
Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.jsv.2020.115405

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/abs/pii/S0022460X20302376. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Balancing optimization of a multiple speeds flexible rotor

Jianfei Yao\textsuperscript{a,b,c}, Fengyu Yang\textsuperscript{b,c}, Yongfei Su\textsuperscript{b,c}, Fabrizio Scarpa\textsuperscript{d,e}, Jinji Gao\textsuperscript{b,c}

\textsuperscript{a} Beijing Key Laboratory of Health Monitoring and Self-recovering for High-end Mechanical Equipment, Beijing University of Chemical Technology, Beijing, 100029, China
\textsuperscript{b} Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
\textsuperscript{c} College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
\textsuperscript{d} Bristol Composites Institute (ACCIS), University of Bristol, Bristol BS8 1TR, UK
\textsuperscript{e} Dynamics and Control Research Group (DCRG), University of Bristol, Bristol BS8 1TR, UK

(Corresponding author: Jianfei Yao, Email: yaojf@mail.buct.edu.cn)

Abstract

The paper describes a method to perform the dynamic balancing of multiple speeds flexible rotors. The method is integrated with a dual-objective optimization method (DOM) to overcome the shortcomings that classical least squares influence coefficient method (LSM) may induce by generating excessive residual vibrations at specific rotor speeds when a flexible rotor is dynamically balanced. The technique here described involves two consecutive optimization steps. During the first step an optimal correction weight of the parameters population is identified by using a genetic algorithm (GA) applied to an objective function made from the sum of the squares of the residual vibrations. This first optimization step is performed multiple times to obtain a set of optimized correction weights. A second optimization process is then performed by minimizing the maximum value of the residual vibration of the rotor. Each correction weight belonging to the first optimization set is embedded into an equation that represents the residual vibration to obtain the final optimal correction weight. The validity of the proposed method is verified by simulations and experiments related to a double-disc rotor-bearing system. The results show the DOM provides a more effective balancing strategy than the one obtained from using GA and classical LSM.

Keywords: Flexible rotor; Rotor balancing; Dual-objective optimization; Genetic algorithm; Least squares method.

1 Introduction

Rotor balancing is a key technology to ensure smooth, safe and reliable operations for rotating machinery. Rotor unbalance occurs when the center line of the rotor mass does not coincide with the axis of rotation. The rotor unbalance may result from imperfections occurring during the manufacturing process or as a result of various operating factors (loss of integrity of the machine, thermal effects and buildup of unbalance on the shaft and on the surfaces of the rotor). Rotor unbalance may lead to malfunction, such as rotor rub-impact [1] and bearing wear [2], and even to catastrophic failure. Rotor dynamic balancing is therefore necessary to guarantee a robust and reliable operation for rotating machines.

The current methods used to determine the balancing of flexible rotors mainly consist in modal balancing [3] and the influence coefficient method (ICM) [4]. Holo-balancing [5-7], active balancing [8] and the balancing method without trial weights [9-13] have all been recently proposed to complement the traditional dynamic balancing methods used in industry. The modal balancing method can be effectively used to account for any unbalance of the rotor when the full modal set of the system is known. By balancing the various modes of the rotor, the unbalanced components are eliminated and the entire rotor system is balanced. Han [14] has proposed a new generalized mode balancing for non-isotropic rotor systems, based on the derived unbalance modal responses from the complete modal analysis of a non-isotropic rotor systems. Deepthikumar et al. [15] have experimentally validated the performance of distributed unbalance by using modal balancing in flexible rotors having both unbalance and bow. Khulief et al. [16]
have proposed a modally tuned influence coefficients method for the low-speed balancing of flexible rotors. The method combines the advantages of the influence coefficient method and modal balancing to achieve the low-speed dynamic balancing of a high-speed rotor. The modal shape of the rotor must be however estimated empirically to use this method efficiently. Tresser et al. [17] have proposed a novel balancing technique for super-critical rotating structures using parameter excitation and modal identification at low-speed. Li et al. [18] have combined the modal balancing method with finite elements to propose a modal balancing technique without trial weights. In this case the dynamic characteristics of the rotor are obtained by using a finite element model, while the correction weights are calculated using the transient and the steady-state responses of the rotor at the balancing speed.

The ICM approach is simple, easy to operate and widely used for on-site dynamic balancing. The ICM works by designing the balancing of the rotor based on linear relationships between the corrected weights and the measured rotational vibrations. Wang [19] has suggested a strategy to balance a flexible rotor by sequential quadratic programming (SQP) using the ICM and the holospectrum techniques. Messager et al. [20] have proposed a discrete optimization method to balance a rotor in two planes by considering real constraints related to the available standard masses and predefined angular positions. This approach minimizes the residual unbalancing effects, but it can be only applied to rigid rotors with rigid supports. Saldarriaga et al. [21] have presented a flexible rotors dynamic balancing method based on an inverse problem approach. The method uses the unbalance masses and their corresponding angular positions as the design variables in a pseudo-random optimization, and obtains the correction weights based on the parameters of the rotor system model. In practice, this method does not present the drawbacks provided by the traditional dynamic balancing method, however it needs an accurate set of parameters to define the rotor model. Kang et al. [22] have introduced a technique that consists in minimizing the number of conditions in the Hermitian matrix of the influence coefficients by selecting the sensor locations and the balancing planes. This approach allows to improve the accuracy and the efficiency of the rotor balancing. Although this method can help optimize the balancing process, reducing residual vibrations and correcting weights by minimizing the number of conditions requires further study. Untaroiu et al. [23] have identified some suitable constraints on the level of the residual vibrations and the magnitude of the correction weights, and have converted those into a linear matrix inequality form, which has been solved by numerical convex optimization to obtain the correction weights. Li et al [24] have proposed a robust optimal balancing method for high-speed rotating machinery that formulates the high-speed flexible rotor balancing problem as a convex optimization problem. This method considers the use of influence coefficients, the vibration of the unbalance rotor and the correction weights as random parameters. Carvalho et al [25] have proposed a robust balancing approach based on fuzzy logic to reduce the sensitivity of the system to operational fluctuations. The method however can show robustness only when handling changes in the operating conditions of the rotor, fluctuations occurring during the vibration responses require to develop specific fuzzy sets for the rotor. In Refs. [26], the identification and balancing of the flexible rotor unbalance parameters were carried out by an optimization algorithm.

The dynamic balancing of a flexible rotor involves the knowledge of multiple measuring points, multispeeds and multiple correction planes. For example, the use of the ICM in a flexible rotor at a specific speed leads to a rotor unbalance that creates centrifugal inertia and therefore modify the deformation of the rotor, and lead to further changes of the rotor mass distribution when the speed is altered. Goodman [4] has pioneered the use of the least squares method to identify influence coefficients for solving the problem. There are however limitations when using LSM in flexible rotors, because the residual vibrations of some measuring points are often quite large at a specific speed. To counteract this problem, the authors believe that, when performing multispeeds balancing of flexible rotor, we should not only pay attention to the sum of the squares of the residual
vibrations, but also to the maximum value of the residual vibration. This paper therefore proposes a dynamic balancing method for flexible rotors that combines a dual-objective optimization procedure applied to multiple speeds of the rotor. The optimization is performed using an objective function calculated from the sum of the squares of the residual vibrations of the rotor. A genetic algorithm is here used to perform global searches of the objective function to obtain a set of optimized correction weights. A second optimization run is then performed by minimizing the maximum value of the residual vibration of the rotor. Each correction weight from a solution of the first optimization is brought into the equation that represents the residual vibration, to finally obtain an optimal correction weight. Simulations and experiments are carried out to verify the validity of the proposed method in a double-disc rotor-bearing system. The results show that the balancing and optimization procedure described in this work leads to an improved balance effect than the one offered by GA and the classical LSM.

2 Methodology

2.1 Least squares influence coefficient method

When the ICM is used for the dynamic balancing of a flexible rotor, it is necessary to select multiple speeds at the same time to balance the flexible rotor within a specific range of speeds. Within the ICM, one needs to consider K correction planes, M measurement points, and N rotation speeds. The equilibrium condition can be expressed as:

\[ AU + O = R \] (1)

Where \( A \) is the matrix of the influence coefficients:

\[
A = \begin{bmatrix}
    a_{11} & a_{12} & a_{13} & \cdots & a_{1K} \\
    a_{21} & a_{22} & a_{23} & \cdots & a_{2K} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_{M1} & a_{M2} & a_{M3} & \cdots & a_{MK}
\end{bmatrix}
\] (2-a)

\( U \) is vector of the correction weights,

\[ U = (u_1, u_2, \cdots, u_i, \cdots, u_K)^T, (i = 1, 2, 3, \cdots, K) \] (2-b)

\( O \) is the original vibration (OV),

\[ O = (o_1, o_2, \cdots, o_i, \cdots, o_{N \times M})^T, (i = 1, 2, 3, \cdots, N \times M) \] (2-c)

\( R \) is the error vector and is also called residual vibration,

\[ R = (r_1, r_2, \cdots, r_i, \cdots, r_{N \times M})^T, (i = 1, 2, 3, \cdots, N \times M) \] (2-d)

The equation (1) can be expressed as

\[
\begin{bmatrix}
    a_{11} & a_{12} & a_{13} & \cdots & a_{1K} \\
    a_{21} & a_{22} & a_{23} & \cdots & a_{2K} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_{M1} & a_{M2} & a_{M3} & \cdots & a_{MK}
\end{bmatrix}
\begin{bmatrix}
    u_1 \\
    u_2 \\
    \vdots \\
    u_K
\end{bmatrix}
+ \begin{bmatrix}
    o_1 \\
    o_2 \\
    \vdots \\
    o_K
\end{bmatrix}
= \begin{bmatrix}
    r_1 \\
    r_2 \\
    \vdots \\
    r_K
\end{bmatrix}
\] (3)

Equation (3) contains \( N \times M \) equations. When \( N \times M = K \), the number of equations is equal to the number of the correction planes:

\[ R = 0 \] (4)

The equilibrium equation (3) has a unique solution:

\[ U = -A^+O \] (5)

When \( N \times M < K \), the number of equations is lower than the number of the correction planes. This situation rarely
occurs during balancing. In practice, the number of the correction planes is limited, and often \(N \times M > K\) i.e., the number of equations is greater than the number of the correction planes:

\[ R \neq 0 \]  \hspace{1cm} (6)

At this time, equation (3) is overdetermined and cannot be solved directly. Goodman adopts the least squares method to minimize the sum of square of residual vibration at each measurement point. Let \(f\) be the sum of square of residual vibration of each measuring location:

\[ f = \min \sum_{i=1}^{M} |r_i|^2 \]  \hspace{1cm} (7)

The minimum value condition can be used to solve the correction weight at each correction plane:

\[ U = -(A^T A)^{-1}A^T O \]  \hspace{1cm} (8)

The symbol "\*" indicates a conjugate complex number.

The LSM solves a set of overdetermined equilibrium equations that represent the influence coefficients extracted from multiple points and planes, and at multiple speeds. The objective of the LSM in terms of balancing is the minimization of the sum of the squares of the residual vibrations of the measurement points at a specific target speed, and the resulting correction weights vector is called the optimal solution. The term optimal does not however indicate that the vibration of the rotor reaches a satisfactory level. A mere reach of the minimum of the sum of the squares of the residual vibrations in all the measurement points results - in some cases - in the identification of correction weights that may exceed the allowable value of the correction plane. Moreover, there is still a large residual vibration at some measuring points at specific rotor speeds when the solution is back-substituted into the equilibrium condition [27]. The optimal value provided by the LSM does not therefore necessarily correspond to a required physical solution, and a higher fidelity solution needs to be identified.

2.2 Dual-objective optimization of the balancing of a flexible rotor with multi-speeds

The minimization of the maximum of the residual vibration when the sum of the squared residual vibrations and the correction weights are constrained represents a case of multi-objective optimization. In multi-objective programming problems, different weights can usually be adopted according to the importance of each target. The multi-objective programming can be transformed into a single-objective problem by using a linear weighted summation [28]. However, due to their different size and dimensions some objective functions may tend to provide a more significant contribution to the global objective function than the others. The result is an overall objective function that it is not effectively optimized. A dual-objective optimization approach is therefore proposed to overcome the shortcomings of the LSM mentioned above.

2.2.1 The first optimization

The genetic algorithm is a random search method proposed by J.H. Holland [29] to simulate the natural selection and natural genetic mechanism during biological evolution. This technique has the ability to perform simultaneous multi-points searches and a global optimization in the solution space [30, 31]. Therefore, genetic algorithms have been extensively applied in mechanical design and optimization [32, 33]. Using equation (7) as the objective function of the first optimization, the optimization model is constructed as:

\[
\begin{align*}
\min \left( f = \sum_{i=1}^{N \times M} |r_i|^2 \right), \\
\text{s.t.} & \quad 0 \leq \text{mod}(u_i) \leq ub, \\
& \quad 0 \leq \arg(u_i) \leq 2\pi, \\
& \quad i = 1, 2, 3, \ldots, K.
\end{align*}
\]  \hspace{1cm} (9)

The reach of the minimum of the sum of the squares of the residual vibrations is required to perform the dynamic balancing of the flexible rotor. The individual with the smallest sum of the squares of the residual vibrations is the superior gene (the opposite is the inferior one). For the first optimization the \(f_{\text{max}}\) value is defined
as the maximum of the sum of the squared residual vibrations in the current population. The minimum of that sum is defined as \( f_{\min} \). The maximum fitness function value can be expressed as:

\[
Fit(f)_{\max} = f_{\max} - f_{\min}
\]  

If \( Fit(f)_{\max} \epsilon \) (\( \epsilon \) is the convergence condition) is satisfied, the corresponding correction weight is an output, otherwise the genetic operation is performed. The genetic algorithm optimizes Eq. (9) with the resulting final vector:

\[
U_i = \begin{bmatrix}
    u_1 \\
    u_2 \\
    \vdots \\
    u_K
\end{bmatrix}
\]

\( u_i \) represents the mass and phase of the correction plane 1. A solution of the correction weights \( C \) is obtained by solving the first optimization loop \( m \) times based on the genetic algorithm proposed above:

\[
C = \{ U_1, U_2, U_3, \ldots, U_m \}
\]  

2.2.2 The second optimization

The purpose of the second optimization procedure is to minimize the maximum of the residual vibration at each measurement point. A set of solutions \( C \) is here found that minimizes the infinite norm of the \( R \) vector.

Each set of weights is initially brought into equation (3). The residual vibration column vector \( R_k \) corresponding to the weight \( U_k \) is therefore corrected. The amplitude of the residual vibration of the \( i \)th measuring point at the \( f \)th rotational speed \( r_i(=a_{ij}+ib_{ij}) \), where \( a_{ij} \) is the real part and \( b_{ij} \) is the imaginary component) is:

\[
|r_i| = \sqrt{a_{ij}^2 + b_{ij}^2}
\]  

The maximum value of the residual vibration can be obtained from the elements of the residual vibration column vector. This step is repeated \( m \) times. A set of the maximum values of the residual vibration is therefore obtained:

\[
\{|r_i|\}_{\max} = \{ |r_{i,\max}|, |r_{i,\max}|, \ldots, |r_{i,\max}| \}, (k = 1,2,3,\ldots,m)
\]  

The minimum value of (13) is then found. The correction weight corresponding to the minimum value is the optimal correction weight vector.

The second optimization model is established as:

\[
\begin{align*}
\Delta &= \min \| R_k \|_\infty = \min \left( \max \{|r_{i,1}|, |r_{i,2}|, \ldots, |r_{i,m}| \} \right); \\
\text{s.t.} & \quad AU_k + O = R_k, \\
& \quad U_k \in C, \\
& \quad k = 1,2,3,\ldots,m.
\end{align*}
\]  

The optimal correction weight can be obtained after the dual-objective optimization. The change of the initial population in each optimization run however results in modifications of the correction weights obtained from the first optimization. Therefore, the scheme of the final correction weight is obtained by calculating the average of the optimal correction weights obtained by performing multiple times.

The flow chart of the DOM proposed in this work is shown in Fig.1.
The first optimization

Start

Building the objective function

$i=1$

Population initialization

Calculate and find the maximum fitness value $F_{fit(f)}_{\text{max}}$

Obtain new population

$F_{fit(f)}_{\text{max}} < c$ ?

Mutation operation

Yes

No

Cross operation

Select operation

Output and record the current correction weight $U_j$

Get correction weight solution set $C$, $C = \{U_1, U_2, U_3, \ldots, U_m\}$. 

$i = i+1$

The second optimization

Estimate the residual vibration corresponding to each set of correction weights,

$R = \{r_{i1}, r_{i2}, \ldots, r_{ij}, \ldots, r_{i(M)}\}$

$k=1$

$i = i+1$

max = 0

$k = 2\min - \text{Max.}_j$

Yes

$k = 2\min - \text{Max.}_j$

No

Output the current optimal correction weight

End

Fig. 1 Flow chart of the DOM for flexible rotor balancing considering multi-speeds
3 Experimental and numerical test rig

3.1 Experimental test rig

The test rig representing a double-disc rotor-bearing system is shown in Fig.2. The rig is driven by a DC motor with a maximum speed of 12,000 rpm. A bellows coupling is used to connect the motor to the shaft. The test rig is mainly composed of a rotating shaft, two discs and two plain cylindrical bearings. The photoelectric sensor fixed on bearing#1 measures the rotor speed by receiving the reflected pulse. The displacements of the rotor are measured by using two eddy current displacement proximity probes. The specific parameters of the rig are shown in Table 1.

![Test rig of double-disc rotor-bearing system](image)

Table 1. Parameters of the test rig

<table>
<thead>
<tr>
<th>Shaft parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Gcr15</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.01m</td>
</tr>
<tr>
<td>Length</td>
<td>0.5m</td>
</tr>
<tr>
<td>Density</td>
<td>7810 kg/m³</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>2.08×10¹¹ N/m²</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disc parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal diameter</td>
<td>0.01m</td>
</tr>
<tr>
<td>External diameter</td>
<td>0.078m</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.015m</td>
</tr>
<tr>
<td>Material</td>
<td>45steel</td>
</tr>
<tr>
<td>Mass</td>
<td>0.494kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearing parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing journal diameter</td>
<td>0.01m</td>
</tr>
<tr>
<td>Clearance</td>
<td>1×10⁻⁵m</td>
</tr>
<tr>
<td>Width</td>
<td>0.025m</td>
</tr>
<tr>
<td>Bearing span</td>
<td>0.42m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lubricating oil parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.88g/CC</td>
</tr>
<tr>
<td>Viscosity</td>
<td>32.5 cP</td>
</tr>
</tbody>
</table>

3.2 Modeling of the test rig

A finite element method is used to simulate the dynamics of the test (Fig.3). The numerical model mainly includes...
three parts: the shaft, the discs and the bearings. According to the Timoshenko beam theory, the rotor shaft is discretized into finite beam elements with a total of 17 nodes and 16 units. Each node has two translational and two rotational degrees of freedom along the horizontal \((x)\) and vertical \((y)\) directions. The discs are added to the 6th and 11th nodes of the finite element model as lumped masses with polar and diameter moments of inertia. The bearings are modeled as concentrated translational springs and a viscous damper, and they are located at the 3rd and 16th nodes of the finite element model.

![Finite element model of double-disc rotor-bearing system](image)

**Fig. 3** Finite element model of double-disc rotor-bearing system

![Modal mode diagram of the double-disc rotor-bearing system](image)

**Fig. 4** Modal mode diagram of the double-disc rotor-bearing system

The direction of the first measuring point of the test rig corresponds to the \(y\) direction of the 4th node in the model. In a similar way, the second measuring point corresponds to the \(y\) direction of the 14th node. The first two-order critical speeds and mode shapes of the double-disc rotor-bearing system are then calculated. Along the vertical direction, the first natural frequency is 43.6Hz and the corresponding critical speed is 2616rpm. The first critical speed of the measured test rig is 2650rpm, and that implies a 1.2% error against the numerical results. The finite element model of the double-disc rotor-bearing system developed here can therefore be considered sufficiently accurate to be used as a parametric and optimization platform.

### 4 Numerical simulations

Three balancing methods are presented in Table 2 for numerical simulation and experimental research.

**Table 2. Balancing methods**
Method | Equation/objective function | To solve the way
--- | --- | ---
LSM | Equation (7) | direct solution
GA | Equation (9) | optimization solution
DOM | Equations (9) and (14) | optimization solution

In this paragraph the balancing effects of GA, LSM and DOM are compared and analyzed through two different cases. We assume force unbalance of the rotor bearing system in Case I, while in Case II we consider both force and the couple unbalance. The numerical simulation is based on the finite element model of the rotor developed in Section 3.2. The balancing target speeds are 1500 rpm, 4000 rpm and 6000 rpm, respectively.

**Case I**

We concentrate the force unbalance on the discs #1 and #2 of the finite element model. Discs #1 and #2 are also contained in the correction plane. The simulation process is as follows:

1. An unbalance mass of 0.98g is added at $\angle 0^\circ$ to disc#1, and an unbalance mass of 1.31g is added at $\angle 180^\circ$ to disc#2. The vibration displacements of the 4th and the 14th nodes of the Finite Element along the $y$ direction at each target speed are then calculated.

2. A trial weight of 1.31g is added at $\angle 90^\circ$ to disc#1, and the displacements of the 4th node and the 14th node in the $y$ direction at the target speeds (1500 rpm, 4000 rpm, and 6000 rpm) are computed. A trial weight of 1.31g is then added at $\angle 45^\circ$ on disc#2 after removing the previous trial weight. The displacements of the 4th node and the 14th node in the $y$ direction at each target speed are then calculated. The corresponding influence coefficients are computed using the data from the original vibration response and the trial weight responses.

3. The original vibration response and impact coefficient are substituted into the objective function, and the correction weight is calculated by GA and DOM respectively. Parameters are set in the calculation of the two balancing methods: the initial population size is set to 400, the crossover probability is 0.9, the mutation probability is 0.1, $\varepsilon$ is $1 \times 10^{-10}$, the lower limit of the correction weight is 0, and the upper limit of the correction weight is 5g.

When the optimization algorithm is adopted, the results fluctuate to some extent. The two methods are therefore used to perform 50 simulations each, and the results are shown in Fig.5.
It is evident from Fig.5 that the results depend on the calculation times when the GA and DOM are used for the calculation of the balancing. The fluctuation range of the DOM results is however significantly smaller than the one provided by the GA.

The correction mass and the phase of the same balancing plane in Fig.5 are represented in polar coordinates to obtain the correction weight (Fig.6). In that figure, the radial coordinate corresponds to the correction mass (positive is mass gain, negative is mass loss); the circumferential coordinate is the correction phase. This figure can more intuitively represent the fluctuation of the two methods. The average values here are calculated using the two methods and the final correction weights are shown in table 3.

<table>
<thead>
<tr>
<th>Method</th>
<th>Disc</th>
<th>Mass (g)</th>
<th>Error (%)</th>
<th>Phase (°)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.60</td>
<td>38.8</td>
<td>163.4</td>
<td>9.2</td>
<td></td>
</tr>
</tbody>
</table>
We can therefore conclude that large fluctuations of the results are present every time the GA optimization of the balancing is performed, however the DOM results are relatively more stable. The correction weights are obtained by calculating the average of the results from the two methods. The results from the DOM calculations are quite accurate, while the GA ones have large errors that cannot be regarded as optimal weights. The DOM is therefore better than the GA in terms of stability and accuracy.

**Case II**

Force and couple unbalances are present in real rotor systems. On the basis of case I, both force and couple unbalances are both considered in case II. A couple unbalance of $3 \times 10^{-5} \text{N} \cdot \text{m}$ is added at $45^\circ$ on disc#1. The resulting response as calculated following case I is shown in Fig.7 and Table 4.

![Fig.7 Correction weights](image)

From the results of the case II, it is also evident that the fluctuations of the results derived by using the GA approach are still large compared to the DOM cases. The average value of all the calculated results for the two methods and the final balancing scheme are shown in Table 4. The calculation results of the LSM approach are also featured in Table 4.

<table>
<thead>
<tr>
<th>Method</th>
<th>Disc</th>
<th>Mass (g)</th>
<th>Phase (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>1</td>
<td>2.94</td>
<td>216.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.79</td>
<td>235.5</td>
</tr>
<tr>
<td>LSM</td>
<td>1</td>
<td>2.46</td>
<td>211.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.43</td>
<td>235.7</td>
</tr>
<tr>
<td>DOM</td>
<td>1</td>
<td>2.51</td>
<td>213.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.39</td>
<td>235.6</td>
</tr>
</tbody>
</table>

The correction weights are also applied to the finite element model. The vibration responses of the speed-up process along the y direction of the 4th node and the 14th node are calculated (Fig.8). The residual vibration response and percentage of amplitude decrease at each target speed are shown in Fig.9.
Fig. 8 Vibration response of the 4th and the 14th node along the y direction during speed-up before and after balancing.

Compared to the original vibration values (Fig. 8), all three methods can reduce the amplitude of the unbalance vibration response of the rotor. The balancing effect provided by the LSM and DOM approaches is almost the same, while the balance calculated through the GA is quite different from the former two methods. After the GA progressive balancing, the residual vibration of the 14th node is always lower than the one calculated using the first two methods. The residual vibration of the 4th node is slightly lower than the one of the first two methods at low speed, but significantly larger at high speed.
After the three methods have been used to carry out the balancing, the maximum residual vibration value for each target speed appears at 6000rpm in the 4th node (Fig. 9). The maximum value of the residual vibration after balancing through LSM is 15.75μm, and 14.89μm when using DOM. The maximum value of residual vibration after GA balancing is 28.3μm. The maximum amplitude decreases after balancing using the LSM approach is 97.2%, while the minimum is 72.3%. After the DOM-based balancing the amplitude decreased by a maximum of 97.5% and a minimum of 72%. The GA balancing provided similar values (maximum and minimum decreases by 95.2% and 75.7% respectively). From simulations the sum of the squares of the original vibrations is 72465, while the sum of the squares of the residual vibrations is 726 when LSM is used for balancing (i.e., a 99% decrease). When DOM was used for balancing, the sum of the squares of the residual vibrations was 730; the GA-derived results provided a value of 1076, leading to a 98.5% decrease.

It is possible to observe an almost linear relationship between the unbalance and the unbalance vibration response in the finite element model. The three methods can all provide a good balancing effect. The DOM is better than the GA in terms of stability and accuracy in case I. In case II, the percentage decreases of the sum of the squares of the residual vibrations are very much equivalent, but the maximum value of the residual vibration obtained through GA is the largest, while the DOM method provides the minimum. From the above two simulation cases, one can conclude that the sum of the squares of the residual vibrations and the maximum value of residual vibration should be considered to engineer multi-speeds balancing of flexible rotor.

5 Experimental results

During the experiments the same parameters used for the simulations have been adopted. The target speeds are 1000 rpm, 1500 rpm, 4000 rpm, 5000 rpm and 6000 rpm. The experiment is carried out by adding the 1.31g trial weight at 90° on disc#1, and the trial weight response at each target speed is obtained. After removing the trial weight from disc#1, the same trial weight is added at 45° to disc#2, and the trial weight response at each target speed is then measured. The corresponding influence coefficients are calculated using the data of the original vibration response and the data from the vibration with the trial weight (Table 5).

<table>
<thead>
<tr>
<th>Table 5. Original vibration, trial weight response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (rpm)</td>
</tr>
<tr>
<td>Amp (μm)</td>
</tr>
</tbody>
</table>
Table 6. Influence coefficients at multi-speeds

<table>
<thead>
<tr>
<th>Speed (rpm)</th>
<th>Measuring point</th>
<th>disc#1 influence coefficient</th>
<th>disc#2 influence coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amp (μm)</td>
<td>Phase (°)</td>
<td>Amp (μm)</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>2.76</td>
<td>-148.79</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.51</td>
<td>-103.40</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>5.44</td>
<td>138.89</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.72</td>
<td>152.24</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>31.66</td>
<td>-37.04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.45</td>
<td>-23.02</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>28.97</td>
<td>-45.46</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.48</td>
<td>-4.73</td>
</tr>
<tr>
<td>6000</td>
<td>1</td>
<td>31.79</td>
<td>-52.15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.52</td>
<td>47.75</td>
</tr>
</tbody>
</table>

Experiments about the low speed and high-speed balancing at a single velocity are carried out using the ICM technique after obtaining the data from the original vibration of the rotor and the trial weight influence coefficient at the target speeds (Table 6). Experiments showing the dynamic balancing using the LSM and the DOM at multiple speeds have also been carried out.

Table 7. Two sets of single-speed balancing and correction weights considering the number of different speeds

<table>
<thead>
<tr>
<th>Speed (rpm)</th>
<th>Theoretical weight</th>
<th>Actual weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method</td>
<td>Disc</td>
</tr>
<tr>
<td>1500</td>
<td>ICM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5000</td>
<td>ICM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1500</td>
<td>LSM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4000</td>
<td>DOM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1500</td>
<td>LSM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4000</td>
<td>DOM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000, 1500, 4000, 5000, 6000</td>
<td>LSM</td>
<td>1</td>
</tr>
</tbody>
</table>
After the calculation of the correction weights, the weighting schemes are selected and added to the threaded hole of the disc. The distance between the threaded hole and the axis is 0.03m and the distribution of the threaded hole on the disc is shown in Fig. 10.

![Fig. 10 Schematic diagram of the disc](image)

**5.1 Comparison of single-speed and multi-speeds balancing for the flexible rotor**

In the experimental study, two sets of single-speed balancing related to the first critical speed are performed. One target speed for the balancing is 1500 rpm, the other is 5000 rpm. Experiments showing the dynamic balancing using the LSM and the DOM at 1500 rpm, 4000 rpm and 6000 rpm have also been carried out. The correction weights are shown in Table 7. The comparison of the results related to the optimization targets that consider the low and high single speeds and the multiple speeds balancing is shown in Fig.11-12.
For a flexible rotor containing a first critical speed within the operational speed range, both single-speed and multiple speeds balancing provide a significant influence on the overall equilibrium effect of the system. When the balancing speed is lower than the first critical speed of the rotor and the number of balancing speeds is one, the vibration of the rotor at speeds below the first critical velocity drops significantly in the case of the low single-speed balancing (Figs. 11-12 and Table 8). The correction weight related to the low single-speed balancing however increases the rotor unbalance due to the flexible deformation of the rotor at higher velocities. The vibration amplitude of the rotor will be therefore larger for sizeable speed ranges, for which the velocity of the rotor is higher than the first critical speed. When the balancing speed is higher than the first critical velocity of the rotor, the vibration amplitude is reduced during speed-up and the balancing effect is more evident than the one produced by the low single-speed balancing. The LSM and DOM-led balancing here are performed using three balancing speeds. The balancing effect obtained by applying DOM is the most performing amongst the low single-speed balancing approaches, the high single-speed and the LSM balancing.

### 5.2 Sensitivity versus the number of target speeds

The correction weights identified by the two methods for the different numbers of speed were added to the test rig to perform separate balancing experiments. The speed-up curves of the measuring points 1 and 2 before and after balancing are shown in Figs. 13 and 14. The vibration amplitudes of the respective target speeds are shown in Table 9.

---

**Table 8. Balancing effect of single-speed**

<table>
<thead>
<tr>
<th>Speed (rpm)</th>
<th>Measuring point</th>
<th>Original vibration (μm)</th>
<th>Amplitude after balancing (μm)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>1</td>
<td>42.96</td>
<td>18.59</td>
<td>56.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.51</td>
<td>11.40</td>
<td>44.4</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>32.26</td>
<td>14.97</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39.51</td>
<td>6.25</td>
<td>84.2</td>
</tr>
</tbody>
</table>
Fig. 13 Speed-up curves at point #1 before and after balancing

Fig. 14 Speed-up curves at point #2 before and after balancing
Table 9. Results of the balancing for the different number of speed using LSM and DOM

<table>
<thead>
<tr>
<th>Speed(rpm)</th>
<th>Measuring point</th>
<th>Original vibration</th>
<th>LSM</th>
<th>DOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amp (μm)</td>
<td>Amp (μm)</td>
<td>Percentage (%)</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>41.94</td>
<td>35.89</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.21</td>
<td>17.41</td>
<td>13.9</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>46.95</td>
<td>16.65</td>
<td>64.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55.9</td>
<td>11.5</td>
<td>79.4</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>41.94</td>
<td>35.49</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.21</td>
<td>15.26</td>
<td>24.5</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>46.95</td>
<td>10.9</td>
<td>76.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55.9</td>
<td>17.29</td>
<td>69.1</td>
</tr>
<tr>
<td>6000</td>
<td>1</td>
<td>27.32</td>
<td>10.84</td>
<td>60.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>33.11</td>
<td>9.29</td>
<td>73</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>33.67</td>
<td>31.56</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.74</td>
<td>10.39</td>
<td>-6.7</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>41.94</td>
<td>34.49</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.21</td>
<td>13.63</td>
<td>32.6</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>46.95</td>
<td>9.31</td>
<td>80.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55.9</td>
<td>12.63</td>
<td>77.4</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>32.65</td>
<td>6.252</td>
<td>80.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39.85</td>
<td>3.596</td>
<td>91</td>
</tr>
<tr>
<td>6000</td>
<td>1</td>
<td>27.32</td>
<td>11.12</td>
<td>59.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>33.11</td>
<td>11.92</td>
<td>64</td>
</tr>
</tbody>
</table>

It is possible to observe that the maximum amplitude drops provided by the two methods gradually increases with the increase of the number of target speeds. Moreover, the DOM maximum amplitude drop is larger than the one provided by the LSM. However, the percentage of the amplitude drop is negative at 1000 rpm for five speeds (Table 9), and the amplitude of the second measuring point increases after balancing.

Table 10. Comparison of two methods considering the number of the target speed

<table>
<thead>
<tr>
<th>The number of speeds</th>
<th>The sum of squares of original vibrations</th>
<th>Method</th>
<th>The sum of squares of residual vibrations</th>
<th>The maximum value of residual vibration (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7496</td>
<td>LSM</td>
<td>2001</td>
<td>35.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOM</td>
<td>1937</td>
<td>35.71</td>
</tr>
<tr>
<td>3</td>
<td>9339</td>
<td>LSM</td>
<td>2107</td>
<td>35.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOM</td>
<td>1789</td>
<td>34.84</td>
</tr>
<tr>
<td>5</td>
<td>13222</td>
<td>LSM</td>
<td>3043</td>
<td>34.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOM</td>
<td>2922</td>
<td>34.25</td>
</tr>
</tbody>
</table>

The DOM performs better than the LSM for the target speeds considered, both in terms of decrease of the sum of the squares of the residual vibrations (Table 10 and Fig.15) and the maximum of the residual vibration (Table 9-10). With three balancing target speeds the decrease percentage of the sum of the squares of the residual vibrations at the maximum is 77.4% with the LSM and 80.8% with the DOM (Fig.15). The experimental analysis shows that when the flexible rotor features a first critical speed within the operational speed range and a multiple speeds balance is adopted, three speeds can be taken into account at the same time to obtain an improved
balancing.

![Image](image_url)  
**Fig. 15** Comparison of the decrease percentage of the sum of the squares of the residual vibrations with LSM and DOM approach versus the number of target speeds

### 6 Conclusion

This paper has presented a balancing method for flexible rotor that involves a dual-objective optimization procedure. The method makes use of the global search and multi-points optimization characteristics of genetic algorithms when solving the first optimization objective function, so that the correction weight obtained represents the optimal solution from the current population. The second optimization scheme minimizes the maximum of the residual vibration, while ensures the identification of the minimum of the squared residual vibration. Simulation and experimental results show that the DOM provides a better balancing than the one calculated through the GA and the LSM when the rotor system a multi-speeds dynamic balancing. The number of speeds considered during the dynamic balancing has also a significant impact on the overall balancing effect. Experiments show that three speeds are needed to be considered simultaneously for an efficient dynamic balancing in a flexible rotor containing a first critical speed in the operational regime. The DOM here proposed is not only easy to operate but can also achieve both the minimum of the residual vibration of the rotor, and the maximum value of the same residual vibration. The proposed method can therefore be used for the practical balancing of flexible rotors in rotating machinery.

### Funding

The research was supported by the National Natural Science Foundation of China (51975037).

### References


Vibration and Acoustics 130(2008) 031008

LMI Influence Coefficient Balancing, Journal of Vibration and Acoustics


10.1016/j.ymssp.2005.09.009


