-5), 28.4 (C-6), 25.1 (C-7), 9.0 (C-11); \nu_{\text{max}} (\text{film}) 3371, 2933, 2860, 1691, 1622, 1129; HRMS (ESI) calc for C₁₂H₂₀O₄Na [M+Na⁺] 279.1208, found 279.1205. \(^{1}H\) and \(^{13}C\) spectra obtained after further purification by preparative HPLC, and is in accordance with literature for the natural product.\(^{31}\)

Dimethyl (E)-2-butyldiene-3-methylenesuccinate 32

1-Nitrobutane (425 mg, 4.11 mmol, 1.3 equiv.) and triethylamine (2.20 mL, 1.60 g, 15.8 mmol, 5 equiv.) were dissolved in THF (20 mL) and water (20 mL) and stirred for 2 h. The reaction mixture was cooled to 0 °C, bromide 22 (750 mg, 3.21 mmol) in THF (7 mL) was added over 8 h, and then the reaction mixture stirred for an additional 16 h. The orange solution was diluted with water (20 mL) and extracted with diethyl ether (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered,
and concentrated in vacuo. The crude material was purified by column chromatography using ethyl acetate/petrol (1-4% ethyl acetate) to give diester 32 as a colourless oil (314 mg, 47%). δH (400 MHz, CDCl3) 6.97 (1H, t, J 7.5, 4-H), 6.46 (1H, d, J 1.5, 1-HH), 5.55 (1H, d, J 1.5, 1-HH), 3.71 (3H, s, OCH3), 3.69 (3H, s, OCH3), 2.12 (2H, q, J 7.5, 5-H3), 1.44 (2H, q, J 7.5, 6-H2), 0.89 (3H, t, J 7.5, 7-H3); δC (100 MHz, CDCl3) 166.8 (C=O), 166.5 (C=O), 146.4 (C-4), 135.3 (C-3), 130.0 (C-2), 129.5 (C-1), 52.2 (OCH3), 52.0 (OCH3), 31.6 (C-5), 22.0 (C-6), 13.9 (C-7); vmax (film) 3416, 2959, 1935, 1719, 1459, 1145; HRMS (ESI) calc for C31H34NaO4 [M+Na]+ 323.0941, found 323.0945.

(E)-2-Butyldiene-3-methylene succinic acid 33

To a solution of diester 32 (500 mg, 2.4 mmol) in water (40 mL) and THF (40 mL) was added lithium hydroxide (1.13 g, 47 mmol, 20 equiv.). The reaction mixture was heated to 50 °C for 16 h, then cooled to room temperature. Saturated aqueous NaHCO3 solution (15 mL) was added, then the reaction mixture was extracted with diethyl ether (3 × 20 mL). The aqueous layer was acidified to pH 4 with solid citric acid, then extracted with diethyl ether (4 × 20 mL). The combined organic layers were then extracted with water (5 × 20 mL), dried over MgSO4, filtered, and concentrated in vacuo to give diacid 33 as an amorphous white solid (388 mg, 89%). δH (400 MHz, CDCl3) 7.14 (1H, t, J 7.5, 4-H), 6.62 (1H, d, J 1.5, 1-HH), 5.71 (1H, d, J 1.5, 1-HH), 2.20 (2H, q, J 7.5, 5-H3), 1.49 (2H, q, J 7.5, 6-H2), 0.93 (3H, t, J 7.5, 7-H3); δC (125 MHz, CDCl3) 171.9 (C=O), 171.7 (C=O), 149.0 (C-4), 134.8 (C-3), 131.5 (C-3), 129.5 (C-1), 31.8 (C-5), 22.0 (C-6), 14.0 (C-7); vmax (film) 2963, 2660, 2570, 1675, 1624, 1436, 1295, 1145; HRMS (ESI) calc for C31H32O4 [M-H]+ 183.0663, found 188.0659.

NMR on addition of 0.5 eq. of DABCO: δH (500 MHz, CDCl3) 6.96 (1H, t, J 7.5, 4-H), 6.43 (1H, d, J 1.5, 1-HH), 5.56 (1H, d, J 1.5, 1-HH), 2.19 (2H, q, J 7.5, 5-H3), 1.46 (2H, q, J 7.5, 6-H2), 0.92 (3H, t, J 7.5, 7-H3); δC (125 MHz, CDCl3) 171.6 (C=O), 171.2 (C=O), 146.7 (C-4), 137.1 (C-3), 131.5 (C-2), 129.2 (C-1), 33.1 (C-5), 22.2 (C-6), 14.0 (C-7).

(E)-3-Butyldiene-4-methylene dihydrofuran-2,5-dione 34

Diacid 33 (75 mg, 0.41 mmol) in dry DCM (2 mL) was cooled to −20 °C, then acetyl chloride (0.1 mL, 6 equiv.) added dropwise. The temperature was maintained at −20 °C for 96 h, after which the solvent was removed under first a stream of N2 then in vacuo, maintaining an internal temperature of −30 °C. Pre-cooled CDCl3 (2 mL) was added, with an aliquot (0.8 mL) then removed after 0.25 h for NMR analysis. δH (500 MHz, CDCl3) 7.24 (1H, t, J 7.5, 4-H), 6.59 (1H, s, 1-HH), 6.13 (1H, s, 1-HH), 2.52 (2H, q, J 7.5, 5-H3), 1.68 (2H, q, J 7.5, 6-H2), 1.04 (3H, t, J 7.5, 7-H3); δC (125 MHz, CDCl3) 163.9 (C=O), 163.8 (C=O), 149.3 (C-4), 130.4 (C-3), 125.3 (C-1), 122.3 (C-2), 32.0 (C-5), 21.6 (C-6), 14.0 (C-7). Compound rapidly decomposes to multiple products. IR and MS could not be collected.

(E)-2-(Hex-1-en-1-yl)benz[d][1,3,2]dioxaborole 36

1-Hexyne (3.5 mL, 2.50 g, 30.5 mmol) was dissolved in THF (5 mL) and N,N-Dimethylacetamide (0.2 mL) added. Catecholborane (3.9 mL, 3.67 g, 30.5 mmol, 1 equiv.) was added dropwise, and then the reaction heated to reflux for 3 h. The reaction mixture was cooled to room temperature, concentrated in vacuo, then purified by column chromatography using ethyl acetate/petrol (10-50% ethyl acetate) to give catecholboronic ester 36 as a yellow oil (4.22 g, 69%). δH (400 MHz, CDCl3) 7.24-7.20 (2H, m, Ar-H), 7.10-7.05 (2H, m, Ar-H), 6.86 (1H, m, 2-H), 5.80 (1H, dd, J 18.0, 1.5, 1-HH), 2.30 (2H, tdd, J 8.0, 6.0, 1.5, 3-H3), 1.54-1.45 (2H, m, 4-H2), 1.44-1.35 (2H, m, 5-H2), 0.94 (3H, t, J 7.5, 6-H3); δC (100 MHz, CDCl3) 158.2 (C-2), 148.4 (Ar), 122.6 (Ar), 121.4 (C-1), 115.6 (C-1), 112.4 (Ar), 35.9 (C-3), 30.4 (C-4), 22.4 (C-5), 14.1 (C-6). NMR data in accordance with literature.40
Diethyl 2-((E)-hex-1-en-1-yl)-3-methylmaleate 37

Potassium carbonate (1.60 g, 11.5 mmol, 1.8 equiv.), triphenylphosphine (110 mg, 0.42 mmol, 0.08 equiv.) and palladium(II) acetate (47 mg, 0.20 mmol, 0.03 equiv.) were dissolved in absolute ethanol (40 mL). Solutions of unpurified vinyl iodide 35 (2.84 g) and boronic ester 36 (1.566 g) each in ethanol (10 mL) were added sequentially, and the resulting dark brown suspension was heated to reflux at 80 °C for 16 h. The dark mixture was then cooled to room temperature, poured into water (30 mL) and extracted with diethyl ether (3 × 50 mL). The combined organic layers were washed with water (2 × 25 mL) and brine (30 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by column chromatography using diethyl ether/petrol (5-20% diethyl ether) to give diester 37 (1.012 g, 40% over two steps). δH (400 MHz, CDCl₃) 6.31 (1H, dt, J 16.0, 1.5 Hz, 4-H), 5.94 (1H, dt, J 16.0, 7.0 Hz, 5-H), 4.29 (2H, q, J 7.0 Hz, OCH₂), 4.17 (2H, q, J 7.0 Hz, OCH₂), 2.18 (2H, q, J 7.0, 6-H₂), 1.97 (3H, s, 1-H₃); δc (100 MHz, CDCl₃) 169.1 (C=O), 167.2 (C=O), 141.5 (C-2), 141.1 (C-4), 124.2 (C-3), 124.0 (C-5), 61.2 (OCH₂), 61.1 (OCH₂), 33.4 (C-6), 30.9 (C-7), 22.3 (C-8), 14.2 (OCH₂CH₃), 14.2 (OCH₂CH₃), 13.9 (C-9), 13.6 (C-1); νmax (film) 2981, 2932, 1721, 1368, 1259, 1181, 1108, 1033; HRMS (ESI) calc for C₂₉H₄₂NaO₃ [M+Na]⁺ 291.1567, found 291.1571.

(±)-3-Methyl-4-(hex-1-en-1-yl)furan-2,5-dione 38

Diester 37 (750 mg, 2.8 mmol) was dissolved in ethanol (35 mL) and sodium hydroxide (2 M, 45 mL) added. The resulting solution was stirred at room temperature for 16 h, then sodium sulfate (4%, 50 mL) added and the reaction mixture acidified to pH 1 with hydrochloric acid (6 M). The aqueous mixture was extracted with diethyl ether (4 × 50 mL), and the combined organic layers washed with water (50 mL), then dried over MgSO₄, filtered, and then concentrated in vacuo to give maleic anhydride 38 (1.49 g, 91%). δH (400 MHz, CDCl₃) 7.12 (1H, dt, J 16.0, 7.0, 5-H), 6.23 (1H, dt, J 16.0, 1.5, 4-H), 2.28 (2H, qd, J 7.0, 1.5, 6-H₂), 2.11 (3H, s, 1-H₃), 1.53-1.43 (2H, m, 7-H₂), 1.41-1.31 (2H, m, 8-H₂), 0.92 (3H, t, J 7.5, 9-H₃); δc (100 MHz, CDCl₃) 166.5 (C=O), 164.7 (C=O), 148.2 (C-5), 137.4 (C-3), 135.0 (C-2), 117.3 (C-4), 34.3 (C-6), 30.7 (C-7), 22.4 (C-8), 14.0 (C-9), 9.4 (C-1); HRMS (ESI) calc for C₁₃H₁₄NaO₃ [M+Na]⁺ 217.0835, found 217.0840.

(±)-(5S,6S,10aR,E)-5,6-dibutyl-10a-methyl-5,6,10a,11-tetrahydro-1H-cyclonona[1,2-c:4,5-c’]difuran-1,3,8,10(4H)-tetraone 39

To MgCl₂ (13 mg, 0.14 mmol, 0.5 equiv.) in dry DMSO (3.6 mL) was added anhydride 38 (50 mg, 0.26 mmol) and triethylamine (23 µL, 17 mg, 0.17 mmol, 0.65 equiv.). The purple solution was stirred at room temperature for 16 h, then quenched by the addition of hydrochloric acid (5 mL, 3 M). The orange solution was extracted with diethyl ether (3 × 20 mL), then the combined organic layers were washed with water (20 mL) and brine (20 mL). After drying over MgSO₄, filtration, and concentration in vacuo, the crude material was purified by column chromatography using diethyl ether/petrol/formic acid (10-30% ethyl acetate, 2% formic acid) to give 39 as a yellow oil (5 mg, 10%). δH (500 MHz, CDCl₃) 6.93 (1H, d, J 11.5, 6-H), 3.26 (1H, d, J 13.5, 9-HH), 2.77 (1H, dd, J 13.5, 3.5, 12-HH), 2.63 (1H, d, J 13.5, 9-HH), 2.35 (1H, dd, J 13.5, 5.0, 12-HH), 1.99-1.86 (2H, m, 5-H and 13-H), 1.75-1.60 (2H, m, 4-HH and 14-HH), 1.53 (3H, s, 18-H₃), 1.38-1.12 (10H, m, 4-HH, 14-HH, 2-H₂, 3-H₂, 15-H₂, 16-H₂), 0.97 (3H, t, J 7.5, 1-H₃), 0.86 (3H, t, J 7.5, 17-H₂); δc (125 MHz, CDCl₃) 173.8 (C=O), 165.6 (C=O), 165.3 (C=O), 164.2 (C=O), 152.3 (C-6), 147.3 (C-10), 141.4 (C-11), 129.9 (C-7), 48.8 (C-8), 43.1 (C-5), 32.9 (C-9), 31.7 (C-4), 30.3 (C-15), 30.2 (C-3), 29.6 (C-14), 23.2 (C-16), 22.9 (C-2), 20.3 (C-18), 14.2 (C-17), 14.0 (C-1).
Diacid 24 (55 mg, 0.25 mmol) in dry DCM (2 mL) was cooled to −30 °C, then acetyl chloride (0.1 mL, 6 equiv.) added dropwise. The temperature was maintained at −30 °C for 96 h, after which the solvent was removed under first a stream of N₂ then in vacuo, maintaining an internal temperature of −30 °C. Pre-cooled carbon tetrachloride (2 mL) was added, with an aliquot (0.8 mL) then removed after 0.25 h for NMR analysis. The remaining solution was concentrated in vacuo at −30 °C and used immediately without further purification. δₙ (500 MHz, CCl₄) 7.10 (1H, br. s, 4-H), 6.50 (1H, br. s, 1-HH), 6.04 (1H, br. s, 1-HH, 2.70-1.90 (2H, m, 5-H₂), 1.75-1.08 (6H, m, 6-H₂, 7-H₂, 8-H₂), 1.00-0.76 (3H, m, 9-H₃); δₙ (125 MHz, CCl₄) 162.3 (C=O), 162.2 (C=O), 147.1 (C-4), 130.7 (C-3), 123.4 (C-1), 122.4 (C-2), 31.4 (C-6, C-7 or C-8), 29.6 (C-5), 27.7 (C-6, C-7 or C-8), 22.3 (C-6, C-7 or C-8), 13.8 (C-9); δₙ (400 MHz, CDCl₃) 7.21 (1H, t, J 7.0, 4-H), 6.56 (1H, s, 1-HH), 6.12 (1H, s, 1-HH), 2.52 (2H, q, J 7.0, 5-H₂), 1.66-1.57 (2H, m, CH₂), 1.40-1.20 (4H, m, 2 × CH₂), 0.93-0.85 (3H, m, 9-H₃). Compound rapidly decomposes to multiple products, including 38. IR and MS could not be collected.

Acknowledgements We are grateful to the EPSRC (EP/L015366/1), Bristol Chemical Synthesis Centre for Doctoral Training, which provided a PhD studentship for DMH.

References

