
Peer reviewed version

Link to published version (if available):
10.1177/1747493020963762

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Sage Publications at https://doi.org/10.1177/1747493020963762. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Association between estimated pulse wave velocity and the risk of stroke in middle-aged men

Sae Young Jae¹, Kevin Heffernan², Sudhir Kuri³, Setor K. Kunutsor⁴,⁵, Jari A. Laukkanen⁶,⁷

¹Department of Sport Science, University of Seoul, Seoul, Republic of Korea; ²Department of Exercise Science, Syracuse University, Syracuse, USA; ³Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; ⁴National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK; ⁵Translational Health Sciences, Bristol Medical School, University of Bristol, Learning & Research Building (Level 1), Southmead Hospital, Bristol, UK; ⁶Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland; ⁷Central Finland Health Care District Hospital District, Department of Medicine, Jyväskylä, Finland District, Jyväskylä, Finland

Running title: estimated pulse wave velocity and the risk of stroke

Disclosures: none

Corresponding Author: Sae Young Jae, PhD.

Health and Integrative Physiology Laboratory, Department of Sport Science, University of Seoul. 90 Jeonnnong-dong, Dongdaemun-gu, Seoul 130-743, South Korea. E-mail: syjae@uos.ac.kr, Phone: 82-2-6490-2953 Fax: 82-2-6490-5204
ABSTRACT

Aims and methods. We sought to examine the association between estimated pulse wave velocity (ePWV), a proxy of carotid-femoral pulse wave velocity, and stroke and its subtypes (ischemic and hemorrhagic) in a prospective cohort of 2,666 men (aged mean 53.1, range 42-61 years) enrolled in the Kuopio Ischemic Heart Disease cohort study. Results. During a median 28-year follow-up, 471 incident stroke (397 ischemic and 94 hemorrhagic) events occurred. After adjusting for several established and emerging risk factors including age and pulse pressure, comparing the top versus bottom quartiles of ePWV, there was an increased risk of stroke (hazard ratio [HR] 2.37, 95% Confidence Interval [CI]: 1.57-3.58), ischemic stroke (HR 2.23, 95% CI, 1.42-3.50), and hemorrhagic stroke (HR 3.57, 95% CI, 1.45-8.76). Conclusion. These findings demonstrate that ePWV is independently associated with the risk of stroke in middle-aged men.

Keywords: vascular stiffness; pulse wave velocity; cerebrovascular; blood pressure
Introduction

Stroke is considered the second leading cause of mortality and disability worldwide.(1) In the United States, approximately 795,000 individuals have a stroke each year claiming over 140,000 lives and costing an estimated $34 billion in health care.(1) By the year 2030, it is estimated that 4% of US adults will have had a stroke. Blood pressure (BP) is a major risk factor for stroke. With advancing age, there are increases in systolic BP with slight decreases in diastolic BP resulting in a widening of pulse pressure (PP). Increases in PP are attributable to large artery stiffening and are predictive of adverse cerebrovascular outcomes, particularly in middle-aged and older adults.(2)

Recently, another BP-derived measure of large artery stiffening has emerged. Estimated pulse wave velocity (ePWV), a proxy of carotid-femoral pulse wave velocity (cfPWV) which is the gold-standard measure of aortic stiffness, has been shown to be associated with cardiovascular outcomes and all-cause mortality in hypertensive adults (3) and in the general population.(4-6) Given that cfPWV is independently associated with risk of incident stroke,(7, 8) we sought to examine the association between ePWV and stroke in the general population. We hypothesized that ePWV would be associated with stroke risk as well as its subtypes (ischemic and hemorrhagic).

Methods

This prospective study was based on a sample of 2,666 middle-aged men (aged mean SD 53.1±5.1, range 42-61 years) from the Kuopio Ischemic Heart Disease (KIHD) cohort study. The KIHD study is on ongoing, prospective population-based cohort study. Baseline examinations were conducted between 1984-1989 with follow-up examinations conducted 4-years later (1991-1993), 11 years later (1998-2001) and 18-years later (2005-2008).(9) The overarching purpose of this study is to investigate CVD risk factors, atherosclerosis and related clinical outcomes in middle-
aged men from eastern Finland. Baseline measures included a detailed medical history, sociodemographic information (education, annual income, marital status), questions on biobehavioral factors and lifestyle (smoking, alcohol, physical activity), measurement of anthropometrics (height and weight for calculation of body mass index), fasting venous blood samples for the derivation of circulating lipids and fasting glucose, and measurement of blood pressure. The study protocol was approved by the Research Ethics Committee of the University of Eastern Finland, Kuopio, Finland, in line with the Helsinki Declaration, and each participant provided written informed consent.

\[ePWV = 9.587 - 0.402 \times \text{age} + 4.560 \times 10^{-3} \times \text{age}^2 - 2.621 \times 10^{-5} \times \text{age}^2 \times \text{MBP} + 3.176 \times 10^{-3} \times \text{age} \times \text{MBP} - 1.832 \times 10^{-2} \times \text{MBP}. \]

\text{MBP was calculated as } \text{DBP} + 0.4 \times \text{PP} \text{ with PP being taken as SBP-DBP. This equation is derived from the Reference Values for Arterial Stiffness Collaboration, which consisted of pooling cfPWV measures from 16,867 participants across 13 different centers spanning eight European countries.}

Levels of ePWV were categorized according to quartiles (<8.5 [the lowest], 8.5-9.2, 9.2-10.0, and >10.0 m/s [the highest]).

Incident strokes were ascertained through the FINMONICA (Finnish Monitoring Trends and Determinants in Cardiovascular Diseases) stroke registry between 1984 and 1992 (12, 13) and by computerized linkage to the Finnish national hospital discharge registry between 1993 and 2017. Each patient has a unique personal identifier used in the registers and there were no losses to follow-up. Diagnostic information was collected from hospitals and classified by a neurologist with diagnostic criteria identical to the FINMONICA criteria. (12, 13) Stroke was operationally
defined as sudden onset of clinical signs of focal or global disturbance of cerebral function lasting more than 24 hours with no apparent cause other than a vascular origin.(12, 13) More details about the diagnostic classification of strokes have been described previously.(14) Briefly, stroke was classified as (1) an ischemic stroke (ICD-9 codes 433 to 434 or ICD-10 code I63) or (2) a hemorrhagic stroke (ICD-9 codes 430 to 431 or ICD-10 codes I60-I61) based on results from CT, MRI and/or autopsy. We used Cox proportional hazard adjusted models to determine the hazard ratios (HRs) and 95% confidence intervals (CIs) of ePWV for incident stroke.

Results

During a median 28-year follow-up, 471 incident stroke events occurred (comprising of 397 ischemic stroke and 94 hemorrhagic stroke). Twenty events were diagnosed as both ischemic and hemorrhagic stroke. After adjusting for potential confounders (age, body mass index, smoking, alcohol intake, CVD history, anti-hypertensive medication, glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, C-reactive protein, creatinine, physical activity, socioeconomic status, diabetes, family history of CVD), the highest levels of ePWV were associated with an increased risk for stroke (hazard ratio [HR] 2.41, 95% Confidence Interval [CI]: 1.66-3.53), ischemic stroke (HR 2.35, 95% CI, 1.56-3.56), and hemorrhagic stroke (HR 3.29, 95% CI, 1.44-7.52), compared with the lowest level of ePWV (Table 1). The associations were not attenuated following further adjustment for pulse pressure (or systolic blood pressure in a separate model). Cumulative hazard curves demonstrated higher incidence of stroke in the top quartile of ePWV compared to the bottom quartile (P<0.001 for log-rank test; Figure 1).

Discussion

These findings demonstrate that ePWV is related to increased risk for cerebrovascular outcomes, independent of several traditional and emerging CVD risk factors including age and pulse pressure.
Previous studies note that cfPWV is associated with stroke risk (7, 15). Our study supports emerging findings of an association between ePWV and overall stroke risk (3, 6) and suggests that ePWV is also associated with stroke subtypes - ischemic and hemorrhagic stroke. Compared to the reference group, individuals in the elevated ePWV group were almost 3.6 times more likely to have a hemorrhagic stroke and 2.2 times more likely to have an ischemic stroke, after adjustment for confounding CVD risk factors including age and pulse pressure.

An increase in ePWV may be associated with increased risk for stroke (both ischemic and hemorrhagic) through several speculative mechanisms. Arterial stiffness-mediated increases in pressure pulsatility may lead to altered hemodynamic stress, aneurysm and cerebral vessel rupture (16, 17) and may also contribute to epochs of cerebral hypoperfusion and ischemia, cerebrovascular endothelial damage, altered shear patterns, and atherogenesis (18, 19). However, we noted that risk estimates between ePWV and stroke remained similar after additional adjustment for PP. This is consistent with findings from Laurent et al. and Mattace-Raso et al. that noted cfPWV was associated with stroke risk after adjusting for traditional CVD risk factors including PP (7, 8). Brachial PP is not a reflection of central PP or the regional pressure that may be experienced by the cerebrovasculature. Thus, pressure pulsatility cannot be discounted as an important effector of cerebrovascular structure and function. Alterations in vessel wall stiffness captured by ePWV may reflect systemic arteriosclerosis from fibrosis and calcification and thus parallel lesion development in the cerebrovasculature (7, 8). Loss of vessel wall compliance may also directly impact regional vessel wall shear contributing to ulceration of vulnerable plaque (20).

It should be underscored that this study is one of association and no conclusion on underlying mechanism is possible.
Limitations of this study include a cohort that comprised exclusively middle-aged Caucasian men of European decent and inability to explore BP variability and changes in BP-lowering treatment due to lack of relevant data. Additional research evaluating the associations and predictive relevance in women and other races/ethnicities is warranted. In summary, ePWV is a simple measure derived from two commonly assessed clinical parameters (age and BP) that may offer insight into incident stroke risk in middle-aged men.
References

Table 1. Hazard ratios (HRs) and 95% confidence intervals (CIs) for incident stroke outcomes by ePWV quartiles.

<table>
<thead>
<tr>
<th>ePWV</th>
<th>Hemorrhagic stroke</th>
<th>Ischemic stroke</th>
<th>Total stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events/Total</td>
<td>Events/Total</td>
<td>Events/Total</td>
</tr>
<tr>
<td>All</td>
<td>94/2666</td>
<td>397/2666</td>
<td>471/2666</td>
</tr>
<tr>
<td>Q 1 (< 8.5 m/s)</td>
<td>14/637</td>
<td>49/637</td>
<td>59/637</td>
</tr>
<tr>
<td>Q 2 (8.5-9.2 m/s)</td>
<td>18/643</td>
<td>83/643</td>
<td>95/643</td>
</tr>
<tr>
<td>Q 3 (9.2-10.0 m/s)</td>
<td>29/694</td>
<td>121/694</td>
<td>147/694</td>
</tr>
<tr>
<td>Q 4 (>10.0 m/s)</td>
<td>33/692</td>
<td>144/692</td>
<td>170/692</td>
</tr>
</tbody>
</table>

Model 1, Adjusted for age, body mass index, smoking, alcohol intake, CVD history, anti-hypertensive medication use, glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, C-reactive protein, creatinine, physical activity, socioeconomic status, diabetes, family history of CVD

- Each 1 m/s increment
 - Hemorrhagic stroke: 1.53 (1.22-1.92)
 - Ischemic stroke: 1.32 (1.18-1.49)
 - Total stroke: 1.35 (1.21-1.49)

- Q 1 (reference)
- Q 2: 1.20 (0.54-2.67)
- Q 3: 2.47 (1.14-5.33)
- Q 4: 3.29 (1.44-7.52)

Model 2, Model 1 plus pulse pressure

- Each 1 m/s increment
 - Hemorrhagic stroke: 1.69 (1.27-2.25)
 - Ischemic stroke: 1.34 (1.16-1.54)
 - Total stroke: 1.38 (1.22-1.58)

- Q 1 (reference)
- Q 2: 1.22 (0.55-2.73)
- Q 3: 2.57 (1.17-5.66)
- Q 4: 3.57 (1.45-8.76)

Model 3, Model 1 plus systolic blood pressure

- Each 1 m/s increment
 - Hemorrhagic stroke: 2.35 (1.17-4.75)
 - Ischemic stroke: 1.39 (0.99-1.94)
 - Total stroke: 1.50 (1.10-2.05)

- Q 1 (reference)
- Q 2: 1.11 (0.47-2.61)
- Q 3: 2.16 (0.84-5.54)
- Q 4: 2.61 (0.74-9.21)

CVD, cardiovascular disease; ePWV, estimated pulse wave velocity; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Q, quartile
Figure 1. The Kaplan-Meier curves for incident stroke by ePWV quartiles.