
Peer reviewed version
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.soildyn.2019.03.006

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://doi.org/10.1016/j.soildyn.2019.03.006. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Authors’ Reply to Discussion on: A parametric study on the effect of rotational ground motions on building structural responses by F Vicencio and N,A,Alexander (Soil Dyn. Earthq. Eng 2019;118:191-206)

Felipe Vicencio a, Nicholas A. Alexander b,1.

a Researcher, Department of Civil Engineering, University of Bristol, Queen’s Building, Bristol, UK
b Reader in Structural Dynamics, Department of Civil Engineering, University of Bristol, Queen’s Building, Bristol, UK

The authors would like to thank the discussers for their interest in the above paper [1]. The discussers’ main critique was focused on the 5Hz high-cut filter we imposed on the estimated rotational (pitch/roll) acceleration timeseries we obtained from vertical recorded accelerations at the SMART-1 array [3]. It is worth stating, that no reasonable scientist would purposefully remove certain frequency components from a timeseries without credible arguments that suggest that these components were more likely noise than signal. In addition to this, a reasonable scientist would also have to have strong arguments to suggest that these neglected/removed components are not significant to the utility of the timeseries in further analyses. This is, in fact, the case in our paper [1].

For the sake of clarity, we recapitulate the following arguments. (i) The vertical ground acceleration wavefield is spatially sampled at discrete stations (in the inner SMART-1 ring) at approximately 100m apart. (ii) This spatial sampling (that cannot be changed a posteriori) imposes a Nyquist frequency of approximately $f_{nyq} = V/L$ (where V is the apparent site traveling wave speed and L is the distance between stations). In the case of the SMART-1 inner array f_{nyq} \approx 5Hz for the estimated rotational (pitch/roll) accelerations. (iii) We describe mathematically, in Appendix B in [1], the increasing mean interpolation/differentiation error with frequency for the rotational (pitch/roll) accelerations. (iv) As an example, Figure 4 in [1] displays the original (unfiltered) and filtered estimates for the rotational (pitch/roll) ground accelerations at a particular spatial location in the inner array. Note that the power above 5Hz is significant. However, the argumentation in Appendix B makes it clear that these components (in this case of spatial interpolation/differentiation) are noise rather than signal. Therefore, we chose to remove this spurious noise. (v) However, this question remains: are there any rotational component above 5Hz at the SMART-1 array? The answer is likely yes given the data from ARGONET Kefalonia [4]. However, it is unfortunately impossible to recover these higher frequency components when using interpolation/differentiation of the vertical ground accelerations based on spatial sampling at 100m due to the Nyquist-Shannon sampling theorem. (vi) Finally, the fundamental SSI frequencies of the low/medium rise buildings explored in our paper [1] were generally well below 5Hz. We hypothesized that the rotational components above 5Hz produced little to no effect on the response of our structural systems. Analyses with unfiltered and filtered estimates of the rotational ground motions produced no significant differences in the structural responses. This result represents a statistically significant validation of our hypothesis. This hypothesis is further strengthened by the following

1 Corresponding Author, email: nick.alexander@bristol.ac.uk
theoretical considerations. The natural frequencies of a uniform shear building (on a rigid-base, no soil structure interaction) is displayed in figure 1. It has been calibrated so that it’s first modal frequency matches the EC8 [5] empirical result.

Figure 1 plots the modal frequencies for (steel framed) shear buildings who’s first modal frequency matches equation (3). For shear buildings up to 30 storeys the modal frequencies range is approximately from 0.4Hz to 15Hz. While there are many modes above 5Hz, almost all of these modes have an effective modal mass of much less than 5%. EC8 proposes that those modes with an effective modal mass less than 5% of the total building mass can be neglected. Thus, for this uniform, regular, building system, all modes other than modes 1 and 2 can be neglected. This reduces the important frequency range to approximately from 0.4Hz to 8Hz. Note that the 2nd mode (for a 2-storey case) at 8Hz has only a 5.3% contribution so is only marginally significant. Additionally, note that the flexible base frequency is, in our study [1], 90% of the rigid base frequency (which is in keeping with Stewart et al, [6]) and this further reduces the frequency range of interest. We could also argue that the introduction of building inelasticity would further reduce these predominant resonant frequencies.

As a final piece of evidence, we have reproduced Figure 12 from [1] below (Figure 2) that uses a translational and rotational record pair (East-West component) from ARGONET Kefalonia [4] database (Event 20141108_231542 according to the National Observatory of Athens occurred on 08 November 2014 with a local magnitude of 5.0) and our system of equations (13) in [1]. While Figure 2 shows some small differences, one would conclude that the effect of the frequency content of the rotational accelerations (above 5Hz) on the response of medium/low-rise buildings is not at all significant.

In conclusion, rotational ground accelerations can be extracted from closely spaced stations (ideally spaced at \(L \ll \frac{V}{10} \) apart where \(V \) is the site apparent traveling wave speed). This can be done for historical events and we demonstrate that this is a perfectly reasonable approach for buildings in general. Having said this, the direct recorded rotational components, as in ARGONET Kefalonia [4] database, that make use of 6-axis strong motion instruments are still to be favoured, with one caveat. This caveat is that of data paucity. We do not have many historical 6-axis records, in many different locations and
with many different magnitudes. Therefore, while 6-axis instrument should be used more in future, there is likely to be much efficacy in fully utilising the historical strong motion translation databases for recovering estimates of rotational ground accelerations.

![Original record vs Filtered record](image)

Figure 2. Change in building response acceleration due to including rotational ground acceleration (a) using original ARGONET Kefalonia records (b) using ARGONET Kefalonia rotational record filtered high-cut filtered at 5Hz.

References

