
Peer reviewed version

Link to published version (if available): 10.1136/bmj.l6816

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ Publishing Group at https://doi.org/10.1136/bmj.l6816. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
A comprehensive diagnostic coding system for infections managed in primary care: the single most cost-effective step to improve antimicrobial stewardship?

Alastair D Hay MCRP MD FRCGP

Author affiliation and address for correspondence

Centre for Academic Primary Care, Bristol Medical School: Population Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK

alastair.hay@bristol.ac.uk

Word count: ~725 (recommended 750)
Antibiotics are one of the most commonly prescribed medicines in primary care internationally, but as many as 23% in the UK, 1 and 25% in the US, are prescribed inappropriately. Governments concerned about the threat of antibiotic resistance have repeatedly called for improved stewardship to preserve antibiotic effectiveness for future generations.2 3 4

Reducing inappropriate prescribing means individual clinicians changing their behaviour. Providing individualised peer-referenced prescribing data is a proven method for supporting behaviour change,5 because it provides a strong counter to clinicians who justify their prescribing by arguing they see a different group of patients – for example older patients with more comorbidities, or more patients with acute problems. In the author’s opinion, an individualised peer referencing clinician feedback system would work optimally if it met three criteria. The first is that a diagnostic code is used every time an antibiotic is prescribed.

It may surprise some readers that a significant proportion of antibiotics prescribed in primary care are issued without a diagnostic indication recorded in the medical record. Strong evidence for this is provided in a paper published in this week’s *BMJ.* Ray et al show that of the antibiotics prescribed to 130 million Americans in 2015 (collected from nearly 1 billion ambulatory care visits), there was no coded indication in 18%. A recent UK study found an even higher percentage (36%) of antibiotics were prescribed without a coded diagnosis between 2013 and 2015.1

This may reflect diagnostic uncertainty. Most patients do not present with neatly differentiated infection symptoms that can be converted into a definitive diagnosis, so using a definitive diagnostic code would not reflect reality, even when an antibiotic is considered necessary. Worse, it could result in harm because subsequent consultations (especially with a different clinician) might put too much reliance on the original diagnosis and discourage reassessment. Therefore, improving the completeness of diagnostic coding could be achieved by increasing the use of ‘provisional’ diagnostic codes (e.g. ‘suspected UTI’). Second, Ray et al show longer vs. shorter consultations were more likely to result in an antibiotic without indication, perhaps reflecting more complex patients, ‘coding fatigue’ or insufficient consultation time.
The second criterion is that all infections should be coded, not just those resulting in an antibiotic prescription. To explain this criterion, we invite readers to consider how an individual clinician might determine if their prescribing is appropriate using existing data. They could conduct an audit to compare prescribing against quality indicators, such as those published by Adriaenssens et al in 2011. Developed by a panel of European experts, these provide acceptable prescribing ranges by infection. For example, they suggest no more than 30% of adults less than 75 years with acute bronchitis should receive an oral antibiotic. Recommended percentages are also given for acute upper respiratory tract infection (≤20%); acute tonsillitis (≤20%); acute/chronic sinusitis (≤20%); acute otitis media (≤20%); acute urinary tract infection in adult women (≥80%); and pneumonia in adults aged up to 65 (≥90%).

Having ensured that a diagnostic code is used every time an antibiotic is prescribed, and that all infections are coded, the third criterion would be to use a global measure of illness severity (such as mild, moderate or severe) with each diagnostic code, so that clinicians could evaluate if they are seeing patients with more severe illness.

Using the above criteria, an individualised feedback system could provide clinicians with data regarding their use of diagnostic codes and antibiotics in relation to peers. It would also allow clinicians to monitor their use of more severe infection codes, such as tonsillitis and pneumonia which might otherwise be used to justify prescribing decisions, as well as the proportion of patients with each condition for whom they prescribe. Those with responsibility for antimicrobial stewardship might wish to work with electronic health record providers and clinicians to encourage such diagnostic coding.

Of course, what is proposed here is only one of a raft of antimicrobial stewardship strategies needed to improve prescribing, none of which will work in isolation. Others include improving infection control, vaccination, and improved diagnostic precision, but the incentive for improving diagnostic coding to provide information that can be used by clinicians to help them reflect and refine prescribing behaviour.
Acknowledgements
The author wishes to thank Professor Matthew Thompson, Department of Family Medicine, University of Washington, for extremely helpful contributions to earlier versions of this manuscript.
Professor Hay is a NIHR Senior Investigator. The views and opinions expressed are those of the author and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Competing interest and copyright statements
The BMJ has judged that there are no disqualifying financial ties to commercial companies. The author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to: (i) publish, reproduce, distribute, display and store the Contribution; (ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution; (iii) create any other derivative work(s) based on the Contribution; (iv) to exploit all subsidiary rights in the Contribution; (v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and (vi) licence any third party to do any or all of the above.
References

5. NICE. *Antimicrobial stewardship: systems and processes for effective antimicrobial medicine use*. 2015.
