
Peer reviewed version

Link to published version (if available): 10.1109/IECON48115.2021.9589773

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at https://ieeexplore.ieee.org/document/9589773. Please refer to any applicable terms of use of the publisher.
Impact of Temperature and Switching Rate on Properties of Crosstalk on Symmetrical & Asymmetrical Double-trench SiC Power MOSFET

Juefei Yang
Department of Electrical Engineering
University of Bristol
Bristol, UK
juefei.yang@bristol.ac.uk

Saeed Jahdi
Department of Electrical Engineering
University of Bristol
Bristol, UK
saeed.jahdi@bristol.ac.uk

Bernard Stark
Department of Electrical Engineering
University of Bristol
Bristol, UK
bernard.stark@bristol.ac.uk

Ruizhu Wu
School of Engineering
University of Warwick
Coventry, UK
robert.wu.1@warwick.ac.uk

Olayiwola Alatise
School of Engineering
University of Warwick
Coventry, UK
o.alatise@warwick.ac.uk

Jose Ortiz Gonzalez
School of Engineering
University of Warwick
Coventry, UK
j.a.ortiz-gonzalez@warwick.ac.uk

Abstract—In this paper, the properties of crosstalk on SiC planar MOSFET, SiC symmetrical double-trench MOSFET and SiC asymmetrical double-trench MOSFET is investigated on a half-bridge topology, to enable analysis of the impact of temperature, drain-source transition speed and gate resistance on the severity of the shoot-through current and induced gate voltage. The experimental measurements, performed on a wide range of temperatures and switching rates, show that the two selected symmetrical and asymmetrical double-trench MOSFETs exhibit higher induced gate voltage during crosstalk with the same external gate resistance compared with the planar SiC MOSFET, yielding a higher shoot-through current. Therefore, in continuous initiation of intentional crosstalk, the two double-trench MOSFETs experience more temperature rise, especially for symmetrical one which leads the device to verge of failure within minutes while the temperature rise in other two devices is significantly lower. The different trends of shoot-through current with temperature on DUTs reveals that they are dominated by different mechanisms, i.e., influenced by threshold voltage and inversion layer carriers’ mobility. A model is developed for prediction of shoot-through current during crosstalk which is validated for the 3 device structures. The comparison of the modelled results with the measurement proves its capability to predict the crosstalk behaviour.

Index Terms—Crosstalk, Silicon Carbide, Double-trench, MOSFET

I. INTRODUCTION

With the introduction of SiC technology as a replacement of Silicon MOSFETs, better performance is achieved in a wide range of industrial application. One of the main advantages of SiC MOSFETs is its smaller die size which enables fast switching. Therefore, the switching loss is minimized along with smaller passive filter required for application. However, in half bridge arrangements, the high drain-source voltage switching rate would cause crosstalk on the complementary device. During the turn-ON process, positive gate voltage is induced on the complementary device by current flowing through gate-drain capacitance and gate resistance thus initiates parasitic turn-ON and shoot-through current. Therefore, the selection of gate resistance requires consideration of the trade-off between switching rate and the likelihood of parasitic turn-ON. This undesired effect has the MOSFET operating in semi-short-circuit and results in significant thermal loss as well as electrothermal stress which arises reliability concerns. Research is performed to evaluate crosstalk on planar SiC power MOSFETs [1], [2] & [3], but symmetrical and asymmetrical double-trench structures still remain largely unexplored.

In this paper, a model is developed for predicting the shoot-through current during crosstalk, the performance at crosstalk is compared for three devices of similar power rating with different structures under different switching rate, ambient temperature and gate resistance. Their cross-sectional schematic drawing is shown in Fig. 1 as planar structure, symmetrical double-trench structure and asymmetric double-trench structure. Compared with conventional planar structure, symmetrical double-trench removes the JFET region which enables high channel-density design. Asymmetrical double-trench structure further removes the JFET between the gate and source trench thus allows more unit cell scaling-down than symmetrical one [4].

II. MODELING OF CROSSTALK

The modeling for SiC MOSFET during crosstalk has been introduced in [1], [5] & [6] by considering the displacement current flowing through reverse transfer capacitance C_{GD} and
gate voltage has been calculated as neglected for simplification. According to [3] [4], the induced happening, the parasitic inductances on the power loop is where \(K \) is the slew rate until reaching the supply voltage.

Where \(V \) is the voltage source \(V_{GS} \) yielding rather small displacement current through it. The is omitted as a result of small die area of SiC MOSFET [7], respectively. In both cases, the drain-source capacitance \(C \) where drain, source and gate are represented as D, S and G respectively. In the equivalent circuit for these two stages are presented in Fig. 2 when the induced gate voltage reaches the threshold value and MOSFET channel is parasitically turned-ON. The MOSFET at this stage is operating at saturation region. The equivalent circuit as:

\[
V_{Ramp} = K * t
\]

Where K is the slew rate until reaching the supply voltage.

\[
V_{GS} = R_G \cdot C_{GD} \cdot K \left(1 - e^{-\frac{t}{R_G \cdot C_{GS}} } \right)
\]

During the first stage. Since the shoot-through is not happening, the parasitic inductances on the power loop is neglected for simplification. According to [3] [4], the induced gate voltage has been calculated as

\[
V_G = V_{G'} + V_{TH}
\]

Where \(V_{G'} \) is the device transconductance. At this stage, the gate voltage \(V_G \) has an initial value of \(V_{TH} \), therefore, can be written as:

\[
V_D = V_{Ramp}
\]

\[
C_{GD} \frac{d(V_D - V_G)}{dt} = \frac{V_G}{R_G} + C_{GS} \frac{d(V_G - V_S)}{dt}
\]

\[
V_S = L_s \frac{dI_s}{dt}
\]

\[
I_s = I_{CH} + C_{GS} \frac{d(V_G - V_S)}{dt}
\]

To simplify the calculation, \(V_G \) in the term \(\frac{V_G}{R_G} \) in (6) is assumed to be dominated by \(V_{G'} \). Then, by performing Laplace transform, the solution for \(V_G \) can be derived as:

\[
V_G(s) = \frac{N_1 s^3 + N_2 s}{D_1 s^3 + D_2 s^2 + D_3 s + 1} + \frac{K}{s^2}
\]

Where the coefficients for the numerator and denominator are expressed as:

\[
N_1 = C_{GD} * R_G * L_s * C_{GS} - L_s C_{GS}^2
\]

\[
N_2 = C_{GD} * R_G
\]

\[
D_1 = (C_{GS} + C_{GD}) * R_G * L_s * C_{GS} - L_s C_{GS}^2
\]

In the second stage, with the increase of induced gate voltage above threshold, a current source representing the MOSFET channel is added to the equivalent circuit as well as the parasitic inductances which produce voltage under channel conduction. Parasitic inductance at drain is neglected since it is shown to have small impact on the induced gate voltage than that at source [5]. The equation for the current source of MOSFET channel is given as:

\[
I_{CH} = g_{fs} \cdot (V_{GS} - V_{TH})
\]
\[D_2 = L_{GS}C_{GS} - L_{GS}C_{GS} \cdot g_f \]
\[D_3 = (C_{GS} + C_{GD}) \cdot R_G \]

By doing this, the induced gate voltage and peak shoot-through current can be predicted for the three DUTs. The peak values of shoot-through current are extracted from model and measurement for three different structured MOSFETs are plotted in Fig. 3 for the case of top gate resistance \(R_{G,Top} \) and bottom gate resistance \(R_{G,Bot} \) equal to 47 Ω and 330 Ω respectively and good matching between them can be observed.

III. EXPERIMENTAL SETUP

Experimental measurements are carried out on Rohm SiC planar MOSFET, Rohm SiC symmetrical double-trench MOSFET and Infineon asymmetrical double-trench MOSFET. The test circuit is shown in Fig. 4 with its schematic which is a half-bridge. The top switching device is fixed to make a fair comparison for DUTs placed at bottom. A single pulse from 18V/0V gate driver is fed to top switching device so that the full supply voltage \(V_{DD} \) falls on DUT at bottom and initiates crosstalk. \(R_{G,Top} \) ranges from 10 Ω to 100 Ω for different switching speed while \(R_{G,Top} \) ranges from 10 Ω to 330 Ω to achieve different shoot-through current level. The shoot-through current is measured at the source of DUT with CWT Ultra-mini Rogowski coil (CWT1) and voltage is measured with GW-Instek GDP-100 100 MHz voltage probe on a Keysight MSO7104A 1 GHz 4 GSa/s oscilloscope. Ambient temperature on DUTs is varied from 25°C to 175°C by using a heating block controlled with a PID temperature controller. Table I indicates the key parameters for the testing board and experiment conditions and Table II shows key parameters of three selected DUTs from datasheet and measured parasitic capacitance at 1 MHz.

IV. MEASUREMENT AND ANALYSIS

A. Impact of Bottom Gate Resistance

Fig. 5 compares the peak value of shoot-through current on each DUT with different value of \(R_{G,Bot} \) with ambient temperature fixed at 25°C and \(R_{G,Top} \) at 47 Ω while Fig. 6 shows the transient waveforms. It can be seen that as \(R_{G,Bot} \) increases, SiC symmetrical double-trench MOSFET experiences the most significant rise in shoot-through current followed by SiC asymmetric double-trench MOSFET and the least change in SiC planar MOSFET. The general increasing trend of shoot-through current with \(R_{G,Bot} \) is due to the induced gate voltage increase.
Fig. 6. Transient shoot-through current at a range of $R_{G_{Bot}}$ in the 3 device structures.

Fig. 7. Induced gate voltage in the 3 device structures with $R_{G_{Bot}}$ of 330 Ω under identical test conditions.

Fig. 8. Shoot-through current in the 3 device structures with $R_{G_{Bot}}$ of 330 Ω under identical test conditions.

Fig. 9. dV_{DS}/dt in the 3 device structures at a range of $R_{G_{Bot}}$.

Fig. 10 shows the shoot-through current of each DUT under different switching rate by replacing $R_{G_{Top}}$ at 25$^\circ$C. In this case, $R_{G_{Bot}}$ is selected to be 330 Ω so that there is significant shoot-through to exaggerate the impact of $R_{G_{Top}}$. The shoot-through current experiences decrease as $R_{G_{Top}}$ increases, because low switching rate generates less displacement current through C_{GD} of DUT for a reduced induced gate voltage. As already indicated in Fig. 9, the actual dV_{DS}/dt on DUT is not only controlled by $R_{G_{Top}}$ but also affected by DUT itself. The peak shoot-through current on each DUT is normalized and given on Fig. 11 against $R_{G_{Top}}$ at both case $R_{G_{Bot}}$ equal to 330 Ω and 150 Ω. It can be seen that SiC symmetrical double-trench MOSFET is the one that has the lowest sensitivity to $R_{G_{Top}}$, though this dependence is enhanced if its $R_{G_{Bot}}$ is reduced. This is because that the highest shoot-
through current on SiC symmetrical double-trench MOSFET minimizes change of dV_{DS}/dt on it at increasing $R_{G_{Top}}$. Due to fairly low shoot-through current, SiC asymmetrical double-trench MOSFET and planar MOSFET maintains good sensitivity to $R_{G_{Top}}$ in terms of peak shoot-through current.

C. Impact of Temperature

Silicon Carbide has superior thermal conductivity to Silicon, making SiC MOSFET good candidate for harsh working condition. The peak shoot-through current for three DUTs is plotted in Fig. 12 against temperature with $R_{G_{Bot}}$ equal to 330 Ω and 10 Ω. When $R_{G_{Bot}}$ is 330 Ω, three devices shows three different trend regarding to the temperature increase in peak shoot-through current. SiC planar MOSFET has increased shoot-through with temperature while it is opposite for SiC symmetrical double-trench MOSFET, and SiC asymmetric double-trench MOSFET is nearly constant at all temperature. Since during shoot-through, MOSFET is under saturation region operation. The shoot-through current I_{ST} is approximated to MOSFET channel current and subject to (3). By expanding g_{fs} in (3), it yields:

$$I_{ST} = \frac{Z_{CH} \mu_n C_{OX}}{L_{CH}} (V_{GS} - V_{TH})^2$$ \hspace{1cm} (10)

where Z_{CH} & L_{CH} are channel width & length, C_{OX} is specific oxide capacitance and μ_n is the inversion carrier mobility.

According to (10), the parameters that have temperature-dependence are the channel mobility μ_n and the threshold voltage V_{TH}. It is commonly known that high temperature raises intrinsic carrier density thus reduces V_{TH} [9], as shown in the Fig. 13. The change of V_{TH} would enhance the shoot-through at high temperature. However, the mobility μ_n acts adversely on shoot-through due to the more pronounced scattering at high temperature [9], [10]. Therefore, It can be revealed that, with $R_{G_{Bot}}$ equal to 330 Ω, μ_n acts as a more dominated factor to shoot-through in SiC double-trench MOSFET whereas it is V_{TH} in SiC planar MOSFET, these two mechanisms almost balance each other out in SiC asymmetric double-trench MOSFET. According to (10), the higher the V_{GS} is, the less impact the V_{TH} has on the term $(V_{GS} - V_{TH})$. Referring to Fig. 7, V_{TH} is more dominant in SiC planar MOSFET with the lowest induced gate voltage, while asymmetric and symmetric double-trench MOSFET have the impact of μ_n comparable to or even outweigh the impact of V_{TH} as a consequence of raised induced gate voltage. This suggests that the SiC double-trench MOSFET will not have thermal runaway despite high shoot-through current. With the $R_{G_{Bot}}$ reduced to 10 Ω, induced gate voltage is effectively damped. Therefore, all DUTs are exhibiting an increasing shoot-through in regard to temperature increase as shown in Fig. 12.
D. Continuous Switching

One concern for crosstalk on MOSFET is the heat generated while operating in such short-circuit circumstance, so that the device would soon work above the allowed temperature. Three DUTs are driven continuously at 1 kHz, supply voltage equal to 600 V, room temperature and the temperature rise is recorded using FLIR-63900 thermal camera. The gate resistance is chosen to be 2 kΩ to amplify the impact of different device characteristics. The results is plotted on Fig. 14 and thermal image corresponding to the highest captured temperature is shown in Fig. 15. It shows that compared with soaring to nearly 160°C within 2 minute for symmetrical double-trench MOSFET, planar and asymmetrical double-trench MOSFET, after a small rise initially, maintain stably at low temperature though asymmetrical double-trench MOSFET is still higher than planar.

V. CONCLUSION

The crosstalk behaviour for planar and two double-trench structured SiC MOSFETs has been modeled and experimentally measured. Higher gate voltage is induced at crosstalk for two double-trench structured MOSFETs and thereby higher shoot-through current compared with the selected planar MOSFET. Such high induced gate voltage potentially amplifies the impact of channel mobility on shoot-through current at increasing temperature, so that symmetrical double-trench and asymmetrical double-trench MOSFET have decreasing or constant shoot-through current respectively in response to the increase of temperature, in contrast to the increasing trend observed on the selected SiC planar MOSFET. As a consequence of the large shoot-through current on symmetrical double-trench structured MOSFET, it undergoes fast temperature rise under continuous operation. Also, minimization of shoot-through by replacing large gate resistance of complementary device for symmetrical double-trench MOSFET is not as effective as that on the selected planar MOSFET and asymmetric double-trench MOSFET.

REFERENCES

