
Peer reviewed version

Link to published version (if available):
10.1002/jbmr.4200

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via The American Society for Bone and Mineral Research at https://doi.org/10.1002/jbmr.4200. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Pathobiologic Mechanisms of Neurodegeneration in Osteopetrosis Derived from Structural and Functional Analysis of 14 ClC-7 Mutants

Eleonora Di Zannia,s, Eleonora Palaganob,c,#, Laura Lagostenaa, Dario Strinab,c, Asma Rehmand, Mario Abinune,f, Lien De Somerg, Baldassarre Martireb, Justin Browni,j, Ariana Kariminejadk, Shanti Balasubramanianl, Gareth Baynamm-p, Fiorella Gurrieriq, Maria A Pisantif, Ilaria De Maggiof, Miguel R Abboude, Robert Chiesaf, Christine P Burrenu,v, Anna Villab,w, Cristina Sobacchib,c,*, and Alessandra Picolloa,§

aConsiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, 16149 Genova, Italy
bConsiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20133 Milan, Italy
cHumanitas Clinical and Research Center, 20089 Rozzano, Italy
dUMB Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore MD 21201, USA
eDepartment of Pediatric Immunology, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
fTranslational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7U, UK
gDepartment of Pediatric Rheumatology, University Hospital Leuven, 3000 Leuven, Belgium
hPediatric Unit, “Monsignor Dimiccoli” Hospital, 70051 Barletta, Italy
iDepartment of Pediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, Australia
Department of Pediatric Endocrinology and Diabetes, Monash Children’s Hospital, Monash Health, Clayton 3168, Australia

Kariminejad-Najmabadi Pathology & Genetics Center, Shahrak Gharb, Tehran, Iran

Department of Metabolic Medicine and Rheumatology, Perth Children’s Hospital, Perth, WA 6009, Australia

Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, WA 6904, Australia

Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia

Telethon Kids Institute and Division of Pediatrics, School of Health and Medical Sciences, University of Western Australia, Perth, WA 6009, Australia

Faculty of Medicine, Notre Dame University, Fremantle WA 6160, Australia

Genetica Medica, Università Campus Bio-Medico, 00128 Rome, Italy

Medical Genetics Unit, "Antonio Cardarelli" Hospital, 80131 Naples, Italy

American University of Beirut Medical Center, Department of Pediatrics and Adolescent Medicine, Riad ElSolh, Beirut 1107 2020, Beirut, Lebanon

Bone Marrow Transplantation Department, Great Ormond Street Hospital for Children, London WC1N 3JH, UK

Department of Pediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8BJ, UK

Bristol Medical School, Translational Health Sciences Bristol Medical School, University of Bristol, Bristol BS2 8BZ, UK

San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
Present affiliation: Institute of Biosciences and BioResources, Division of Florence, National Research Council (CNR-IBBR), 50019 Sesto Fiorentino, Italy

$Present affiliation: Weill Cornell Medical College, Dept. Anesthesiology, New York, NY USA

Running title: Structural-Functional analysis of ClC-7 osteopetrotic mutations

$**Correspondence to:** Dr. Alessandra Picollo, Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genova, Italy, Via de Marini 6, 16149, Genova, Italy; phone: +39 0106475649. ORCID: 0000-0003-2980-7951

*Co-corresponding author Dr. Cristina Sobacchi, Consiglio Nazionale delle Ricerche, Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, via Fantoli 16/15, 20138, Milan, Italy; phone: +39 0282245153. ORCID: 0000-0002-2684-7184

Email: e-mail: alessandra.picollo@ge.ibf.cnr.it; cristina.sobacchi@humanitasresearch.it

Disclosures

The authors have nothing to disclose.
Abstract

ClC-7 is a chloride-proton antiporter of the CLC protein family. In complex with its accessory protein Ostm-1, ClC-7 localizes to lysosomes and to the osteoclasts’ ruffled border, where it plays a critical role in acidifying the resorption lacuna during bone resorption. Gene inactivation in mice causes severe osteopetrosis, neurodegeneration and lysosomal storage disease. Mutations in the human CLCN7 gene are associated with diverse forms of osteopetrosis. The functional evaluation of ClC-7 variants might be informative with respect to their pathogenicity, but the cellular localization of the protein hampers this analysis. Here we investigated the functional effects of thirteen CLCN7 mutations identified in thirteen new patients with severe or mild osteopetrosis, and a known ADO2 mutation. We mapped the mutated amino acid residues in the homology model of CIC-7 protein, assessed the lysosomal co-localization of CIC-7 mutants and Ostm1 through confocal microscopy, and performed patch-clamp recordings on plasma-membrane-targeted mutant CIC-7. Finally, we analyzed these results together with the patients’ clinical features and suggested a correlation between the lack of ClC-7/Ostm1 in lysosomes and severe neurodegeneration.

Keywords: osteopetrosis; osteoclast; chloride-proton exchanger; lysosomal localization; missense mutations
Main Text

Introduction

Bone homeostasis is a complex mechanism that relies on the interplay between osteoblast and osteoclast cells: the former is responsible for bone production, while the latter is responsible for bone resorption. Bone degradation requires the acidification of the resorption lacuna, the space created between the bone matrix and the ruffled border membranes of osteoclasts (1). Key players in the acidification process are the vacuolar-type V-ATPase that drives H\(^+\) into the resorption lacuna(2) and the CIC-7/Ostm1 protein complex that facilitates acidification(3) (Fig 1a). The CIC-7 protein is an electrogenic chloride/proton exchanger swapping two chloride ions for one proton(4). Its interaction with the accessory protein Ostm1 is required for protein stability and proper function(5). Two sources of evidence highlight the role of CIC-7 in osteoclast bone resorption. First, CIC-7 knockout mice develop severe osteopetrosis, a genetic disorder with extremely dense and fragile bones(6). In addition, genetic defects in the CLCN7 gene coding for the CIC-7 protein are present in patients affected by osteopetrosis, which can display different degrees of severity, ranging from lethal to asymptomatic(7,8). In particular, CIC-7 missense mutations have been found in patients affected by autosomal recessive osteopetrosis (ARO), the most severe form of which is sometimes associated with primary neurodegeneration (referred to subsequently as “neurodegeneration”); or by autosomal dominant osteopetrosis type II (ADO2). The only available cure for human ARO is hematopoietic stem cell transplantation (HSCT), which however is not indicated in patients with neurodegeneration, representing about 50% of CIC-7 ARO cases(9,10); consequently, an early diagnosis is critical for defining clinical management(11,12). On the other hand, ADO2 may be underdiagnosed, since up to 30% of individuals carrying a CLCN7 dominant mutation may display neither the classic skeletal phenotype nor other defects(13). In symptomatic patients, the onset of the clinical symptoms is
usually in late childhood or in adulthood, but severe cases diagnosed in infancy have been described\(^8,14\). In ADO2, the mutated allele exerts a dominant negative effect on the dimeric complex, as demonstrated for the p.Gly215Arg mutation, one of the most common in ADO2 patients\(^15\). In this case, a possible therapeutic strategy under investigation is siRNA-mediated silencing of the mutated allele\(^16\).

Since the first recognition of \textit{CLCN7} mutations in human osteopetrosis, a large number of defects in this gene have been identified. While the clinical significance of nonsense mutations and insertions/deletions is rather intuitive, classifying missense mutations remains challenging. Missense variants constitute about 60\% of the total number of variants in this highly polymorphic gene, based on the number of polymorphisms annotated in common databases. Moreover, mutations are most often found in single families (particularly in relation to recessive cases), therefore comparing the phenotype of affected individuals with the same genotype is generally not possible; hence, a functional evaluation of the variants is important for assessing possible pathogenicity. In particular, ClC-7 genetic defects could result in absence of the protein, subcellular protein mis-localization, uncoupling of Cl\(^-\)/H\(^+\) transport, reduced ion transport activity or accelerated kinetics of transport\(^3\). However, the cellular localization of the protein, essentially on lysosomal membranes and on the osteoclasts’ ruffled border, hampers a straightforward analysis of these features\(^5\).

In 2011, in a pivotal study, Leisle and colleagues identified ClC-7 as a slowly voltage-gated 2Cl\(^-\)/1H\(^+\) exchanger, set up an electrophysiological assay and tested fourteen \textit{CLCN7} mutations reported in osteopetrotic patients\(^17\). The genetic heterogeneity of this form of osteopetrosis, as well as the need to define genotype-phenotype correlations possibly relevant for early management, has grown since that time. The work described herein extends Leisle’s approach\(^17\). We used a combination of imaging analysis, electrophysiological measurements and an optical
assay to investigate the functional alterations of thirteen different ClC-7 protein mutants carrying previously not-tested missense mutations spread throughout the entire gene and identified in patients affected by different forms of osteopetrosis. We also included in this series of mutations the p.Pro249Leu variant that is recurrently identified in ADO2(18-20) and has been reported also in two ARO siblings at the compound heterozygous state with the p.Ser744Phe mutation(14). Our results point to structural-functional correlations that might explain the molecular basis of disease severity.

Materials and Methods

Genetic diagnosis

Specimens, including blood and DNA samples, and clinical data were collected from patients and their parents after informed consent. Mutation analysis of the *CLCN7* gene (GenBank: AL031600.4) was performed as previously described(14). This research complies with the World Medical Association Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects, and with the standards established by the Independent Ethical Committee of the Humanitas Clinical and Research Centre.

For Pt 8, the molecular analysis was conducted at University Hospitals Bristol and Weston NHS Foundation Trust, in accordance with the standards established by the Declaration of Helsinki and by the Institutional Ethical Committee, using the Osteopetrosis virtual panel, including the following genes: *ANKH* (NM_054027.4), *CA2* (NM_000067.2), *CLCN7* (NM_001287.4/NM_001287.5), *CTSK* (NM_000396.3), *FAM123B* (NM_152424.3), *FAM20C* (NM_020223.3), *FERMT3* (NM_178443.2), *IKBKG* (NM_001099856.2), *LEMD3* (NM_014319.4), *LRP5* (NM_002335.2), *OSTM1* (NM_014028.3), *SNX10* (NM_001199835.1), *SOST* (NM_025237.2), *TCIRG1* (NM_006019.3), *TGFB1* (NM_000660.4), *PLEKH1*
(NM_014798.2), PTHR1 (NM_000316.2), RASGRP2 (NM_001098670.1), TNFRSF11A (RANK)
(NM_003839.2/NM_003839.3), TNFSF11 (RANKL) (NM_003701.3), TYROBP (NM_003332.3).
Target sequence enrichment was performed using the Agilent Focused Exome target enrichment
kit (SureSelectXT) and sequencing was performed using an Illumina NextSeq500 platform.
Sequence analysis was carried out exploiting an open source in-house pipeline, including the
BWA-MEM software for alignment to the reference genome (hg19 human genome), GATK
HaplotypeCaller for genotyping, the Geneticist Assistant tool (SoftGenetics®, LLC) for variant
annotation and filtering, and the Comprehensive R Archive Network (CRAN) ExomeDepth
Package(21) for the detection of copy number variants. The identified variants were then
confirmed using Sanger Sequencing.

Molecular biology and heterologous system
All cDNA used for cell transfection were cloned in the pFrog vector,(22) a modified version of
pcDNA3.1 vector suitable for transient transfection in HEK293 cells.
For patch clamp experiments and fluorescence assays we used the construct characterized by
Zanardi et al 2013, in which the C-terminal of Ostm1 is linked through a 2AP cleavage peptide
with the N terminal of plasma membrane mutants of rat ClC-7 (ClC-7PM)(23). In turn, the C
terminal of ClC-7PM is covalently linked with the E²GFP/DsRed/pH/chloride sensor(24), to form
the full construct Ostm1-2AP-ClC-7PM-E²GFP/DsRed-pFrog. HEK293 cells were transfected
with 200-400 ng of the plasmid. For optical assays, HEK293 cells were co-transfected with this
construct and with 200 ng of the Phe-Met-Arg-Phe-NH2 (FMRFamide)-gated sodium channel
PRC_FaNaCh. For the co-localization experiments, HEK293 cells were co-transfected with
rClC-7-eGFP and Ostm1-mCherry. All transfections were performed using the Effectene reagent
(Qiagen), according to the manufacturer’s instructions.
The CLCN7 mutations were introduced in the wild type sequence by means of recombinant PCR, using the Fast mutagenesis System (TransGen Biotech Co), and confirmed by DNA sequencing.

Electrophysiology

Patch clamp experiments were performed in whole cell configuration 36-48 hours after transfection. Pipettes were pulled from borosilicate glass capillaries (Hilgenberg GmbH) and had a resistance of 2-3 MΩ in recording solutions. The extracellular solution contained (in mM): 140 NaCl, 2 MgSO₄, 2 CaCl₂, 10 Hepes, pH 7.3. The intracellular solution contained (in mM): 130 CsCl, 2 EGTA, 2 MgSO₄ and 10 Hepes at pH 7.3. Pulses were elicited from a holding potential of 0 mV for 25 ms, followed by voltage steps from -100 mV to 100 mV with 20 mV increments for 2 s (500 ms in the case of the faster mutant p.Leu323Pro) and followed by tail pulse at -60 mV for 500 ms (50 ms for p.Leu323Pro) and back to 0 mV. Data were acquired at 50 kHz after filtering at 10 kHz with an eight-pole Bessel filter using an Axopatch 200 amplifier (Molecular Devices, LLC).

To investigate the kinetics of de-activation we used the following voltage protocol starting from a holding potential of 0 mV for 100 ms: pre-pulse at +80 mV for 1500 ms, followed by voltage steps from -100 mV to 100 mV with 20 mV increments for 500 ms, then -30 mV pulse for 250 ms.

All data were acquired at room temperature with the custom acquisition program GePulse and analyzed with the custom program Ana (both available at: http://users.ge.ibf.cnr.it/pusch/) and SigmaPlot (Systat Software, Inc).

Confocal fluorescence microscopy
Transiently transfected HEK293 cells were seeded in glass-bottom petri dishes (purchased from IBL Baustoff + Labor GmbH). Live cell imaging was performed using a Leica TCS-SL confocal laser scanning microscope equipped with 63X oil immersion objectives (numerical aperture 1.45). Final images are the average of 4 to 12 acquisitions. No filtering was applied. Lysosomes were stained using LysoTracker Deep Red (Thermo Fisher Scientific), at a final concentration of 25 nM, 1 hour before visualization. The plasma membrane marker FM4-64 (Thermofisher) was added at a final concentration of 10 µM in cold solution and cells were immediately recorded. ImageJ analysis software was used to calculate Mander’s colocalization coefficients (MCC)\(^{(25)}\). To determine the lysosomal trafficking efficiency of CIC-7, Mander’s colocalization coefficients between the expression of CIC-7 and lysosomal marker in the full cell were measured. Lysosomal region of interests (ROIs) were used to determine CIC-7/Ostm1 co-localization.

Fluorescence proton assay

Fluorescence proton transport assay was performed following the protocol described by Zanardi et al. 2013, and Scheel et al 2005. Briefly, a basic iMIC microscope with a QImaging Retiga EXI Blue camera and a dual-view port for the emission allowing the separation of the GFP and DsRed emissions (Till Photonics GmbH) were used. For excitation, we used Till Oligochrome (Till Photonics GmbH), a wavelength-switching device containing a stable Xenon light source. Membrane depolarization is necessary to stimulate proton efflux through the CIC-7/Ostm1 complex. We achieved this condition by co-transfecting the epithelial sodium channel FaNaCh, that activates when 30 µM of FMRFamide is added to the extracellular solution containing (in mM) 138 NaCl, 2 KCl, 10 Heps, 10 Glucose, 3 MgSO\(_4\), 1.8 CaCl\(_2\), 100 Mannitol, at pH 7.3. The transfected cells were treated with FMRFamide while excited at 458 nm (100 ms exposition time) and at 482 nm (300 ms exposition time).
For the analysis we defined $r_{\text{pH}} = \frac{F482 \times 3.33}{F458}$ measured where signal reaches steady state level. The factor 3.33 stems from the 3.33 fold shorter exposition at the (brighter) excitation wavelength of 482 nm. Data analysis was performed with the custom analysis programs Anavision and Ana (freely available at http://users.ge.ibf.cnr.it/pusch). A ROI was drawn on the border of the analyzed cell and another on the background for background subtraction.

Data analysis

All data were analyzed with SigmaPlot (Systat Software, Inc). Results were presented as means ± SD in the tables; and as boxplots with actual data points, median, mean and range in the figures. Statistical analysis was performed using unpaired Student’s t test with p values indicated in the legends. p value < 0.05 were considered statistically significant. The number of independent experiments is indicated by “n”.

Homology model

Phyre2 online software was used to build the human CLC-7 homology model, and Pymol software (Schrödinger Inc., OR) for protein visualization. The atomic coordinates of the CmCLC three-dimensional structure (3ORG code) served as a template.

Results

Patients’ data

In our cohort of unpublished patients with osteopetrosis, we selected 13 affected individuals from 12 unrelated families of various geographic origins, carrying mutations in the $CLCN7$ gene not previously subjected to functional assays; moreover, to the best of our knowledge, 12 out of the 13 mutations that we evaluated here, were novel. Clinical information is reported in a concise
form in Table 1, together with genetic data, and in an extended form as Supplemental Material. Based on the results of the clinical and molecular investigation, 11 out of the 13 selected patients were classified as \textit{CLCN7}-deficient ARO, since they carried putative biallelic \textit{CLCN7} variants (patients 1 to 10; Pt 2a and Pt 2b were affected siblings). Two patients bore a single mutated allele and were classified as ADO2 (Pt 11 and Pt 12). The patients’ age at the onset of the disease ranged from birth (Pt 4 and Pt 7) to 10 years (Pt 8) (median age at onset: 3 months) in recessive forms, while in the two dominant cases diagnosis was made in middle childhood (Pt 11) or in adolescence (Pt 12). Hematological defects (namely, anemia and hepatosplenomegaly) were present in all patients except in Pt 8 (recessive) and Pt 12 (dominant), while Pt 6 was anemic owing to alpha thalassemia trait. Six patients, including one ADO2 subject, did not suffer bone fractures, while the others had at least one fracture at different age (details are provided in the Supplemental Material); remarkably, Pt 6 had 4 fractures. Visual defects of varying severity and likely different origin were present in 9 out of 11 recessive cases. Six out of these 9 ARO patients displayed signs of progressive neurodegeneration, such as optic nerve atrophy, brain atrophy, epilepsy, hypotonia and loss of previously acquired skills. On the other hand, Pt 12 (dominant) showed a mild reduction of visual capacity but no neurodegeneration. Despite the known high ClC-7/Ostm1 complex expression in the kidney and the importance of endocytosis and lysosomal systems for renal function\cite{3}, no signs of altered renal function were reported in any of the enrolled patients; however, we cannot exclude the presence of minor deficits, in accordance with evidence in the Clcn7G213R mouse model\cite{26}. HSCT was performed only in 2 ARO cases (Pt 1 and Pt 2b), leading to complete cure in Pt 1, while not affecting neurological deterioration in Pt 2b, who was in poor condition at 4 years of age with severe cognitive impairment and developmental delay. Among the non-transplanted ARO patients, 5 died in early life owing to bone marrow
failure and chronic infection; 3 reached adolescence in reasonably good health, and 2 were lost to follow-up (Table 1).

Regarding genetic data, 7 out of 11 ARO cases carried CLCN7 missense mutations in the homozygous state, while 4 were compound heterozygotes; in particular, Pt 4 and Pt 6 carried a different missense mutation on each CLCN7 allele, and Pt 1 and Pt 9 bore a splicing defect and a missense mutation, each. Of note, the p.Ala299Val mutation identified in Pt 3 in the homozygous state has been detected also in two Chinese patients, namely a compound heterozygous ARO affected individual showing also severe neurological impairment and an ADO2 affected individual(27,28). To the best of our knowledge, all the other mutations studied herein were novel.

\textbf{Structural localization}

CLC proteins are homodimers and each monomer contains an ion permeation pathway. The transmembrane region is quite large, with 18 alpha helixes per monomer (from helix B to helix R), completely or partially spanning the cellular membrane. The cytoplasmic region is composed of two cystathionine β-synthase (CBS) domains, each containing a putative nucleotide-binding site (Fig 1b, c). In the chloride permeation pathway, a highly conserved glutamate called the external glutamate (Glu_{ext}) constitutes the external gate. When Glu_{ext} is deprotonated, its side chain occupies and closes the chloride pathway; when it is protonated, the side chain moves up and chloride ions can pass through(29). The overall architecture of CLC proteins and the key residues that form the permeation ion pathway are conserved, as demonstrated by the three-dimensional (3D) structure of CLC proteins solved until now(30-34) and by several experimental data(35-38). Consequently, we mapped the selected missense mutations on a 3D homology model of human CIC-7 (hCIC-7) built using the 3D structure of the eukaryotic alga homologue CmClC
as a template(31). The very recently solved structures of hClC-7 in complex with Ostm1 validate our homology model(39,40).

The amino acid residues mutated in our series of patients localized to different regions of the protein (Fig 1b, Table S1). Among those affected in cases with ARO and neurodegeneration (Pt 2a, Pt 2b, Pt 3, Pt 4, Pt 7, Pt 9), Arg126 is at the beginning of the first alpha helix B; Ala299 is in the inner part of the protein close to the permeation pathway; Pro582 at the beginning of helix Q, facing the lysosomal lumen; and Gly780 in the cytoplasmic region, in the beta sheet of the CBS2 domain, close to the ATP putative binding side (all shown in red in Fig 1b, c). Amino acid residues mutated in the remaining 5 patients with ARO with no signs of neurodegeneration (Pt 1, Pt 5, Pt 6, Pt 8, Pt 10) are exposed at the luminal or cytosol side (Pro376 and Arg791, respectively) and in the transmembrane region of the protein; namely, Ala511 in the loop between helixes M-N facing Pro249 in helix F, and Ala590 in the middle of helix Q (all shown in yellow in Fig 1b, c). The residues mutated in the two ADO2 patients of this series (Pt 11 and Pt 12) are confined at the interface of the two monomers, close to the cytosolic side (Leu323, at the beginning of helix I), or in the CBS2 domain exposed to the cytoplasm (Lys691) (in blue in Fig 1b, c). The Pro249 residue is located at the beginning of helix F, just after the external glutamate, in front of Ala511. Finally, the amino acid residue Leu90 is not indicated in the 3D model, because it is in a region of CIC-7 N-terminus that is not resolved in the CmClC structure.

Intracellular localization of CIC-7/Ostm1 protein complexes

The CIC-7/Ostm1 protein complex localizes in the lysosomal membranes, and through exocytosis, it is inserted in the osteoclast ruffled border membrane (Fig 1a). In order to assess the sub-cellular localization of CIC-7/Ostm1 mutants, we produced a series of constructs by introducing each mutation in the rat CIC-7-mCherry (rCIC-7-mCherry) tagged plasmid. In fact,
rClC-7 shows 98% identity with hClC-7 and well replicates its electrophysiological properties\(^{(17)}\). Nonetheless, to avoid confusion between genetic and functional data, in the paper we refer to the mutants using the human protein terminology.

Each rClC-7-mCherry plasmid was co-transfected with the Ostm1-eGFP labeled construct into HEK293 cells. The two fluorescent protein allowed us to simultaneously determine by confocal analysis whether ClC-7 is expressed into the lysosomes (in turn stained with a specific chemical marker) and whether ClC-7 and Ostm1 co-localized (Fig 2 and Fig S1a and S1b). Using Mander’s co-localization coefficient (MCC, see Methods section) we measured trafficking efficiency of WT and mutant ClC-7 proteins to the lysosomes and the relative co-localization of ClC-7 and Ostm1 at the lysosomes.

Wild type (WT) ClC-7 co-localized very well with lysosomes (MCC = 0.70), indicating preserved protein trafficking despite overexpression. MCC of ClC-7 mutants was normalized to WT, and based on the results, the mutants were divided into four groups (from A: moderate effect to D: very severe effect), with a 25% reduction in the efficiency of lysosomal trafficking with each passage from the previous to the next (Fig 2b, Table 2). Group A (≥75% of localization to lysosomes compared to WT) comprised three mutants (p.Leu90Pro, found in Pt 1; p.Leu323Pro, in Pt 11, and p.Ala590Thr, in Pt 8); group B (50-75% of localization to lysosomes compared to WT) three mutants (p.Pro582His, found in Pt 7; p.Lys691Glu, in Pt 12, and p.Arg791Cys, in Pt 10); group C (25-50% of localization to lysosomes compared to WT) five mutants (p.Arg126His, found in Pt 2a and Pt 2b; p.Ala299Val, in Pt 3, and p.Ala299Glu, in Pt 4; p.Pro376Leu, in Pt 5, and p.Ala511Thr, in Pt 6). Finally, in group D (<25%), we observed an almost complete de-localization of the two mutants (p.Gly780Arg and p.Gly780Trp, found in Pt 9 and Pt 6, respectively), indicating that these mutations drastically impaired ClC-7 trafficking. However, we cannot exclude an altered protein folding, owing to the marked difference of the physicochemical
properties of the amino acid residues involved. On the other hand, for all mutants, we observed that ClC-7 distribution closely resembled that of Ostm1, with a relative percentage of co-localization in lysosomes between 100-60% as compared to WT (Table S2). This last result suggests that the pathogenic effects are not due to the disruption of the interaction between ClC-7 and Ostm1 for any mutation. Based on these data, we observed that overall patients bearing mutations belonging to groups A and B developed less severe disease (the ARO patients Pt 1, Pt 8, Pt 10 and the two ADO patients Pt 11 and Pt 12); while patients bearing mutations that significantly impaired protein localization (groups C and D) showed a more severe phenotype including also primary neurodegeneration (Pt 2a and Pt 2b, Pt 3, Pt 4 and Pt 9). Interestingly, for the p.Pro249Leu mutant we were not able to determine neither the lysosomal localization nor the co-localization with Ostm1, because in all repeated experiments, the transfected cells were adversely affected and died the day after transfection.

Alteration of chloride transport by ClC-7 mutants

Among the thirteen selected mutations, eleven showed a preserved or only partially reduced lysosomal localization, suggesting that the affected function was mainly ion transport rather than protein trafficking or folding instability. To investigate the functional properties of these mutants, we took advantage of previous studies showing that the disruption of the di-leucine lysosomal sorting motif in the N-terminus of ClC-7 induced a partial re-localization of ClC-7 plasma membrane mutants (ClC-7PM) to the plasma membrane, thereby allowing electrophysiological measurements(41). Therefore, the selected ClC-7 mutations were inserted in the rClC-7PM background. Moreover, to ensure the simultaneous expression of both Ostm1 and ClC-7, the two proteins were linked by a self-cleavable 2A peptide and, to measure proton and chloride transport, a chloride/pH sensor (E\textsubscript{2}GFP/DsRed) was fused with the C-terminus of rCLC-7PM (42).
Chloride currents were recorded with the patch clamp technique in HEK293 cells transiently transfected with WT or mutant rCLC-7^{PM}/Ostm1 cDNA. All investigated mutants partially re-localize to the plasma membrane (Fig S2). Those featuring p.Ala299Val/Glu, p.Ala511Thr, p.Ala590Thr, p.Pro582His and p.Gly780Arg/Trp (carried by Pt 3 and Pt 4, Pt 6, Pt 8, P7, and Pt 9, respectively) did not show significant chloride currents. The remaining mutants (p.Leu90Pro, p.Arg126His, p.Leu323Pro, p.Pro376Leu, p.Lys691Glu and p.Arg791Cys, found in Pt 1, Pt2a and b, Pt 11, Pt 5, Pt 12, and Pt 10, respectively showed the same voltage dependence as WT (Fig 3a, b) with a reduction in the currents density and/or a decrease in the rate of activation and de-activation of the channel (Fig 3c). Specifically, the p.Lys691Glu mutant showed 35% reduction in the density of currents and kinetics similar to WT (Fig 3c and Table 2). The p.Leu90Pro, p.Leu323Pro and p.Arg791Cys mutants had density of currents similar to WT, but faster kinetics of activation (p.Leu323Pro and p.Arg791Cys) and de-activation (p.Leu90Pro, p.Leu323Pro and p.Arg791Cys) as compared to WT. For the p.Leu323Pro mutant, we observed the largest change in the kinetics of activation as compared to WT, with a time constant of activation of 50 ms (vs 490 ms for WT) at +80 mV and kinetics of de-activation almost three-fold faster than the WT (Fig 3c and Table 2). Finally, the p.Arg126His and p.Pro376Leu mutants showed a strong reduction in the total currents, coupled with an alteration of gating kinetics (Fig 3c and Table 2). Comparing the localization data with these functional results, we noticed that the mutations classified in groups A and B (i.e. displaying more than 50% of the normal localization) maintained at least 60% of the chloride and proton transport carried out by the WT channel, supporting a correlation with the milder osteopetrotic phenotype of the corresponding patients (Pt 1, Pt 10, Pt 11 and Pt 12). For the p.Lys691Glu mutation in Pt 12, the overall clinical manifestation could be likely dampened by the expression of the WT allele. On the other hand, mutants classified in groups C and D (i.e. p.Ala299Val/Glu, p.Ala511Thr, p.Ala590Thr,
p.Pro582His and p.Gly780Arg/Trp, with a strong reduction in lysosomal localization) displayed an absence or drastic reduction of ion transport, which overall well fit with the more severe phenotype presented by the corresponding patients (Pt 2, Pt 3, Pt 4, Pt 9).

Coupling of chloride and proton transport is preserved in ClC-7 mutants

The investigation of two CLCN7 knock-in mice, namely the uncoupled mouse model CLCN-7unc/unc, where only chloride conductance was preserved, and the transport-deficient mouse model CLCN-7td/td, in which the transport of both chloride and proton ions was abolished but the correct protein trafficking was preserved, highlighted the fundamental role of the chloride/proton exchange activity in the physiological functions of ClC-7(43,44). Consequently, we determined whether chloride transport was still coupled with proton transport in the presence of the mutants by means of an optical assay, as published(42,45). In detail, we monitored the change in the fluorescence signal of the E2GFP/DsRed sensor(24) due to the de-quenching by protons that moved out of cytosol mediated by ClC-7 transport activity. In this kind of assay, the fluorescence ratio F\textsubscript{482}/F\textsubscript{458}=r_{pH} directly reflects changes in the intracellular pH. ClC-7 activates at membrane potentials greater than +20 mV, so depolarization of the plasma membrane was necessary to activate ClC-7. We achieved this condition by co-transfecting the construct of interest with the sodium channel FaNaCh, which was activated by the FRMRamide peptide (Fig 4a)(42,45). Upon FRMRamide exposure, the sodium channel was activated and de-polarized the plasma membrane, thereby in turn activating the rClC-7/Ostm1 protein complex and causing proton efflux. We tracked proton efflux by measuring the increase in the fluorescence signal. Using this strategy, we tested all mutants and found that only those mutants that had retained the ability to generate ion currents in patch-clamped cells were able to transport protons (Fig 4a, Table 2). Despite the qualitative nature of the optical assay, there was a strong correlation.
between the magnitude of chloride and proton transport: mutants with a strong decrease in ion current density also showed the maximal proton flux reduction (Fig 4b). Therefore, based on our results, none of the human mutations herein studied replicated the condition described in the CLCN-7^{unc/unc} mouse model: in fact, mutants that transported chloride ions maintained the coupling with proton transport. On the other hand, the p.Ala590Thr mutant was the only one among the tested mutants that resembled the CLCN-7^{td/td} model: in fact, ion transport was absent, while the protein was correctly expressed on the lysosomes.

Discussion

Osteopetrosis caused by *CLCN7* mutations is classified as infantile malignant autosomal recessive osteopetrosis (ARO)⁽⁶⁾ or as autosomal dominant osteopetrosis type II (ADO2 or Alberts-Schonberg disease)^(18,46). The heterogeneity of the clinical phenotypes and the large variety of *CLCN7* variants represents a challenge in the identification of genotype-phenotype correlations. Regarding the underlying disease mechanism, the functionality of the ClC-7/Ostm1 protein complex can be altered by defects in the cellular localization and/or in the molecular mechanisms of anion transport.

Here we investigated the functional effects of 14 missense mutations found in the *CLCN7* gene in patients affected by diverse forms of osteopetrosis. Table 3 summarizes our results correlating the physiological and functional data with the clinical phenotype, and the following subsections contextualize our findings in relation to published literature.

Summary of results and conclusions on ADO2 mutations

For the ADO2 in our series (p.Leu323Pro and p.Lys691Glu), we observed normal or partial reduction in the expression level of ClC-7 and Ostm1 in lysosomes. When we forced their expression on the plasma membrane, we recorded chloride and proton fluxes for both ClC-7
mutants; however, the p.Lys691Glu showed a decrease in current intensity, while the p.Leu323Pro mutant had faster kinetics of activation. This latter finding is in agreement with the gating kinetics reported for other mutants associated with ADO2 (p.Leu213Phe, p.Arg286Gln, p.Pro619Leu, p.Arg762Leu and p.Arg767Gln)(17). A common feature of all these mutants is that they are located at the interface between the transmembrane and the cytosolic region of the protein (Fig S3). We might speculate that in general mutations in this region accelerate gating kinetics, which in turn alters the slow gating that is essential for the simultaneous opening of the two ion pathways through a global protein conformational change(47). Interestingly, evidence of the relevance of ClC-7 gating kinetics for proper osteoclast function have been obtained also in other species. Sartelet and colleagues found that severely affected osteopetrotic calves of the Belgian Blue cattle breed were homozygous for the spontaneous p.Tyr750Gln (Tyr746 in hClC-7) amino acid change in the ClC-7 protein(48). The affected residue was in the CBS2 domain, at the interface between the transmembrane region and the two cytosolic subunits (Fig S3), similarly to the above listed “fast mutations”. Accordingly, the p.Tyr750Gln missense mutation significantly accelerated the gating kinetics, while had little effect on protein localization and expression level. The zygosity status of the mutation in the affected calves might be responsible for the severity of the disease as compared to the human mutations above mentioned, which have been found only at the heterozygous state, to the best of our knowledge.

Recently, Nicoli et al reported a new de novo missense mutation of ClC-7 (p.Tyr715Cys) in two unrelated patients presenting lysosomal storage disease and albinism, but without osteopetrosis(49). Also, in this case the mutation localized in the CBS2 domain, but apparently it was exposed to the cytosol far from the dimer interface (Fig S3, in cyan). Moreover, the absence of a skeletal phenotype in the patients and the extensive formation of enlarged vacuoles in cells expressing the mutated protein (a feature never observed in cells transfected with our series of
mutants) would point to a completely different pathogenetic mechanism. This further extends the variety of phenotypes caused by defects in the CLCN7 gene.

The role of the accelerated activation kinetics of CIC-7 in the CIC-7/Ostm1 biological function remains unclear. We might propose that, if the voltage dependence of the CIC-7PM is the same as in the native lysosomes, CIC-7 might be insensitive to quick membrane voltage changes, which could be produced after release of calcium or during fusion events. To elucidate the possible role in the lysosomal homeostasis of fast mutants, Astaburuaga et al. developed a mathematical model that predicts a differential effect of chloride transport on calcium dynamics: in the presence of faster gating kinetics of CIC-7, Ca\(^{2+}\) concentration and peak Ca\(^{2+}\) release is weaker\(^{(50)}\). Lysosomal calcium release regulates lysosomal exocytosis that is necessary for ruffled border formation. Consequently, the pathogenicity of these fast mutants might arise from the altered calcium dynamics; this hypothesis deserves further elucidation.

For what pertains to the p.Pro249Leu mutation, which is common in ADO2, we were not able to perform any kind of measurement because the cells transfected with this construct died shortly after transfection. Such a dramatic effect was unexpected, based on the benign presentation of the disease in the patients\(^{(18,46)}\). In ADO2, the dimeric nature of CIC-7 protein implies that normal homodimer and mutated homo-heterodimers could be simultaneously present in the cell, with two possible consequences: either the presence of 25% of WT homodimer is sufficient to mitigate the pathological effect of the mutant or, on the contrary, the single mutation has a dominant negative effect despite the occurrence of 25% of WT homodimer. We might speculate that in ADO2 cases carrying the p.Pro249Leu CIC-7 mutation the residual 25% of WT dimers is sufficient to maintain a sufficient osteoclast activity. To the best of our knowledge, the p.Pro249Leu CIC-7 mutation has never been described in a patient in the homozygous state. In \textit{vitro}, the severe toxicity of the homozygous p.Pro249Leu mutant could be associated with a
strong chloride leak. In fact, the exchange of a proline with a leucine residue could introduce a drastic change in the flexibility of the backbone of helix F that is part of the chloride permeation pathway keeping each single anion pathway in a constitutive open state, thereby causing free chloride diffusion.

Summary of results and conclusions on ARO mutations

Regarding the mutations of the ARO patients herein investigated, our results suggested that different functional properties were displayed by those found in cases with (Pt 2a, Pt 2b, Pt 3, Pt 4, Pt 7, Pt 9) or without (Pt 1, Pt 5, Pt 6, Pt 8, Pt 10) signs of primary neurodegeneration. The former group comprised the mutations p.Arg126His, p.Ala299Val/Glu, p.Pro582His and p.Gly780Arg. All of them showed a partial or severe reduction in the level of lysosomal localization. Moreover, all except p.Arg126His lacked transport activity, when the mutants were forced to reach the plasma membrane, while the p.Arg126His mutant showed 33% residual activity. We suggest that the severe trafficking defect causing the absence of ClC-7/Ostm1 complex on the lysosomal membranes, rather than the absence or reduction in the efficiency of chloride/proton exchange, could result in the neurodegenerative phenotype. In agreement with this interpretation, Leisle et al previously reported that the mutations p.Gly240Arg (also carried by Pt 4 in our cohort, in the compound heterozygous state), p.Arg526Trp and p.Gly521Arg, found in ARO patients with neurodegeneration, showed retention in endoplasmic reticulum and no transport activity\(^\text{(17)}\). The hypothesis that the aberrant localization of the ClC-7/Ostm1 complex might be implicated in the neurodegenerative phenotype, is corroborated by the clinical evidence in ARO patients with defects in the Ostm1 gene (mostly, truncating mutations), which invariably present severe neurodegeneration. In this specific subgroup of patients, the few reported mutations are severely truncating defects likely resulting in the substantial reduction or absence of the Ostm1 protein\(^\text{(11)}\). Even though not formally demonstrated in human samples, the
expected consequence based on in vitro studies would be CIC-7 destabilization, lack of proper localization and function. OSTM1-deficient ARO is recapitulated by the grey lethal (gl) mouse model\(^{(51)}\), in which the Ostm1 protein is absent, thus precluding the formation of the CIC-7/Ostm1 protein complex; and CLCN7 protein levels are decreased below 10% of normal\(^{(5)}\); indeed, gl mice manifest severe neurodegeneration\(^{(52-54)}\). Finally, the homozygous CIC-7\(^{G213R}\) knock-in mouse showed osteopetrosis and severe neurodegeneration caused by a severe trafficking defect\(^{(55)}\).

The mutations found in patients without neurodegeneration in our series were p.Leu90Pro, p.Pro376Leu, p.Ala511Thr, p.Gly780Trp/Arg, p.Ala590Thr and p.Arg791Cys (Table 1). We observed conserved ion transport activity with altered biophysical properties: specifically, a reduction in the density of the total currents and/or faster kinetics of activation and deactivation (p.Leu90Pro, p.Pro376Leu and p.Arg791Cys), associated with relative normal lysosomal localization for p.Leu90Pro and p.Arg791Cys mutants. In this group, the p.Pro376Leu mutant showed the most severe alteration, probably due to the reduction of the lysosomal localization associated with a strong reduction in the total chloride currents; accordingly, the clinical picture of the corresponding patient in this series (Pt 5) was serious. The p.Leu90Pro mutant, localized in the N terminus of CIC-7; where two dileucine AP-binding motifs are essential for lysosomal targeting of CIC-7\(^{(41)}\). Even though we did not observe significant changes in the lysosomal localization of the p.Leu90Pro mutant, we cannot exclude that it might be part of a lysosomal sorting motif used in vivo. The interpretation of the results is less straightforward for Pt 6, whose main clinical feature was the occurrence of repeated fractures. The proband was a compound heterozygote for p.Ala511Thr and p.Gly780Trp, which in our in vitro assays displayed a severe reduction in the subcellular localization and absence of transport activity. In our experimental set up, a single mutant at a time was overexpressed in HEK293 cells, so it might be hypothesized
that the drastic alteration of the functional properties observed for the two single mutants could be attenuated when they are co-expressed and form a heterodimeric complex. Moreover, the p.Gly780Trp was maternally inherited and the patient’s mother showed only increased bone density, possibly suggesting that both the mutations were essential for clinical disease manifestation and partially compensated for each other. The biallelic p.Ala590Thr variants carried by patient 8 is challenging to understand at a molecular level: in vitro assays showed preserved lysosomal localization and a total absence of transport, while the patient had a very mild clinical phenotype. Here we might speculate that additional variants in the genetic background of the patient affected their phenotype.

Conclusions and perspectives

In conclusion, we performed the functional characterization of 14 CLCN7 mutations found in a cohort of osteopetrotic patients. A critical analysis of clinical and functional data suggests that the lack of ClC-7/Ostm1 complex localization on the lysosomal membrane is involved in the pathogenesis of a specific clinical feature, i.e. neurodegeneration, which cannot be rescued by HSCT, as documented in Pt 2b. Accordingly, this defect was absent in patients in this cohort bearing mutations that maintained correct membrane targeting, despite abolished transport activity in some cases. Further variants will need to be investigated to strengthen this hypothesis. Further investigations of a larger number of ClC-7 missense mutations, possibly including additional functional read-outs and extensive information regarding the patients’ genetic background, will increase the available data set in order to identify structural criteria that can predict confidently the level of pathogenicity. Moreover, the implementation of a database integrating clinical and genetic data of patients, and structural and functional information of mutants, might be useful in guiding treatment decision in a future perspective. Our study may lay the basis for a specific targeted medicine. Most important for the clinical perspective is that ARO
patients without neurodegeneration are candidates for curative HSCT. Moreover, a classical gene-therapy approach could be developed, based on promising results in another subset of osteopetrosis\(^{(56-58)}\). Mutation-specific approaches might constitute an additional valid alternative. For example, we speculate that CIC-7 mutations leading to a faster gating kinetics can be considered gain-of-function mutations, to some extent, and we hypothesize that they may be effectively targeted by siRNA-mediated silencing. Of note, this kind of strategy is being implemented with respect to ADO\(^2\)(\(^{(16)}\)) and likewise might be pursued in selected ARO patients. On the other hand, for patients with neurodegeneration HSCT is not indicated as despite of rescuing the bone marrow related pathology, it has no effect on progressive neurological deterioration\(^{(59)}\).

With respect to mutations hampering CIC-7/Ostm1 complex localization on the lysosomal membrane, an intriguing strategy might be represented by pharmacological chaperone therapy (PCT), an emerging approach actively investigated in the field of lysosomal storage disorders (LSDs)\(^{(60)}\). PCT exploits small-molecule ligands to improve lysosomal trafficking and activity of a specific target; therefore, it might be tested also to improve CIC-7/Ostm1 complex localization, possibly loading chaperones on extracellular vesicles or nanoparticles for targeted delivery. Overall, these strategies deserve further investigation.
Acknowledgements

We are grateful to the affected individuals and their families for their cooperation. We thank Dr M. Pusch for the Ostm1-2AP-CIC-7PM-E2GFP/DsRed-pFrog, CIC-7-pFrog and Ostm1-pFrog clones, Dr D. Arosio for the original E2GFP/DsRed clone, Dr E. Lingueglia for the FaNaCh clone, and F. Quartino and D. Magliozzi for technical assistance. The authors wish to thank Lauren Dreyer, Nurse Coordinator, Undiagnosed Diseases Program, Genetic Services WA for providing updated clinical information on patient 7. The study was supported by a Telethon Career Award to AP, Assistant Telethon Scientist at the Dulbecco Telethon Institute (TCP 14008, Telethon, Italy).

Author Contributions

The study was conceived and designed by AP, AV, and CS with contribution of EDZ and EP. AP, EDZ, LL and AR performed research. MA, LDS, BM, JB, JB, AK, SB, GB, FG, MAP, IDM, MRA, RC and CPB provided clinical information. CS, EP and DS collected clinical data and performed genetic analysis. AP and CS wrote the manuscript with the contribution of EDZ and EP. All the authors revised and approved the manuscript.
References

17. Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+) exchanger and requires Ostm1 for transport activity. The EMBO J. Jun 1 2011;30(11):2140-52.
Figure legends

Figure 1. Schematic representation of osteoclast acidification and structural model of human ClC-7. a) CLC-7 is inserted through lysosomal exocytosis in the convolute plasma membrane of the osteoclasts called ruffled border. The region between the ruffled border and the bone matrix forms the resorption lacuna, the space deputy to bone resorption. The resorption lacuna is acidified by the work of the vacuolar proton pump V-ATPase (in blue) and the CLC-7 exchanger (in yellow). The ClC-7 accessory subunit Ostm1 is shown in orange. b) Position of analyzed recessive and dominant osteopetrosis causing mutations mapped on the putative topology of the monomer of ClC-7. Mutations found in patients with ARO and neurodegeneration in this series are shown in red, mutations found in patients with ARO with no neurodegeneration are in yellow, and mutations found in patients with ADO2 are in blue. c) Mapping of the investigated mutants on the homology model of the human ClC-7 protein based on the structure of the CmClC homodimer (Protein Data Bank: 3ORG). The two subunits, viewed within the membrane, are colored in gray and light gray. The transmembrane region is indicated as TMd and the cytoplasmic region is indicated as CBSd. Mutated residues in both subunits are shown as spheres. Mutations are colored as in (b). The green stick in each subunit corresponds to the external glutamate. The ATP putative binding sites are colored in magenta.

Figure 2. Subcellular localization of the ClC-7 mutations investigated in this work. a) Representative images of the subcellular localization of ClC-7-mCherry and mutants co-expressed with Ostm1-eGFP. The LysoTracker Deep Red is colored in cyan. Overlay of rClC-7-mCherry and the lysosomal marker fluorescence, and of rClC-7-mCherry and Ostm1-eGFP fluorescence is shown in the last two columns, respectively. We selected only one mutant per
each group of classification (from A to D). The percentage of lysosomal localization reduction normalized to WT ClC-7 lysosomal localization is indicated on the right of each row. Images for all the other mutants are reported in Fig S1a and Fig S1b. b) Relative expression level of mutants in the lysosomes normalized to the expression level of WT in the lysosomes. Mutants are defined as in Fig. 1 (gray: WT; red: ARO with neurodegeneration; yellow: ARO without neurodegeneration; blue: ADO2). Dashed lines indicate the relative expression level of 100%, 75% 50%, and 25%. Results were presented as boxplots with actual data points, median, mean and range with n > 6 independent experiments. Unpaired Student’s t test was used for statistical analysis of normalized data of all mutants investigated. Statistical significance is denoted vs WT (control): **: p<0.01; ***: p<0.001.

Figure 3. Functional characterization of ClC-7PM and mutants. a) Representative current traces of WT and mutant ClCPM. Inset: stimulus protocol. Currents were recorded from transfected HEK293 cells. Currents were elicited from a holding potential of 0 mV for 25 ms, followed by voltage steps from -100 mV to 100 mV with 20 mV increments for 2 s (for 500 ms in the case of the faster mutant p.Leu321Pro) and followed by tail pulse at -60 mV pulse for 500 ms (50 ms for p.Leu321Pro) and back to 0 mV. Scale bars, for each mutant are as in the WT traces, with the exception of p.Leu323Pro. b) I-V curve for all the mutants. WT: black circle; p.Leu90Pro: black up triangle; p.Arg126His: black down triangle; p.Leu321Pro: black square; p.Pro376Leu: black hexagon; p.Lys691Glu: black diamond; p.Arg791Cys: open square. c) Boxplot of the density of currents measured at +80 mV for WT and all six mutants. Mutants are defined as in Fig. 1 (gray: WT; red: ARO with neurodegeneration; yellow: ARO without neurodegeneration; blue: ADO2). Results were presented as boxplots with actual data points, median, mean and range with n > 5 independent experiments. Unpaired Student’s t test was used.
for statistical analysis of all mutants investigated. Statistical significance is denoted vs WT (control): *: p<0.05; ***: p<0.001.

Figure 4. Chloride/proton transport coupling is preserved in the mutants. a) Representative proton transport traces for WT rClC-7^PM and mutants. The change of r_{pH}=F_{482}*3.33/F_{458} (\Delta r_{pH}) is plotted versus the time. After 2 min the FMRF peptide was added to induce membrane depolarization and thereby ClC-7 activation. Dashed bar in the WT plot indicates the time (2 min) corresponding to the addition of FMRF peptide. A schematic representation of the optical assay is shown in the inset. **b)** Changes in chloride and proton transport activity. Chloride currents density from figure 3b normalized to the WT currents density at +80 mV are shown in the top boxplot. Changes in the r_{pH} normalized respect to the WT value are shown in the bottom boxplot. Results were presented as boxplots with actual data points, median, mean and range with n > 21 independent experiments. Unpaired Student’s t test was used for statistical analysis of normalized data of all mutants investigated. Statistical significance is denoted vs WT (control): ***: p<0.001.