
Publisher's PDF, also known as Version of record

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.ejso.2021.05.036

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at 10.1016/j.ejso.2021.05.036. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Biological and synthetic mesh assisted breast reconstruction procedures: Joint guidelines from the Association of Breast Surgery and the British Association of Plastic, Reconstructive and Aesthetic Surgeons

Lisa Whisker, Matthew Barber, Donna Egbeare, Ashu Gandhi, Adam Gilmour, James Harvey, Lee Martin, Rachel Tillett, Shelley Potter

Nottingham Breast Institute, City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
Edinburgh Breast Unit, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
The Breast Centre, Cardiff and the Vale University Health Board, UK
The Nightingale Breast Cancer Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
Manchester Academic Health Sciences Centre, Manchester, UK
Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Scotland, UK
Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
Liverpool Breast Unit, Liverpool University Foundation Trust, UK
Royal Devon and Exeter NHS Trust, Exeter, UK
Population Health Sciences, Bristol Medical School and Bristol Breast Care Centre, North Bristol NHS Trust, UK

A R T I C L E I N F O
Article history:
Received 16 April 2021
Received in revised form 16 May 2021
Accepted 19 May 2021
Available online 25 May 2021

Keywords:
Mesh
Biological
Synthetic
Breast reconstruction
ADM
Guideline

A B S T R A C T
These guidelines have been produced with the involvement of the Association of Breast Surgery and the British Association of Plastic, Reconstructive and Aesthetic Surgeons. Recommendations have been derived after a review of published data regarding the use of acellular dermal matrix (ADM), biological and synthetic mesh in breast reconstruction. The guidelines represent a consensus opinion on the optimal management of patients having biological or synthetic mesh assisted breast reconstruction informed by peer-review publications. The Guidelines should be used to inform clinical decision making. Ultimately, members of the MDT remain responsible for the treatment of patients under their care.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

These guidelines have been produced with the involvement of the Association of Breast Surgery and the British Association of Plastic, Reconstructive and Aesthetic Surgeons. Recommendations have been derived after a review of published data regarding the use of acellular dermal matrix (ADM), biological and synthetic mesh in breast reconstruction. This document supplements the publication “Oncoplastic breast surgery: A guide to good practice” which gives an in depth practical guide on all types of breast reconstruction [1,2].

Background

Implant-based reconstruction (IBR) accounts for 53% of immediate reconstructions following mastectomy in the UK [3], the majority of these being performed with a biological or synthetic mesh [4]. In 2013 the Association of Breast Surgery (ABS) and the
British Association of Plastic Reconstructive and Aesthetic Surgeons (BAPRAS) published joint guidelines for acellular dermal matrix (ADM) assisted procedures [5]. Since 2013, there has been a significant increase in the volume of these procedures and in the variety of biological and synthetic meshes licensed for use [4]. Practice has also evolved to include new ways of using these devices including most recently, prepectoral IBR [6].

The perceived advantages of biological or synthetic mesh as an adjunct for implant-based breast reconstruction over traditional total submuscular techniques include improved lower pole projection and control of the inframammary fold resulting in better aesthetic outcomes [7]; the potential for single-stage direct-to-implant reconstruction, avoiding the need for tissue expansion and second procedure; reduced postoperative pain and decreased operative time [8]. Despite widespread adoption of the technique and multiple publications and systematic reviews [8–15] summarising the outcomes of mesh-assisted reconstruction, there is limited high-quality evidence to support the proposed benefits of the technique. The most recent high-quality systematic review concluded that there remains a need for well-designed studies to evaluate the impact of mesh use on the clinical and patient-reported outcomes of IBR [10].

Since the publication of this review, two small randomised clinical trials (RCTs) [16,17] and two large prospective multicentre cohort studies [4,18] comparing the outcomes of IBR with and without mesh have reported. The RCTs were both European multicentre studies comparing the outcomes of two-stage expander-implant reconstruction and single-stage direct-to-implant reconstruction with biological mesh (ADM) [16,17]. Both trials demonstrated increased complication rates in patients undergoing mesh-assisted procedures at 6 [17] and 12 [16] months following reconstruction but neither study demonstrated significant differences in patient-reported outcomes between the reconstruction groups [16,19]. The trials were criticised for failure to account for learning curve effects in the ADM group [20] and exclusion of patients undergoing implant salvage from the analysis of implant loss [21]. Furthermore, the trials included predominantly slim patients (median BMI 23) with relatively small breasts (mastectomy weight <400g) and thus are unlikely to be representative of UK practice.

Of the two large multicentre prospective cohort studies, the North American study compared the outcomes of two-stage expander-implant reconstruction with and without ADM in 1297 patients and found no differences in complication rates or patient-reported outcomes between the groups at two years following reconstruction [18]. As UK practice is now predominantly single-stage direct-to-implant using animal-derived ADM products, the generalisability of these results to the UK population should be viewed with caution.

The UK iBRA study recruited 2108 patients undergoing IBR at 81 centres between 2014 and 2016 including 1376 patients receiving mesh-assisted procedures. The study reported high rates of implant loss (9%), infection (25%), readmission (18%) and reoperation (18%) within 3 months of reconstructive surgery in all groups, irrespective of the use or type of mesh [4]. Complications rates were associated with smoking, high body mass index (BMI), longer operative time and previous radiotherapy, consistent with previously published studies [22–25]. This highlights the importance of careful patient selection in combination with meticulous perioperative practice [22,26] to optimise outcomes for patients undergoing mesh-assisted IBR procedures. Of note, despite the proposed benefits of mesh-assisted procedures, the 3-month clinical [4] and 18-month patient-reported outcomes [27] from the iBRA study were largely consistent with the outcomes of two-stage expander-implant reconstruction without mesh reported in the UK National Mastectomy and Breast Reconstruction Audit [28].

Data regarding the long-term results of mesh-assisted procedures, including patient-reported outcomes are currently lacking [29]. Single-centre case-series with long-term follow-up have been published [30,31] and have shown excellent results, but it is unlikely that these outcomes from expert centres can be extrapolated to the wider reconstructive community. Furthermore, population-based studies have shown high rates of revision in implant-based reconstruction [32] but little is known about long-term revision rates when mesh is used. Work is particularly required to explore the outcomes of mesh-assisted reconstruction following radiotherapy. A recent meta-analysis suggests rates of capsular contracture may be reduced when ADM is used, but follow up is limited and included studies are heterogeneous [33] so caution is required when interpreting these results. There remains the need for high-quality clinical and patient-reported outcome data to support the practice of mesh-assisted IBR in the UK.

In 2020, ‘First Do No Harm’, the report of the Independent Medicines and Medical Devices Safety Review led by Baroness Julia Cumberlege was published [34]. The review aimed to examine the English healthcare system response to reports about harmful side effects from medicines and medical devices. The Report highlighted many themes relevant to breast surgery and helped inform this guidance. We would encourage all users of implanted products to read the Summary of Recommendations and Actions for Improvement [https://www.immdsreview.org.uk/downloads/IMMDSReview_Web.pdf].

The main themes of the Cumberlege report that breast reconstructive surgeons, as users of medical devices should consider are:

- ‘I was never told’ – the failure of truly informed consent about the procedure, the products being used and surgical experience.
- ‘Collect once, use often’ and ‘Collecting what matters’ – Databases and Registries
- Patient safety – doing it better

Our practice is continually evolving, and it should continue to do so, however, as reconstructive surgeons we must ensure that our innovation is accompanied by appropriate evaluation and that patients are fully informed if/when a new device is being used. Fully informed consent should include discussion of local experience with the device and limitations of any available evidence supporting its use so patients may choose whether or not to undergo the procedure.

Aims

The aims of this document are to:

- i. describe the use of biological and synthetic mesh in oncoplastic breast surgery
- ii. describe the clinical considerations for use of biological and synthetic mesh in implant-based breast reconstruction
- iii. guide topics for discussion for informed consent for breast procedures using biological and synthetic mesh
- iv. inform the content of patient information [12].
- v. describe quality criteria and audit for biological/synthetic mesh in breast reconstruction procedures
- vi. inform those developing and commissioning services of the identified clinical standards and quality indicators associated with the procedure

These guidelines are based on the best available peer-reviewed evidence for mesh-assisted IBR supported by expert opinion where
Use of biological and synthetic mesh in oncoplastic breast surgery

Role of biological or synthetic mesh in oncoplastic breast surgery

Biological or synthetic mesh may be used in the following settings:

i. Implant-based total breast reconstruction after mastectomy; both for breast cancer patients and in women undergoing risk-reducing surgery
 a. Immediate reconstruction
 b. Total pre-pectoral or partially sub-pectoral reconstruction
ii. Revision of cosmetic concerns following breast surgery
 a. In the clinical setting of revising implant-based reconstructions e.g., correction of “bottoming out”, symmastia and implant rippling
 b. Revision of cosmetic concerns following oncoplastic breast conserving surgery e.g., correction of “bottoming out” after mammoplasty or mastopexy
iii. Congenital asymmetry/deformity surgery

Biological or synthetic mesh selection

There are a large number of products available and the product range is rapidly evolving. There is no clear consensus on the ideal biological or synthetic mesh or evidence to inform mesh selection. The guideline group recommends consideration of the following when selecting a product:

i. Biological versus synthetic
 • Biological products (e.g. ADMs) are usually animal derived. Ensure the patient is informed and comfortable with the mesh origin.
 • Synthetic mesh may be composed from absorbable and/or non-absorbable materials.
ii. Evidence of complication rates for a specific product
iii. Experience of using the product (surgeon, theatre team, wider clinical team, wider surgical community).
iv. Ease of use. Particular consideration to evidence that prolonged operating times are associated with increased complication rates for implant-based reconstruction procedures [4].
v. Cost effectiveness
vi. No innovation without evaluation for products lacking short and long term evidence base.
vii. All devices must have appropriate approvals and registration as a medical device through Medicines & Healthcare products Regulation Agency (MHRA) [35] in the United Kingdom.

The remainder of this document focuses on biological or synthetic mesh assisted immediate implant-based breast reconstruction techniques where the majority of the evidence is focused. Many of the topics which follow should also be considered when biological or synthetic mesh is used in other aspects of breast surgery.

Clinical considerations for delivering biological/synthetic mesh assisted breast reconstruction

Clinical considerations

The following considerations supplement the recommendations made in Oncoplastic Breast Surgery: A guide to good practice [12].

i. Planned mastectomy with breast reconstruction procedure following full discussion at the diagnostic or oncoplastic multidisciplinary team meeting
ii. Discussion of the advantages and disadvantages of biological/synthetic mesh-assisted reconstruction and all other suitable oncoplastic procedures [12].

Consideration should be given to:

a. Individual patient risk-factors including smoking, BMI and previous radiotherapy [4].
b. Suitable skin envelope. Healthy skin with normal vascularity pre-operatively
c. Provision of written information, opportunity to review photos of surgical outcomes, opportunity to meet other patients where practical.
d. Patients who decline or are unable to undergo autologous tissue reconstruction (i.e., no suitable donor sites)
e. Adjuvant radiotherapy and the long-term effects this may have on different types of reconstruction (autologous vs implant based).

iii. The patient should have knowledge and acceptance that the reconstruction involves a biological/synthetic mesh.

Specific points for discussion should include:

a. Biological products are animal derived and the origin of specific mesh should be discussed
b. Whether the mesh remains permanently or is expected to be absorbed and the impact this may potentially have
c. Local experience with the mesh and the published evidence for its use including uncertainty regarding long-term clinical (e.g., need for revision surgery) and patient-reported outcomes.

d. Implant loss ~9%.
e. Infection ~25%
f. Readmission ~18%,
g. Reoperation ~18%,
h. Adjuvant radiotherapy and the long-term effects this may have on different types of reconstruction (autologous vs implant based).

i. Planned mastectomy with breast reconstruction procedure following full discussion at the diagnostic or oncoplastic multidisciplinary team meeting

Patients need to be informed of local complication rates when considering surgery and how complications may present post-operatively [36]. By 3 months national rates are [4]:

a. Readmission ~18%,
b. Reoperation ~18%,
c. Infection ~25%,
d. Implant loss ~9%.

vi. Patients opting for a single-stage procedure must be informed preoperatively of the possibility of a two-stage procedure using an expander because of possible impaired vascularisation of the skin flaps.
Cautions

i. Do not compromise oncological principles
 a. Consider, and discuss with patients the potential delay in adjuvant treatment, which may occur as a result of complications [41].
 b. Early surgical intervention for skin necrosis
 c. Consider early planned clinical review

ii. Radiotherapy
 a. Patients requiring post-operative chest wall radiotherapy may have increased rates of complications [24].
 b. There is an increased risk of capsular contracture post radiotherapy. ADM may reduce rates of capsular contracture [42] but evidence is conflicting [10,33] and caution is advised.

iii. Patient risk factors
 a. Increasing BMI increases rates of complications [4].
 b. Patients with a history of smoking, or who continue to smoke (or use nicotine containing substitutes), have a higher risk of complications including implant loss [4] (around two-fold increase in risk). The risk remains increased in ex-smokers.
 c. Estimated mastectomy weight - increased infection rate associated with weight >600gms [23,43].

Quality criteria and audit recommendations

Audit recommendations

i. All surgeons performing biological or synthetic mesh assisted, implant-based reconstruction should participate in comprehensive prospective audit.

ii. All surgeons should be aware of their own and their unit complication rates.

iii. All cases should be submitted to the Breast and Cosmetic Implant Registry.

iv. All surgeons should contribute to national audits of reconstruction or appropriate research studies.

v. Patient reported outcomes should be assessed using validated measures (BREAST-Q) [44].

vi. All surgeons must undertake formal evaluation of new products, new techniques

vii. Audit recommendations for oncoplastic surgery and implant reconstruction outlined in the national oncoplastic guideline should be followed [12].

Suggested data items to consider for audit are included in Appendix B.

Audit criteria

The guideline team recommend the following criteria for audit. Items should include the core outcome set for breast reconstruction [45] and the recently developed core measurement set for implant-based reconstruction [44]. For each criteria the NMBRA [28] outcome has been stated, the iBRA [4] finding followed by a target standard that individual Units should aspire to, once experienced in the technique.

i. Surgical techniques should be optimised to reduce local complications following skin sparing and nipple sparing mastectomy

NMBRA outcome: 7.6% of patients returned to theatre for local complications (wound infection or skin flap necrosis requiring debridement; haematoma) during index admission

iBRA outcome: 18% of patients required return to theatre within 3 months.

Target Standard: <10% of patients requiring return to the operating theatre for local complications within 3 months of index operation.

ii. Implant loss at 3 and 12 months is assessed and audited

NMBRA outcome: 9% of immediate breast reconstruction (IBR) patients reported implant loss

iBRA outcome: 9% of patients experienced implant loss within 3 months of index operation.

Target Standard: complications leading to implant loss occur in <5% of patients 3 months.

iii. Patient experience of information and outcomes

Satisfaction with information for those proceeding with breast reconstruction.

NMBRA outcome: At 3 months, 72% of patients reported
satisfaction with information provision.

50% of patients received written information about breast reconstruction

iBRA outcome: 96% patients received written information.
At 3 months 92% reported satisfied with information provision.
Target Standard: 100% of patients receive written information about breast reconstruction.

Training requirements

All surgeons new to biological/synthetic mesh assisted reconstruction techniques need training:

i. Individuals should be aware there is a recognised learning curve and be mentored for the introduction of this technique by an experienced surgeon (with audit evidence) until competency is reached

ii. There has to be evidence of acceptable results for the individual surgeon (see audit standards).

iii. All cases should be audited prospectively

Commissioning and funding considerations for biological or synthetic mesh assisted implant reconstruction

Teams should be aware that currently there is no nationally agreed tariff in the UK for biological/synthetic mesh assisted breast reconstruction. Good quality audit data will be invaluable when negotiating re-reimbursement costs as the one-stage mesh-assisted breast reconstruction may be cost effective and potentially cost saving [46].

Units should ensure appropriate coding is used for accurate audit, long-term follow up and reimbursement.

There are now nationally agreed operation codes [47,48] (Fig. 1) for use of synthetic or biological mesh which can be used for implant reconstruction procedures. Units should ensure these are adopted into local practice.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Patient information specific to biological or synthetic mesh-assisted implant reconstruction

Written patient information should include:

1. Risks and benefits of mesh assisted implant reconstruction [36].
 a. Recovery times
 b. Delays to adjuvant therapy if a complication occurs [41].
 c. ALCL
 d. Complication rates in general by 3 months [4] (and where available local audit evidenced complication rates quoted) should include:
 i. Reoperation ~18%
 ii. Readmission ~18%
 iii. Infection ~25%
 iv. Implant loss ~9%
 e. Long term outcomes
 i. Lack of long term evidence
 ii. Likelihood of revision surgery
 iii. Likelihood of symmetrising surgery
 iv. Potential effects of adjuvant radiotherapy
2. Specific risk factors for the individual patient
3. Origins of mesh (biological (specific animal derivation) vs synthetic)
4. Information on ‘early-warning’ signs for complications [36].
 a. Red breast
 b. Swelling (prolonged or recurrent seroma)
 c. Systemic symptoms of infection – fever, malaise.

Fig. 1. Mesh (biological/synthetic) subsidiary ‘method of operation’ codes for Breast procedures OPCS 4.9 [43,44].
d. Wound healing concerns e.g. Leakage or discolouration
5. Information on what to do in event of concerns about complications [36].

a. How to identify a problem

References

cal-guidance-platform. [Accessed 13 April 2021].

/professionals/clinical-guidance. [Accessed 13 April 2021].

[34] Cumberlege J. First do no harm: the report of the independent medicines and medical devices safety review. Department of Health and Social Care; 2020.

[40] NICE. PICO. Negative pressure wound dressings for closed surgical incisions. Medical technologies guidance (MTG43); 2019.

