Coupled analysis of seawater and sedimentary 231Pa/230Th in the tropical Atlantic.

Hong Chin Nga,* Laura F. Robinsona, George H. Rowlanda, Siyuan Sean Chena,b,1, Jerry F. McManusc

aSchool of Earth Sciences, University of Bristol, Bristol
bDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
cDepartment of Earth and Environmental Sciences, Columbia University and the Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA

*email: hn9381@bristol.ac.uk

Keywords: Protactinium, Thorium, Sediment-seawater analysis, Scavenging, Eddy diffusion, Advection, Hydrothermal scavenging, Transient nepheloid layer, Boundary scavenging, Tropical Atlantic

1 Now at MIT-WHOI Joint Program in Oceanography, Massachusetts Institute of Technology, Cambridge, MA, USA
Abstract

The 231Pa/230Th ratio of seawater and in ocean sediments is a potentially powerful tool in tracing oceanic processes such as the ocean circulation and marine primary productivity. However, 231Pa/230Th reflects the combined signal of multiple controls associated with scavenging and oceanic transport, limiting its use as a paleo-proxy. Given that links between seawater and sedimentary 231Pa and 230Th distributions are crucial for understanding the cycling and removal fluxes of these nuclides, we carry out analysis of 231Pa and 230Th in both seawater (dissolved phase) and modern sediment samples acquired from five depth transects across the northern tropical Atlantic open ocean. Overall, the sediment data support the dominance of 231Pa export in the deep Atlantic Ocean (>2.5 km) associated with the southward advection of North Atlantic Deep Water. However, the seawater data provide evidence for locally enhanced scavenging of 231Pa and 230Th near the western seamounts that is likely to be associated with the influence of hydrothermal activity or episodic formation of transient nepheloid layers. At shallower depths (0.5–1.5 km), paired sediment and seawater 231Pa/230Th data reveal enhanced burial of 231Pa at the eastern and mid-Atlantic sites that is likely related to elevated marine primary productivity and/or influence of boundary scavenging at the African margin, and a net input of 231Pa potentially maintained by the northward advection of intermediate water masses and an additional mechanism of upward diffusion. Our findings provide greater insights into the range of oceanic processes that play a significant role in the cycling of 231Pa and 230Th, with implications for the controls of 231Pa/230Th distribution in the Atlantic Ocean.

1. INTRODUCTION

Research studies since the late twentieth century have established the potential in utilizing two U-series radionuclide isotopes, 231Pa and 230Th to trace oceanic processes based on the fractionation between the two isotopes due to the difference in particle reactivity (Henderson and Anderson, 2003). Observations indicate that such fractionation can occur due to spatial variations in the removal rates of the isotopes from seawater by scavenging (dominantly by adsorption of the isotopes onto sinking particulate matter) (Anderson et al., 1983a, b; Yang et al., 1986), and due to horizontal transport by water mass advection (Yu et al., 1996) and diffusion down a concentration gradient (Bacon, 1988). Following this concept, subsequent works have produced paleo-proxy applications of sedimentary 231Pa_ex,0/230Th_ex,0, which is defined as the activity ratio of 231Pa and 230Th unsupported by the decay of parent U radionuclides in the sediment and corrected for post-depositional decay (Henderson and Anderson, 2003) (hereafter 231Pa/230Th). Sedimentary
\(^{231}\text{Pa}/^{230}\text{Th} \) has been used as a proxy of opal-dominant marine primary productivity in the Southern Ocean (Anderson et al., 2009; Bradtmiller et al., 2009; Kumar et al., 1993) and the equatorial Pacific (Bradtmiller et al., 2006; Costa et al., 2017; Pichat et al., 2004; Thiagarajan and McManus, 2019), and as a proxy of Atlantic Meridional Overturning Circulation (AMOC) strength in the Atlantic (Henry et al., 2016; Hoffmann et al., 2018; Lippold et al., 2011; McManus et al., 2004; Ng et al., 2018). Both applications are useful for constraining the forcing-feedback relationships between the climate and ocean. This is because Southern Ocean productivity plays a critical role in the global biological pump which regulates the major greenhouse gas atmospheric carbon dioxide (Sigman et al., 2010); while the AMOC is a key player in meridional heat transport (Johns et al., 2011). The use of sedimentary \(^{231}\text{Pa}/^{230}\text{Th} \) as a paleo-proxy, however, is still restricted as it reflects mixed signals of multiple controls that are not straightforward to deconvolve (Missiaen et al., 2019; Rempfer et al., 2017; Siddall et al., 2005). Indeed, the proxy applications above are mainly constrained to specific regions where one control appears to be dominant. To overcome this limitation, seawater (Deng et al., 2018; Grenier et al., 2019; Hayes et al., 2015a; Hayes et al., 2013; Pavia et al., 2018) and sediment (Bradtmiller et al., 2014; Costa et al., 2017; Hoffmann et al., 2013; Lippold et al., 2012) analyses and modelling studies (Gu and Liu, 2017; Lerner et al., 2020; Missiaen et al., 2019; Missiaen et al., 2020; Rempfer et al., 2017) are now revealing a detailed and quantitative picture of the processes that govern the cycling of \(^{231}\text{Pa} \) and \(^{230}\text{Th} \) in the ocean.

The \(^{231}\text{Pa} \) and \(^{230}\text{Th} \) isotopes dissolved in seawater originate principally from the radioactive decay of dissolved \(^{235}\text{U} \) and \(^{234}\text{U} \) isotopes respectively. The production rates of \(^{231}\text{Pa} \) and \(^{230}\text{Th} \) in the ocean are relatively constant due to the largely uniform salinity-normalized U concentration dissolved in seawater (Owens et al., 2011), with the derived production ratio of \(^{231}\text{Pa}/^{230}\text{Th} \) being \(~0.093\) (Anderson et al., 1983b). The two isotopes are rapidly scavenged by sinking particulates, and their ocean residence times estimated from seawater dissolved concentrations are 10–40 years for \(^{230}\text{Th} \) and 50–200 years for \(^{231}\text{Pa} \) (Henderson and Anderson, 2003). Based on their seawater concentration profiles, \(^{231}\text{Pa} \) and \(^{230}\text{Th} \) are thought to undergo reversible scavenging, which is the continuous exchange of the particle-reactive isotopes between the dissolved phase and the particulate surface-bound phase through adsorption and desorption prior to deposition on seafloor sediments (Bacon and Anderson, 1982; Lerner et al., 2016; Nozaki et al., 1987).

The ongoing coordinated international effort of GEOTRACES (Frank et al., 2003) has provided valuable datasets that aid evaluation of the scavenging and advection controls of \(^{231}\text{Pa}/^{230}\text{Th} \) (Deng
et al., 2014; Grenier et al., 2019; Hayes et al., 2015a; Hayes et al., 2013; Pavia et al., 2018). The Atlantic Ocean has been one of the most studied regions, due to the wide interest in the quantitative link between $^{231}\text{Pa}/^{230}\text{Th}$ and AMOC transport, particularly the advection of North Atlantic Deep Water (NADW). Seawater (Deng et al., 2018; Deng et al., 2014), sediment observations (Bradtmiller et al., 2014; Lippold et al., 2012; McManus et al., 2004; Ng et al., 2018; Yu et al., 1996), and modelling studies (Missiaen et al., 2019; Missiaen et al., 2020; Rempfer et al., 2017; Siddall et al., 2005) all support an overall export of the more soluble ^{231}Pa relative to ^{230}Th out of the Atlantic basin driven by AMOC transport. The main sink of this exported ^{231}Pa appears to be associated with the elevated opal production south of the Antarctic polar front, as ^{231}Pa preferentially adsorbs onto opal particles (Moran et al., 2002). In addition, GEOTRACES studies (Deng et al., 2014; Hayes et al., 2015a) have highlighted the presence of notable sinks of ^{231}Pa and ^{230}Th in regions of intensified particle flux (or concentration), such as boundary scavenging at the African margin driven by elevated marine productivity and continental input, and bottom scavenging at the nepheloid layers where there are pronounced resuspension of seafloor sediments. Active hydrothermal vents at the Mid-Atlantic Ridge (MAR) have also been identified as evident sinks of the two isotopes, as both ^{231}Pa and ^{230}Th are efficiently scavenged by the elevated levels of Fe and Mn oxy-hydroxides in hydrothermal plumes (Hayes et al., 2015a; Hayes et al., 2015b). High particle abundance in hydrothermal plumes (Estapa et al., 2015) might further contribute to the enhanced removal of the radionuclides from seawater. However, the presence of these marginal, nepheloid and hydrothermal sinks has been suggested based mainly on seawater observations, and links to sedimentary ^{231}Pa and ^{230}Th distribution are crucial in examining their removal fluxes in these settings of apparently enhanced scavenging.

Here we present paired seawater and sediment core-top ^{231}Pa and ^{230}Th analyses from the northern tropical Atlantic, with locations in open ocean settings of both east and west basins and from the MAR (Figs. 1 & 2). The study sites are under the influence of distinct water masses propagating at different water depths, and are located both near and far from continental margins, potential nepheloid layers and hydrothermal systems (Figs. 1 & 2). We aim to utilise the coupled seawater-sediment analyses to provide an improved understanding of the mechanisms regulating the present-day ^{231}Pa and ^{230}Th distributions in the Atlantic Ocean.

2. SAMPLES AND SITES

2.1. Paired core-top sediment and seawater samples
Twenty sediment core-top and twenty seawater samples used here for ^{231}Pa and ^{230}Th analyses span a water depth range of 0.5–4.6 km and latitudinal range of 5–15° N across the Atlantic Ocean (Rowland et al., 2017). The core-top and seawater samples consist of 5 depth transects here named after the relevant seamounts and Vema fracture zone, which include the Carter Seamount and the Knipovich Seamount located in the eastern basin of the Atlantic, the Mid-Atlantic seamounts sitting on a transverse ridge south of the Vema fracture zone, the Vayda Seamount and the Gramberg Seamount located west of the MAR (Figs. 1 & 2). The core-top sediments were dated with the ^{14}C method, and the derived ages were in the range of 1.0–8.8 thousand years before present (ka BP) (Rowland et al., 2017), indicating Holocene ages for the core-top sediments.

2.2 Oceanic settings of the study area

In the northern tropical Atlantic, the southward-propagating NADW, characterised by salinity of 34.9–35.0, occupies the 1.5–4 km depth range (Fig. 2a). The upper portion of the NADW (UNADW) has been distinguished from the lower portion (LNADW) by the silicate concentration minima (11–25 μmol/kg) observed in the 1.5–2.5 km depth range (Fig. 2b). The UNADW is mainly composed of modified Labrador Seawater, while the LNADW largely consists of modified Nordic overflow waters (Jenkins et al., 2015). Decreasing salinity (<34.8, Fig. 2a) and increasing silicate concentration (>50 μmol/kg, Fig. 2b) below 4 km depth indicate an increased influence of the Antarctic Bottom Water sourced from the Southern Ocean, and this bottom water mass is referred to here as the modified AABW (mAABW). Sample sites sitting at intermediate depths (0.5–1.5 km) are mainly bathed in a mix of northward-propagating Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW) (Oudot et al., 1998). The mixture of intermediate water masses, characterised by low salinity (34.5–34.8, Fig. 2a) and elevated silicate concentration (22–35 μmol/kg, Fig. 2b), is known here as the modified AAIW (mAAIW).

Satellite observations of surface chlorophyll concentration (NASA Goddard Space Flight Center, 2018 Reprocessing) suggest that marine primary productivity above Carter, Knipovich and Vema (the eastern and mid-Atlantic sites) is generally higher than that above Vayda and Gramberg (the western sites) (Fig. 1). The Vema, Vayda and Gramberg sites are also situated relatively proximal to active hydrothermal vent fields previously observed (Beaulieu et al., 2013) along the MAR (Fig. 1). The study area is also in the vicinity of nepheloid layers that were previously found off the
North African margin, and to the north of Amazon outflow (north of Brazil) (Gardner et al., 2018a; Gardner et al., 2018b).

3. METHODS

3.1. Beam attenuation coefficient as a proxy of seawater particle concentration

A Chelsea/Seatech transmissometer (s/n: 09-7107-001) integrated with the CTD rosette was used to measure light transmissivity in seawater at the study sites. The transmissometer measurement was used to calculate the beam attenuation coefficient (m⁻¹) (Equation 1), which has been used as a proxy of particle concentration in seawater, and to identify nepheloid layers at depth (Gardner et al., 2018a; Hayes et al., 2015a).

Equation 1. Beam attenuation coefficient = -(1/r) * ln(Tr)

where r is the beam path length of the transmissometer (0.25 m), and Tr is the fraction of beam transmission relative to the initial beam intensity.

3.2. Sediment Fe/Ti as tracer of hydrothermal activity

Using the ITRAX X-ray Fluorescence (XRF) core scanner in the British Ocean Sediment Core Research Facility, Fe and Ti data were generated for two sediment cores collected from Gramberg (JC094-GVY14: 15.464°N, 50.992°W, 2714 m depth) and Carter (JC094-GVY01: 7.435°N, 21.7963°W, 3426 m depth) (Ng et al., 2018) (Fig. 1). These two sediment cores had ¹⁴C-based chronology established from a previous study (Ng et al., 2018). The main source for sediment/particulate Ti and Fe in the open ocean is atmospheric dust from the continent. Hydrothermal activity also provides significant amount of particulate Fe in a local scale, therefore surface sediments (Aquilina et al., 2014) and suspended particles in seawater (Ohnemus and Lam, 2015) from hydrothermal settings have been found to be enriched with Fe relative to Ti. Based on the principles above, sediment/particulate Fe/Ti ratio has been used as a tracer of hydrothermal activity (Aquilina et al., 2014; Ohnemus and Lam, 2015).

We defined an index of Fe/Ti, I_{Fe/Ti}, with lithogenic background as the standard reference (Equation 2). Following this definition, oceanic settings with Fe and Ti mainly derived from the continent would have I_{Fe/Ti} of around 1, while those with additional supply of Fe from hydrothermal systems would have I_{Fe/Ti} larger than 1. Here the sediment Fe/Ti from the Carter site located far from the MAR was used as the lithogenic background reference to derive I_{Fe/Ti} for the sediments from the Gramberg site. As a comparison, I_{Fe/Ti} was also calculated for other known...
hydrothermal sites using previously published Fe/Ti data from these hydrothermal sites and lithogenic background Fe/Ti data from the surrounding region (Table 1).

Equation 2. $I_{Fe/Ti} = (Fe/Ti)_{potential\ hydrothermal\ site\ of\ interest\ e.g.\ Gramberg} / (Fe/Ti)_{lithogenic\ background\ site,\ e.g.\ Carter}$

3.3. Measurements of U-series isotopes

Analyses of seawater and sedimentary 231Pa/230Th were carried out by measuring U, Th and Pa isotopes with isotope dilution (Anderson and Fleer, 1982), employing the analytical protocols developed at the Bristol Isotope Group lab of University of Bristol (Ng et al., 2018; Rowland et al., 2017). Sample preparation first involved 236U, 229Th and 233Pa spike addition to ~0.1 g powdered bulk sediments and 4–5 L seawater.

Sediment samples were then digested in a mix of concentrated HNO$_3$, HF and HClO$_4$ (7:3:2 volume ratio) on a hotplate set at 170°C for >7 hours. Samples were evaporated to near dryness, and were further digested in concentrated HCl at 150°C till the solutions became clear. Solutions were re-evaporated and re-dissolved in 2 M HCl.

Fe solution (97 mg) was added to the seawater samples. Actinide elements were co-precipitated with Fe hydroxide by adding ammonia solution (30 %) to both the digested sediment samples and the seawater samples until orange Fe precipitates started to form (pH 7–8). Given the large volume, seawater samples had to be set aside for 7 days, with intermittent shaking to ensure equilibration. Sediment and seawater samples were then centrifuged and supernatant liquids containing the bulk of major ions were discarded. The sample precipitates were washed three times by adding dilute ammonia (pH 7–8), centrifuging, and discarding supernatants, and the precipitates were then re-dissolved in concentrated HCl.

Chemical separation of U, Th and Pa was carried out with ion-exchange chromatography, using three sets of Environmental Express® polypropylene columns loaded with Eichrom Technologies® organic pre-filter resin 100–150 mesh followed by Eichrom 1-X8 anion exchange resin 100–200 mesh. The first set of columns involved separate elution of the Th fraction with concentrated HCl, elution of the Pa fraction with mixed HCl and trace HF, and elution of the U fraction with Milli-Q water. Th fraction was then purified using the second set of columns, where the Th fraction was loaded in HNO$_3$ (8 M), and was subsequently eluted with concentrated HCl. Pa fraction was
purified using the third set of columns, where the Pa fraction was loaded in concentrated HCl, and was subsequently eluted with mixed HCl and trace HF.

Analyses of the Th, Pa and U isotopes were then conducted with standard bracketing procedures using a Thermo-Finnigan Neptune, multi collector, inductively coupled plasma-mass spectrometer (MC-ICP-MS), and a CETAC Aridus desolvating nebuliser as the sample introduction system. The 229Th and 230Th isotopes were measured alternately on the Secondary Electron Multiplier (SEM), and the 231Pa and 233Pa isotopes were measured on a multi-ion counter (MIC) array to avoid dark noise building up on the SEM. Replicate analyses of a homogenised Southern Ocean siliceous ooze (Anderson et al., 2012) and an artificial seawater standard pre-calibrated at the Woods Hole Oceanographic Institution (Auro et al., 2012) were performed over the duration of this study, and the resulting 231Pa and 230Th measurements were generally in good agreement with reported calibrations (Table 2), demonstrating the reliability of our U-series analytical protocol.

Seawater and sedimentary 231Pa$_{ev}$/ 230Th$_{ex}$ were calculated by correcting the 231Pa and 230Th measurements for fractions that are supported by the decay of lithogenic and authigenic U by assuming a lithogenic 238U/232Th activity ratio of 0.6 for the Atlantic Ocean. We found that the choice of lithogenic 238U/232Th within the uncertainty of the derived Atlantic average value (0.6 ± 0.1, or more recently, 0.55 ± 0.16) (Bourne et al., 2012; Henderson and Anderson, 2003) made no significant difference to the 231Pa/230Th values for our seawater and core-top sediment samples.

The sedimentary 231Pa and 230Th measurements were also corrected for radioactive decay to the age of sediment deposition. Uncertainty in 231Pa/230Th measurements was propagated from internal errors associated with weighing, spike calibration and MC-ICP-MS measurements using a Monte-Carlo method.

3.4 Fractionation of 231Pa and 230Th, and sediment (flux) composition

The activity concentrations of 231Pa and 230Th were used to calculate their distribution coefficients, Kd$_{Pa}$ and Kd$_{th}$ (Anderson et al., 1983a), defined as the ratios of the sediment (particulate) activity concentrations of the isotopes, $[^{231}\text{Pa}]$, and $[^{230}\text{Th}]$, (dpm/g), compared to the paired seawater dissolved activity concentrations, $[^{231}\text{Pa}]_d$ and $[^{230}\text{Th}]_d$ (dpm/g) (Equation 3). The relative fractionation of 231Pa/230Th between the seawater dissolved phase and the sediment particulate-adsorbed phase, $F_{\text{Th/Pa}}$ (Anderson et al., 1983a; Hayes et al., 2015b), was also calculated (Equation 4).
\[\text{Equation 3. } K_{d_{\text{Th}}} = \frac{[{\text{230}}\text{Th}]_{s}}{[{\text{230}}\text{Th}]_{d}} \]

\[K_{d_{\text{Pa}}} = \frac{[{\text{231}}\text{Pa}]_{s}}{[{\text{231}}\text{Pa}]_{d}} \]

\[\text{Equation 4. } F_{\text{Th/Pa}} = K_{d_{\text{Th}}} / K_{d_{\text{Pa}}} \]

Major composition of the core-top sediment samples: CaCO\(_3\), biogenic opal, total organic carbon (TOC), and lithogensics have been reported in a previous study (Rowland et al., 2017) (Fig. 3a–d).

Vertical sediment fluxes at the study sites were also estimated (Fig. 3e–i) using the \(^{230}\text{Th}-\)normalisation method (Rowland et al., 2017). These data aid interpretation of \(K_{d_{\text{Pa}}}, K_{d_{\text{Th}}},\) and \(F_{\text{Th/Pa}}\), which have been suggested to reflect the affinity of the two isotopes to distinct chemical phases in the sinking particles/sediments (Chase et al., 2002; Geibert and Usbeck, 2004; Guo et al., 2002; Hayes et al., 2015b).

4. RESULTS

4.1. Beam attenuation coefficient

The highest beam attenuation coefficient values are observed in the top 50 m of the water column: 0.1–0.27 m\(^{-1}\). Below that, beam attenuation coefficient falls rapidly to low levels (<0.05 m\(^{-1}\) below 500 m depth, <0.02 m\(^{-1}\) below 2500 m depth) at Knipovich, Vema and Vayda (Fig. 2c). In contrast, at the easternmost Carter depth transect, beam attenuation coefficient remains relatively elevated (~0.05 m\(^{-1}\) on average) from 200–4500 m (Fig. 2c).

4.2. Sediment Fe/Ti and \(I_{\text{Fe/Ti}}\)

Sediments from the Carter site have higher Fe and Ti content than those from the Gramberg site (Fig. 4a & b). Whilst there are large downcore changes in sediment Fe and Ti content for both Carter and Gramberg sediment cores (Fig. 4a & b), the Fe/Ti ratios of the two cores remain fairly constant downcore (Fig. 4c). The Gramberg sediment core overall has slightly higher Fe/Ti (~51 on average) than the core from Carter (~38 on average), and the Gramberg core records higher Fe/Ti variability between 5 and 20 cm depth (Fig. 4c).

The \(I_{\text{Fe/Ti}}\) calculated for the Gramberg site (relative to the Carter site) (Equation 2) using the Fe/Ti data from the top 1 cm of the sediment cores (<4 ka, Fig. 4) is 1.29 ± 0.34. This value is lower than the \(I_{\text{Fe/Ti}}\) calculated for other hydrothermal sites (Table 1). The \(I_{\text{Fe/Ti}}\) for Hook Ridge (Aquilina et al., 2014), Rainbow hydrothermal field (Cave et al., 2002), Logatchev hydrothermal field (Chavagnac et al., 2008), and TAG hydrothermal field (Ohnemus and Lam, 2015) (relative to the lithogenic
background around these hydrothermal sites) are estimated to be 2.9 ± 0.1, 3.3 ± 1.5, 1.7 ± 0.4, and >3 respectively (Table 1).

4.3. Seawater and sedimentary $^{231}\text{Pa}/^{230}\text{Th}$

The ^{230}Th measurements of the seawater and core-top sediment samples have been reported in a previous study (Rowland et al., 2017). The measured tropical Atlantic seawater dissolved ^{231}Pa concentration ranges from 0.12–0.37 dpm/1000 kg. Similar to the ^{230}Th concentration (Rowland et al., 2017) (Fig. 5a), the ^{231}Pa concentration in seawater increases with depth from 0.5–1.5 km (Fig. 5b). However, below this depth range, the concentration and $^{231}\text{Pa}/^{230}\text{Th}$ profiles at Vayda display different trends compared to the eastern and mid-Atlantic sites (Carter, Knipovich and Vema). The eastern and mid-Atlantic sites show a coherent decrease in seawater dissolved $^{231}\text{Pa}/^{230}\text{Th}$ with increasing water depth below 1.5 km (Fig. 5c). This seawater $^{231}\text{Pa}/^{230}\text{Th}$ decrease is associated with (negative) deviations of dissolved ^{231}Pa and ^{230}Th concentration profiles from linear positive depth trends characteristic of reverse scavenging profiles (Bacon and Anderson, 1982), with greater deviations observed in the ^{231}Pa profiles (Fig. 5a & b). In contrast, Vayda exhibits considerably lower ^{230}Th and ^{231}Pa concentrations which persist at 0.1–0.2 dpm/1000 kg between 2 and 4 km water depth (Fig. 5a & b). The single seawater sample from Gramberg 2.7 km depth also shows low ^{230}Th and ^{231}Pa concentrations comparable to the Vayda sample from similar water depth (Fig. 5a & b). The seawater $^{231}\text{Pa}/^{230}\text{Th}$ depth profile derived from Vayda displays a peak constrained by four data points with a maximum value of 1.2 at 2.8 km (Fig. 5c).

Core-top sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ at all five depth transects display a relatively coherent decreasing trend with increasing water depth over the NADW and mAABW depth range (>1.5 km). In general, core-top $^{231}\text{Pa}/^{230}\text{Th}$ decreases from values near production ratio (~0.093) at 1.5–2.5 km to ~0.045 at 4.5 km (Fig. 5d). At intermediate water depths (0.5–1.5 km) where the sites are bathed in mAAIW, core-top sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ are above the production ratio, with higher values at shallower depths, reaching 0.27 at the shallowest site (0.57 km) (Fig. 5d). Within 0.5–1.5 km, the eastern and mid-Atlantic sites seem to exhibit higher core-top $^{231}\text{Pa}/^{230}\text{Th}$ than the western sites at comparable water depths (Fig. 5d). The core-top sediment samples are of variable ages (1.0–8.8 ka BP) (Rowland et al., 2017), but existing Atlantic sediment core records show that sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ varies only by a maximum of 0.02 over the range of these core-top ages (Hoffmann et al., 2018; Lippold et al., 2019; Ng et al., 2018). Such uncertainty is smaller than the range of major core-top $^{231}\text{Pa}/^{230}\text{Th}$ trends observed and described above.
4.4. K_d and $F_{Th/Pa}$

The $\log_{10} K_d_{Th}$, $\log_{10} K_d_{Pa}$, and $F_{Th/Pa}$ of paired seawater and core-top sediment samples range from 6.7–7.9, 5.8–6.7, and 3.3–14.7 respectively (Fig. 6). Vayda (and Gramberg) depth profiles hint at modest elevations of $F_{Th/Pa}$ (Fig. 6c), $\log_{10} K_d_{Th}$ (Fig. 6a), and potentially $\log_{10} K_d_{Pa}$ (Fig. 6b) between ~2 and 4 km, where heightened seawater dissolved $^{231}Pa/^{230}Th$ has also been observed (Fig. 5c). Unfortunately, the maximum value of the seawater $^{231}Pa/^{230}Th$ at Vayda 2.8 km depth does not have a paired core-top sediment sample and hence does not have corresponding $F_{Th/Pa}$, $\log_{10} K_d_{Th}$ and $\log_{10} K_d_{Pa}$ values. The heightened $F_{Th/Pa}$, $\log_{10} K_d_{Th}$, and potentially $\log_{10} K_d_{Pa}$ at depth are defined with the three remaining data points from Vayda 2–4 km depths and one data point from Gramberg 2.7 km depth (Fig. 6).

The lowest $F_{Th/Pa}$ (3.3–5.3) are found at the intermediate depths (0.5–1.5 km) of Carter, Knipovich and Vema (Fig. 6c), where the highest core-top sedimentary $^{231}Pa/^{230}Th$ (0.19–0.27) are observed (Fig. 5d). These low $F_{Th/Pa}$ values fall very close to the endmember $F_{Th/Pa}$ associated with particulate organic matters: 4.9 ± 4.3 (Hayes et al., 2015b) (Fig. 6c). Interestingly, the vertical flux of TOC (Fig. 3g) and core-top sediment TOC content (Rowland et al., 2017) (Fig. 3c) indeed are overall higher at the eastern sites (Carter and Knipovich). $F_{Th/Pa}$ at Carter, Knipovich and Vema gradually increase with depth towards values close to the endmember $F_{Th/Pa}$ associated with lithogens: 10.0 ± 1.3 (Hayes et al., 2015b) (Fig. 6c), as vertical flux of lithogens (Rowland et al., 2017) (Fig. 3h) and core-top sediment lithogenic content (Fig. 3d) are increased at depth.

A previous modelling study has indicated the likelihood that seafloor sediments reflect ^{231}Pa and ^{230}Th signals from the bottom ~1 km of the overlying water column (Thomas et al., 2006). Given this previous finding, we have adopted the approach following Lippold et al. (2011) to calculate the $\log_{10} K_d_{Th}$, $\log_{10} K_d_{Pa}$, and $F_{Th/Pa}$ using interpolated seawater ^{231}Pa and ^{230}Th measurements from 0.5 km (mid-point of 1 km) above the core-top sediment sample sites. Results obtained with this alternative approach are slightly shifted from the original values (Fig. 6), but they do not cause large changes to the major trends described above.

5. DISCUSSION

5.1. Enhanced removal of seawater ^{231}Pa and ^{230}Th at Vayda and Gramberg
Persistently low seawater dissolved ^{231}Pa and ^{230}Th (Rowland et al., 2017) concentrations (Fig. 5a
& b), as well as elevated $\log_{10} Kd_{\text{Th}}$ and $\log_{10} Kd_{\text{Pa}}$ (Fig. 6a & b) at deep Vayda and Gramberg (~2–4
km) point towards enhanced removal of the isotopes from seawater. The range of $F_{\text{Th/Pa}}$ observed
here (~10–18, Fig. 6c) is consistent with scavenging of ^{231}Pa and ^{230}Th by Fe-rich particles in
hydrothermal plumes or by resuspended sediments dominantly composed of lithogenics and
CaCO_3 in nepheloid layers (Hayes et al., 2015b). Either of these processes could be viable at this
location because the local elevation of deep Vayda-Gramberg seawater $^{231}\text{Pa}/^{230}\text{Th}$ (Fig. 7b) is
similar to the $^{231}\text{Pa}/^{230}\text{Th}$ signals at hydrothermal vent fields and documented nepheloid layers
(Fig. 7a), which have both been associated with a dispersive flux of the relatively soluble ^{231}Pa
towards these settings of enhanced scavenging (Hayes et al., 2015a). However, our own
transmissometer data from the study area did not show significant elevation in beam attenuation
coefficient (Fig. 2c), which would have supported the presence of particles associated with a
nepheloid layer or hydrothermal plume (Hayes et al., 2015a). Below we consider these two
different scenarios in the wider oceanographic context.

Recent observations have revealed continuous enhanced removal of ^{231}Pa and ^{230}Th from
seawater by a horizontally advecting, thick (~1–2 km thick) plume up to 4000 km downstream of
an active hydrothermal site (Pavia et al., 2018). Active hydrothermal vents and plumes have been
observed at Logatchev (Chavagnac et al., 2008), consistent with the elevated $I_{\text{Fe/Ti}}$ estimated for
the region (1.7 ± 0.4, Table 1). Vayda and Gramberg seamounts are located ~350–650 km west
from the Logatchev hydrothermal field, MAR (Fig. 1). Therefore, even with no active vent at deep
Vayda and Gramberg, seawater dissolved ^{231}Pa and ^{230}Th concentrations at these sites (~2–4 km
depth) could still be affected by hydrothermal plume advected from the Logatchev hydrothermal
sites (~3 km depth), especially in light of evidence for a westward-flowing deep current from the
MAR at ~15°N (Lankhorst et al., 2009). The bulk of the particulates including Fe and Mn
oxhydroxides is expected to have settled out of the advecting plume within ~200 km (Pavia et al.,
2018) from the Logatchev source, which is consistent with the low beam attenuation coefficient
values at deep Vayda (Fig. 2c). However, nanoparticulate and ligand-bound Fe and Mn that would
remain suspended for extended period in the advecting plume could act to continue scavenging
^{231}Pa and ^{230}Th along the flow path (Pavia et al., 2018), leading to the low seawater dissolved
isotope concentrations (Fig. 5a & b) at deep Vayda and Gramberg (~2–4 km). A small amount of
the hydrothermal-sourced nanoparticulate and ligand-bound Fe and Mn might be deposited at
Vayda and Gramberg, and would be masked by the lithogenic Fe oxides in the sediments, which explain the low $I_{Fe/Ti}$ value at deep Gramberg (Fig. 4).

Alternatively, we consider the possibility of transient nepheloid layers that were not detected during our field campaign. Benthic storms are strong bottom current events found to occur in regions with highly energetic sea-surface eddies, and are considered capable of resuspending fine-grained seafloor sediments and generating transient episodes of intense nepheloid activity (Gardner et al., 2017). A correlation between the occurrence of benthic storms, nepheloid layers and sea-surface eddy kinetic energy has been found in the western North Atlantic (Gardner et al., 2018b; Gardner et al., 2017), and temporal variations of nepheloid layers have been linked to short-term changes in seawater 231Pa and 230Th concentrations observed at the Bermuda Atlantic Time Series Station (Anderson et al., 2012). Vayda and Gramberg seamounts are located just north of a region of active eddy formation with high mean kinetic energy due to the retroflection of the North Brazil Current (Aguedjou et al., 2019). Downward propagation of these eddies could lead to episodic formation of nepheloid layers off the seamounts (Gardner et al., 2017). Importantly for this study site, the high bathymetric relief of the seamounts is thought to promote formation of thick (~1–1.5 km thick) nepheloid zones thousands of meters above the abyssal plain (Gardner et al., 2018a; Gardner et al., 2017). Intense nepheloid layers generated by benthic storms are short-lived (up to months) (Gardner et al., 2017), and could have been missed during the CTD transmissometer data collection at Vayda (Fig. 2c). However, the recurring nature of such nepheloid layers (Gardner et al., 2017) could lead to enhanced scavenging of 231Pa and 230Th at deep Vayda and Gramberg (~2–4 km), causing the low seawater concentrations observed in this region (Fig. 5a & b).

With the existing data set, we are not able to distinguish between transient nepheloid layers or hydrothermal scavenging in the removal of seawater dissolved 231Pa and 230Th at deep Vayda and Gramberg. Further constraining the mechanism at work here would require time-series observations of 231Pa, 230Th (Anderson et al., 2012), particle concentration (Gardner et al., 2017), and high-resolution spatial sampling around active vents in the region (Pavia et al., 2018).

5.2. Deep export versus intermediate-depth scavenging of 231Pa

Away from nepheloid layers, hydrothermal settings and margins, new and existing (Luo et al., 2010; Moran et al., 2002) seawater data from the tropical Atlantic (5–15°N, Fig. 7b) and the North
Atlantic GEOTRACES (Hayes et al., 2015a) section (15–40° N, Fig. 7a) generally show decreasing dissolved $^{231}\text{Pa}/^{230}\text{Th}$ with increasing depth below the mAAIW-NADW water mass boundary at ~1.5 km. This trend, linked to the concave seawater ^{231}Pa and ^{230}Th concentration depth profiles (e.g. Fig. 5a & b), has a complex relationship with the transit time, flow path, and the scavenging history of deep water masses (Hayes et al., 2015a). Meanwhile, our core-top sediment results consistently show $^{231}\text{Pa}/^{230}\text{Th}$ below the production ratio (0.093) in the deep basin (>2.5 km), with similar values even at sites proximal to settings of enhanced scavenging (deep Vayda and Gramberg, Fig. 8). The widespread observations of core-top sedimentary $^{231}\text{Pa}/^{230}\text{Th}$<0.093 in the deep basin is most likely driven by a relatively persistent, large-scale control, which is consistent with a net ^{231}Pa export (relative to ^{230}Th) by the overall southward advection of NADW (Bradtmiller et al., 2014; Lippold et al., 2012; Ng et al., 2018; Yu et al., 1996).

In contrast to the deep water situation, our new core-top results together with sediment data from the Caribbean (Lippold et al., 2011) show a large range of sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ at intermediate depths (0.5–1.5 km) and a broad east-west difference (Fig. 8). The eastern Carter, Knipovich and mid-Atlantic Vema exhibit the highest observed $^{231}\text{Pa}/^{230}\text{Th}$, well above the production ratio (0.19–0.27), followed by intermediate values observed at Vayda and Gramberg situated just west of the MAR (0.12–0.16), and finally the Caribbean sites showing values close to the production ratio (~0.09). The regional difference is likely to be associated with enhanced scavenging of ^{231}Pa in the eastern and mid-Atlantic sites driven by higher marine primary productivity (Fig. 1) and elevated flux of organics to the sediments (Fig. 3c & g), consistent with the $F_{\text{Th/Pa}}$ data (Fig. 6c) of these sites. This finding is also in agreement with a recent modelling study that has highlighted the importance of particulate organic carbon in controlling sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ in the Atlantic Ocean (Missiaen et al., 2020). However, we argue that enhanced scavenging of ^{231}Pa from the overlying water column is not sufficient to explain $^{231}\text{Pa}/^{230}\text{Th}$>0.093 (production ratio) observed in the core-top sediments at 0.5–1.5 km depths (Fig. 8), because that would require preferential scavenging of ^{231}Pa over ^{230}Th, which is not consistent with the derived $F_{\text{Th/Pa}}$ values of >1 (Fig. 6c). Instead, the high ratios can only be resolved with an additional input of ^{231}Pa relative to ^{230}Th to the intermediate-depth sites.

First we consider the role of mechanisms related to boundary scavenging, although all of our sites are far from the continental margins. Elevated beam attenuation coefficient at the Carter depth transect in the east (Fig. 2c) may be related to lithogenic input from the African continent.
(Rowland et al., 2017) and to relatively high levels of marine productivity (NASA Goddard Space Flight Center, 2018 Reprocessing) (Fig. 1), providing some evidence for a potential influence of boundary scavenging. Indeed, there is a broad increase of seawater dissolved $^{231}\text{Pa}/^{230}\text{Th}$ eastward from 27° W to 22° W at intermediate depths, for example, from 0.65 to 0.90 at 1.5 km (Fig. 7b), consistent with diffusive transport of the more soluble ^{231}Pa towards the African margin driven by boundary scavenging (Hayes et al., 2015a). Given that the transport length scales associated with lateral eddy diffusivity are estimated to be ~800–1300 km for ^{230}Th and ~2750–3080 km for ^{231}Pa (Hayes et al., 2015a), the preferential net diffusive transport due to boundary scavenging could also contribute to the higher core-top sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ observed at the eastern sites between the 0.5–1.5 km depth range.

It is harder to explain the high $^{231}\text{Pa}/^{230}\text{Th}$ at the western sites with boundary scavenging, so we assess the role of mAAIW in transporting ^{231}Pa and ^{230}Th at intermediate depths using a simple box model approach adapted from Deng et al. (2014) and Deng et al. (2018). Advection of the isotopes by the mAAIW, M_{pa} and M_{th} (dpm/yr), is estimated (Equation 5) based on the meridional transport of this water mass, Q (m3/yr), derived at 4.5° S and 24.5° N, and the dissolved isotope concentrations previously analysed near those latitudes (Table 3). At intermediate depths, we find 3.2×10^{13} dpm/yr of ^{231}Pa and 4.5×10^{13} dpm/yr of ^{230}Th transported from the South Atlantic into the northern tropical Atlantic, and 0.9×10^{13} dpm/yr of ^{231}Pa and 1.6×10^{13} dpm/yr of ^{230}Th transported out of the northern tropical Atlantic by the northward propagating mAAIW (Fig. 9).

The advective transport gives rise to a net accumulation of the isotopes: 2.3×10^{13} dpm/yr of ^{231}Pa and 2.9×10^{13} dpm/yr of ^{230}Th in the northern tropical Atlantic intermediate layer (0.5–1.5 km).

The calculated ^{231}Pa and ^{230}Th accumulation is approximately 53% and 6% respectively of the isotopes’ production within this intermediate layer (Fig. 9), lending support to the role of mAAIW in contributing to an enhanced input of ^{231}Pa relative to ^{230}Th and the high core-top sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ above the production ratio (>0.093) at the 0.5–1.5 km depth range across the northern tropical Atlantic sites (Fig. 8).

Equation 5. $M_{\text{pa}} = Q \times [^{231}\text{Pa}]_d$

$M_{\text{th}} = Q \times [^{230}\text{Th}]_d$

We also consider a mechanism that relies on the concentration gradient of ^{231}Pa and ^{230}Th in the water column, maintained by the uniform production and the reversible scavenging behaviour of the isotopes in the ocean (Bacon and Anderson, 1982; Nozaki et al., 1987). The increase of
seawater dissolved 231Pa and 230Th with depth (Fig. 5a & b) allows for the possibility of an upward dispersive flux of these isotopes vertically across the concentration gradients to shallower waters via eddy diffusion. At our study sites, the upward dispersive flux of 231Pa and 230Th is expected to be active from ~0.5 to 1.5–2.5 km depth as the isotope concentrations in seawater increase to peak values (Fig. 5a & b). A first estimation of the proposed upward dispersive flux, V (dpm/m²/yr), is made (Equation 6) based on the average 231Pa and 230Th concentration gradient (assumed linear) across 1 km depth (Fig. 5a & b), dC/dz (dpm/m⁴), and vertical eddy diffusivity, κ_v (m²/yr), which is in the order of 10^2 m²/yr over most of the ocean interior (Wunsch and Ferrari, 2004). Calculation yields average V of 0.016 dpm/m²/yr for 231Pa and 0.033 dpm/m²/yr for 230Th. Given the region’s approximate area of 1.8×10^{13} m², total upward dispersive transport of 231Pa and 230Th across 1 km depth of the northern tropical Atlantic Ocean are estimated to be 2.9×10^{11} dpm/yr and 5.9×10^{11} dpm/yr respectively, which are small (about two orders of magnitude lower) compared to the horizontal transport of 231Pa and 230Th by mAAIW estimated above (Fig. 9). However, κ_v can be up to two orders of magnitude higher over complex bathymetry such as the seamounts and MAR at the study sites (Fig. 1), which allows for the possibility of upward dispersive transport to be significant at our sites, contributing to an additional input of the more soluble 231Pa relative to 230Th to shallower water depths. The plausibility of this mechanism, and its potential significance on the vertical redistribution of 231Pa and 230Th especially in regions of enhanced vertical diffusivity (seamounts, mid-ocean ridges) across the global ocean require further testing in future studies.

Equation 6. \[
V = \kappa_v \times dC/dz
\]

6. Conclusions

A total of 20 seawater and 20 core-top 231Pa and 230Th analyses along five depth transects (Carter, Knipovich, Vema, Vayda and Gramberg) across the northern tropical Atlantic open ocean, with 18 seawater-sediment pairs from nearby sites, reveal a coherent decrease in sedimentary 231Pa/230Th from all five depth transects and seawater dissolved 231Pa/230Th from Carter, Knipovich and Vema below 1.5 km depth. In contrast, seawater results from Vayda and Gramberg show persistently low dissolved 231Pa concentration, 230Th concentration, and elevated dissolved 231Pa/230Th, $K_{d,th}$, $K_{d,Pa}$ and $F_{th/Pa}$ at 2–4 km depths. These observations suggest enhanced removal of 231Pa, 230Th and a dispersive flux of 231Pa towards deep Vayda and Gramberg. Enhanced scavenging of the isotopes at these sites could be caused either by nearby hydrothermal vents or by episodic formation of transient nepheloid layers at the seamounts.
Meanwhile, sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ across the deep (>2.5 km) northern tropical Atlantic are consistently below the production ratio, with similarly low values observed even at sites proximal to settings of enhanced scavenging. This observation supports the dominance of the ^{231}Pa-export signal in the deep Atlantic associated with the overall southward advection of NADW. In contrast, at intermediate depths (0.5–1.5 km), core-top results show pronounced elevation of sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ above the production ratio, with higher values at the eastern and mid-Atlantic sites (Carter, Knipovich and Vema). In light of the paired seawater $^{231}\text{Pa}/^{230}\text{Th}$ and $F_{\text{Th}/\text{Pa}}$ data, these observations could be explained with an additional input of ^{231}Pa to the intermediate depths, enhanced ^{231}Pa scavenging at the eastern and mid-Atlantic sites, and/or the influence of boundary scavenging near the eastern margin. Greater ^{231}Pa scavenging might be related to elevated levels of marine primary productivity inferred at Carter, Knipovich and Vema, while the additional ^{231}Pa input could be partly maintained by mAAIW advection, and partly sourced from depth via an upward dispersive flux. The proposed upward dispersive flux is expected to have a significant magnitude at settings of enhanced vertical diffusivity such as seamounts and mid-ocean ridges, and should be considered in the evaluation of the processes that contribute to the cycling of ^{231}Pa and ^{230}Th, and the distribution of $^{231}\text{Pa}/^{230}\text{Th}$ in the ocean.

Acknowledgements

We would like to express our gratitude to the European Research Council for providing support to this study. The contribution of Jerry McManus to this research was supported in part by US-NSF award number AGS 16-35019. We appreciate the help and advice from Christopher Coath, Katherine Adena, Tim Elliot and Carolyn Taylor from the Bristol Isotope Group, and Maureen Auro from WHOI in setting up the sediment and seawater $^{231}\text{Pa}/^{230}\text{Th}$ analytical protocol at the UoB. Great thanks to the scientists and crew of JC094 for their assistance in collection of sediment and seawater samples from the tropical Atlantic Ocean. We are also grateful to Suzanne Maclachlan and BOSCORF for providing support in sediment core scanning operation. Sincere thanks to Sifan Gu and Zhengyu Liu for insightful discussions.

Data statement

The data reported in this paper are listed in the Supplementary Information and will be archived in Pangaea database.
Figure 1. Site maps showing the locations of core-top sediment and seawater samples. The sample sites consist mainly of five labelled depth transects: [1] Carter, [2] Knipovich, [3] Vema, [4] Vayda, and [5] Gramberg. Surface ocean chlorophyll concentrations plotted in log scale on the top regional map are long-term averages of monthly satellite (MODIS-Aqua) data (NASA Goddard Space Flight Center, 2018 Reprocessing) over year 2002–2013 derived using the Giovanni online data system (Acker and Leptoukh, 2007). Individual local maps focusing on the respective coordinates of depth transects [1]–[5] have contour lines drawn to indicate water depths (black, grey, brown, orange and yellow lines mark 5 km, 4 km, 3 km, 2 km and 1 km depths respectively). Based on historical observations published on the InterRidge Vents Database (Beaulieu et al., 2013) Ver. 3.4 (accessed online on 22 June 2020), potentially active hydrothermal vent fields in proximity to the sample sites are plotted on the local maps. Yellow diamonds mark the sediment cores used to derive Fe/Ti for Gramberg and Carter sites (Fig. 4) as a tracer of hydrothermal activity. The local maps were generated using the Ocean Data View (ODV) program (Schlitzer, 2012).
Figure 2. Depth sections showing seawater properties at the northern tropical Atlantic. (a) Salinity, (b) Silicate concentration, and (c) Beam attenuation coefficient. Salinity and silicate concentration data consist of measurements of seawater samples obtained from the JC094 cruise (Robinson, 2014) and those published on the GLODAP database (Key et al., 2004), which are marked by the black stars and blue dots respectively on the map. Black lines in (c) mark where the beam attenuation coefficient data were collected from during the JC094 cruise, at depth resolution greater than 1 m. Red line drawn on the map defines the boundary of the depth sections. The symbols (defined in Fig. 1) plotted atop the depth sections mark the sample sites from depth transects labelled [1]–[5]. Bathymetry shown in dark grey is from GEBCO 30 arc-second grid (Weatherall et al., 2015), and sites may appear to be ‘below’ or ‘floating above’ the seafloor because they are superimposed on a representative section across the Atlantic, rather than the overlying bathymetry measured at the actual sites. This figure was generated using the Ocean Data View (ODV) program (Schlitzer, 2012).
Figure 3. Core-top sediment composition at the study sites and vertical sediment fluxes derived using the 230Th-normalisation method (Rowland et al., 2017). Core-top sediment (a) CaCO$_3$ content, (b) opal content, (c) total organic carbon (TOC) content, and (d) lithogenic content; Vertical (e) CaCO$_3$ flux, (f) opal flux, (g) TOC flux, (h) lithogenic flux, and (i) bulk sediment flux. Error bars represent 95% confidence interval. The 230Th-normalised fluxes from ~1.5–3.5 km depth most likely represent the best estimates of vertical sediment fluxes along the depth transects (Rowland et al., 2017). This is because the use of 230Th-normalisation method in the study area is subject to greater uncertainties above ~1.5 km depth (grey bar) (Rowland et al., 2017) partly due to the low 230Th inventories at shallower water (Costa et al., 2020), and greater uncertainties below ~3.5 km depth (brown bar) as a result of CaCO$_3$ dissolution, sediment redistribution and Th advection at depth (Costa et al., 2020; Rowland et al., 2017).
Figure 4. ITRAX core scanner Fe and Ti data for JC094-GVY14 (Gramberg) and JC094-GVY01 (Carter). (a) Fe data in kilo-counts per second (kcps), (b) Ti data, and (c) Fe/Ti ratio focusing on the top 50 cm of the sediment cores. Data was generated at 0.1 cm depth resolution. Lines display 5-point weighted running mean of the data. Empty symbols at the far right mark the core depths at which chronological tie-points were established with 14C method, and the annotations indicate the corresponding derived (calendar) ages (Ng et al., 2018).
Figure 5. Tropical Atlantic 231Pa and 230Th data. Depth profiles of seawater dissolved (a) 230Th concentration (Rowland et al., 2017), (b) 231Pa concentration (new results), (c) 231Pa/230Th (new results); and core-top sediment (d) 231Pa/230Th (new results). Data are plotted as five labelled depth transects from the localities indicated in Fig. 1. Shaded areas in red, green, blue and purple indicate the approximate water depth ranges where the following water masses are observed: mAAIW, UNADW, LNADW and mAABW respectively (Fig. 2). Error bars represent 2 S.E.M. analytical uncertainties.
Figure 6. Pa and Th distribution coefficients and fractionation factor. (a) $\log_{10} K_{d_{\text{Th}}}$, (b) $\log_{10} K_{d_{\text{Pa}}}$, and (c) $F_{\text{Pa/Th}}$. Empty symbols and solid lines are results calculated based on paired seawater and core-top samples that were acquired from nearby sites (with water depth differences of no greater than 0.28 km), and error bars represent 95 % confidence interval. Filled symbols with black outline are results calculated using interpolated seawater data, assuming that sedimentary 231Pa and 230Th signals are derived from the bottom ~1 km of the overlying water column (Lippold et al., 2011; Thomas et al., 2006). The latter approach does not yield $\log_{10} K_{d_{\text{Th}}}$, $\log_{10} K_{d_{\text{Pa}}}$ and $F_{\text{Pa/Th}}$ for the shallowest site of each depth transect, which would otherwise require extrapolation of seawater 231Pa and 230Th measurements. The vertical grey line marks $F_{\text{Pa/Th}} = 1$ which indicates no fractionation between the two isotopes by scavenging. The annotations indicate the endmember $F_{\text{Pa/Th}}$ for CaCO$_3$, lithogenic, organic matters, Fe(OH)$_3$ and MnO$_2$ derived by Hayes et al. (2015b), and endmember $F_{\text{Pa/Th}}$ for biogenic opal derived by Chase et al. (2002).
Figure 7. East-West depth sections of new and published seawater dissolved 231Pa/230Th. (a) North Atlantic and (b) tropical Atlantic depth sections. The colour maps were developed by applying the Data-Interpolating Variational Analysis (DIVA) method on the individual dissolved 231Pa/230Th data using ODV (Schlitzer, 2012). Red line drawn on the map defines the boundary of the depth sections. Number 1–5 labelled on the depth sections, defined in Fig. 1, indicate the depth transects where the sample sites of this study are located.
Figure 8. Compilation of new and published seawater and core-top $^{231}\text{Pa}/^{230}\text{Th}$ from the northern tropical Atlantic. The East-West depth section of seawater dissolved $^{231}\text{Pa}/^{230}\text{Th}$ data is plotted in the same way as described in Fig. 7b. The core-top sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ data is plotted overlain the seawater data as coloured dots. Number 1–5 labelled on the depth sections, defined in Fig. 1, indicate the depth transects where the sample sites of this study are located. Bathymetry shown in dark grey is from GEBCO 30 arc-second grid (Weatherall et al., 2015), and core-top sediment sites may appear to be ‘below’ or ‘floating above’ the seafloor because they are superimposed on a representative section across the Atlantic, rather than the overlying bathymetry measured at the actual sites.
Figure 9. Schematic showing the horizontal transport of 231Pa and 230Th by mAAIW advection across the intermediate depths of the northern tropical Atlantic Ocean. Production rates of 231Pa and 230Th are 0.00237 dpm/m3/yr and 0.0257 dpm/m3/yr respectively (Deng et al., 2018).
Table 1. Calculation of $I_{\text{Fe/Ti}}$ using Fe/Ti data from identified or potential hydrothermal settings, and Fe/Ti data from background settings away from hydrothermal sites (Equation 2).

<table>
<thead>
<tr>
<th>Identified/potential hydrothermal site</th>
<th>Background site</th>
<th>Reference</th>
<th>Material</th>
<th>$I_{\text{Fe/Ti}}$</th>
<th>+/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gramberg (GVY14), Atlantic</td>
<td>Carter (GVY01), Atlantic</td>
<td>This study</td>
<td>Sediment</td>
<td>1.29</td>
<td>0.34</td>
</tr>
<tr>
<td>Hook Ridge (MC16), Antarctica</td>
<td>Antarctic Peninsula shelf (MC1/2/3)</td>
<td>(Aquilina et al., 2014)</td>
<td>Sediment</td>
<td>2.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Rainbow hydrothermal field, Atlantic</td>
<td>Atlantic abyssal plain (BOFS)</td>
<td>(Cave et al., 2002)</td>
<td>Sediment</td>
<td>3.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Logatchev hydrothermal field, Atlantic</td>
<td>Atlantic abyssal plain (BOFS)</td>
<td>(Chavagnac et al., 2008)</td>
<td>Sediment</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>TAG hydrothermal field, Atlantic</td>
<td>Atlantic open ocean interior</td>
<td>(Ohnemus and Lam, 2015)</td>
<td>Seawater particulate</td>
<td>>3</td>
<td>-</td>
</tr>
</tbody>
</table>

$I_{\text{Fe/Ti}}$ was calculated based on the Fe/Ti data from the top ~1 cm of the sediment cores.
Table 2. Comparison of sediment and seawater standard 231Pa and 230Th measured in this study with reported values. Measured values are long-term averages (and 95% confidence interval) of repeat analysis of the sediment and seawater standards over the duration of this study (April 2014–June 2015).

<table>
<thead>
<tr>
<th>Standard</th>
<th>Isotope</th>
<th>Number of replicates</th>
<th>Measured value</th>
<th>Reference value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siliceous ooze</td>
<td>231Pa</td>
<td>10</td>
<td>1.24 ± 0.04 dpm/g</td>
<td>1.25 ± 0.07 dpm/g</td>
<td>(Anderson et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>230Th</td>
<td>10</td>
<td>5.48 ± 0.09 dpm/g</td>
<td>5.53 ± 0.22 dpm/g</td>
<td></td>
</tr>
<tr>
<td>Seawater standard</td>
<td>231Pa</td>
<td>7</td>
<td>6.35 ± 0.19 dpm/kg</td>
<td>6.26 ± 0.08 dpm/kg</td>
<td>(Auro et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>230Th</td>
<td>11</td>
<td>16.1 ± 0.4 dpm/kg</td>
<td>15.8 ± 0.2 dpm/kg</td>
<td></td>
</tr>
</tbody>
</table>

*The artificial seawater standard was made such that ~0.1–0.2 ml of the standard solution had equivalent amounts of Pa and Th isotopes as those in 4–5 L of a typical seawater sample. The seawater standard was calibrated along with the analysis of GEOTRACES inter-laboratory calibration seawater standard (Anderson et al., 2012) at the Woods Hole Oceanographic Institution laboratory following the analytical procedures detailed in (Auro et al., 2012).
Table 3. Parameters used in the evaluation of the mAAIW transport of 231Pa and 230Th at intermediate depths.

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Q (m3/yr)</th>
<th>Reference</th>
<th>$[^{231}\text{Pa}]_d$ (dpm/m3)</th>
<th>$[^{230}\text{Th}]_d$ (dpm/m3)</th>
<th>Reference/Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.5° N</td>
<td>4.7×10^{13}</td>
<td>(Fu et al., 2018)</td>
<td>0.20</td>
<td>0.35</td>
<td>(Deng et al., 2014) JC057-18</td>
</tr>
<tr>
<td>4.5° S</td>
<td>16×10^{13}</td>
<td>(Vanicek and Siedler, 2002)</td>
<td>0.20</td>
<td>0.28</td>
<td>(Hayes et al., 2015a) GT11-14</td>
</tr>
</tbody>
</table>
References

