
Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.gca.2014.02.010

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Age and weathering rate of sediments in small catchments: the role of hillslope erosion

Anthony Dosseto¹*, Heather L. Buss² and François Chabaux³

¹ Wollongong Isotope Geochronology Laboratory. School of Earth and Environmental Sciences, University of Wollongong. Wollongong, NSW 2522, Australia
² School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ, UK
³ Laboratoire d’Hydrologie et de Géochimie de Strasbourg (LHyGES), Université de Strasbourg et CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France

* Corresponding author: tonyd@uow.edu.au. Tel: +61 2-4221-4805; Fax: +61 2-4221-4250
Abstract

Uranium-series (U-series) isotopes in river material can be used to determine quantitative time constraints on the transfer of erosion products from source to sink. In this study, we investigate the U-series isotope composition of river-borne material in small catchments of Puerto Rico and southeastern Australia in order to improve our understanding of (i) the controls on the U-series isotope composition of river-borne material and (ii) how erosion products acquire their geochemical characteristics. In both regions, thorium isotopes track the origin of sediment and dissolved loads. Stream solutes are mainly derived from the deepest part of the weathering profile, whereas stream sediments originate from much shallower horizons, even in landslide-dominated Puerto Rican catchments. This suggests that in environments where thick weathering profiles have developed, solutes and sediments have distinct origins.

The U-series isotope composition of stream sediments was modelled to infer a weathering age, i.e. the average time elapsed since the sediment’s minerals have started weathering. In southeastern Australia, the weathering age of stream sediments ranges between 346 ± 12 kyr and 1.78 ± 0.16 Myr, similar to values inferred from weathering profiles in the same catchment. Old weathering ages likely reflect the shallow origin of sediments mobilised via near-surface soil transport, the main mechanism of erosion in this catchment. Contrastingly, in Puerto Rico weathering ages are much younger, ranging from 5.1 ± 0.1 to 19.4 ± 0.4 kyr, reflecting that sediments are derived from less weathered, deeper saprolite, mobilised by landslides. Weathering ages of stream sediments are used to infer catchment-wide, mineral-specific weathering rates that are one to two orders of magnitude faster for Puerto Rico than
for southeastern Australia. Thus, the type of erosion (near-surface soil transport vs. landslide) also affects the weathering rate of river sediments, because their weathering ages determine the potential for further weathering during sediment transport and storage in alluvial plains.
Introduction

The measurement of uranium-series isotopes in river material can be used to determine time constraints on erosion and weathering processes (Chabaux et al., 2008; Chabaux et al., 2006; Chabaux et al., 2003b; DePaolo et al., 2006; Dosseto et al., 2006a; Dosseto et al., 2006b; Dosseto et al., 2008a; Dosseto et al., 2006c; Granet et al., 2010; Granet et al., 2007; Lee et al., 2010; Vigier and Bourdon, 2011; Vigier et al., 2005; Vigier et al., 2001; Vigier et al., 2006). One particularly important parameter to understand the dynamics of soil formation, erosion and sediment transfer at the catchment scale is the *weathering age* of soil and sediment as inferred from U-series isotopes (termed in previous studies “residence time” or “transport time”; Andersen et al., 2013; Chabaux et al., 2013; Chabaux et al., 2008; Chabaux et al., 2003a; Chabaux et al., 2006; Chabaux et al., 2003b; DePaolo et al., 2006; Dequincey et al., 1999; Dequincey et al., 2002; Dosseto et al., 2006a; Dosseto et al., 2006b; Dosseto et al., 2008a; Dosseto et al., 2011; Dosseto et al., 2012; Dosseto et al., 2010; Dosseto et al., 2006c; Granet et al., 2010; Granet et al., 2007; Keech et al., 2013; Lee et al., 2010; Ma et al., 2010; Pelt et al., 2008; Vigier and Bourdon, 2011; Vigier et al., 2005; Vigier et al., 2001; Vigier et al., 2006). This age represents the average amount of time elapsed since the minerals that compose the soil or sediment have started to chemically weather (i.e. the onset of mineral dissolution in the bedrock). The weathering age of sediments integrates both their storage in weathering profiles and transport in the river. Note that where the transport time in the river is short (e.g. little or no storage in an alluvial plain), the weathering age of sediments gives a catchment-averaged estimate of the age of weathering profiles (Fig. 1). Recent studies have shown that the
sediment weathering age can vary from as little as a few hundreds of years in Iceland (Vigier et al., 2006) to several hundreds of thousands of years in the lowlands of the Amazon basin (Dosseto et al., 2006a). Most of these studies have focused on large catchments: Amazon (Dosseto et al., 2006a; Dosseto et al., 2006b), Ganges (Granet et al., 2010; Granet et al., 2007), Mackenzie (Vigier et al., 2001), Murray-Darling (Dosseto et al., 2006c). In order to improve our understanding of the controls on the sediment weathering age, here we focus on small catchments draining granitic (Rio Sabana and Rio Icacos) and volcaniclastic lithologies (Rio Mameyes) in tropical Puerto Rico and granitic lithologies in temperate southeastern Australia (Nunnock River). These catchments were chosen because Rio Sabana and Icacos are underlain by similar parent rock as the Nunnock River but characterised by a much wetter and warmer climate, thus allowing us to study the role of climate on weathering age. Furthermore, the Rio Mameyes catchment has similar climatic features to Rio Sabana and Icacos catchments such that the role of lithology can be ascertained.

Study areas

Nunnock River basin, New South Wales, Australia

The Nunnock River is a tributary of the Bega River (southeastern Australia), which drains the eastern flank of the Great Dividing Range into the Tasman Sea (Fig. 2a). This relief formed as a result of the initiation of rifting that opened the Tasman Sea approximately 80 Ma ago (Ollier, 1982) and has been slowly propagating inland since then. Altitude ranges 1100 m at the source of the Nunnock River to 220 m at the confluence with the Bega River. The catchment is
underlain by the Palaeozoic granodioritic Bemboka suite of the Bega batholith (White and Chappell, 1983).

The Nunnock River catchment is vegetated by schlerophyl forest dominated by stringy bark eucalyptus. Rain falls throughout the year and the mean annual precipitation is ~ 910 mm/yr (Bureau of Meteorology Australia, 1999). The average annual temperature is 10°C (Bureau of Meteorology Australia, 1999). Hillslope erosion is dominated by near-surface soil transport, as illustrated by numerical modelling of hillslope sediment transport in this catchment (Braun et al., 2001; Heimsath et al., 2002). This in agreement with Prosser et al. (2003; 2001) who suggest that in this region near-surface soil erosion dominates over rill and gully erosion. Furthermore, based on field and satellite imagery survey, no evidence for landsliding was found. Field survey also suggests that there is no significant alluvium storage in the Nunnock River catchment. Discharge has not been monitored and no measurement was available at the time of sampling. The concentration of suspended sediments was measured at the time of sampling and ranges from 2 to 12 mg/l. The river was sampled at five different locations (Fig. 2a). Sample NUN01 was collected near the source of the river and integrates a very small swamp area (~0.25 km²). Samples NUN01, 02 and 03 were collected at sites where the river only drains the plateau area, which covers ~18 km², while at NUN04 and 05 sample sites the river drains both the plateau and the escarpment. At NUN05, the drainage area is ~33 km². About 5 to 10 litres were collected and filtered at 0.2 μm to separate the suspended sediments from the dissolved+colloidal load. Bedload sediments were also sampled for the three most downstream locations. The channel width at these locations was only ~1-2m and the water height <1 m. Bedload sediments were collected across the river bed over ~10m of
channel length. These sediments are medium to coarse sands and are only expected to experience significant transport during high discharge events. Two soil samples were collected at 30 and 50 cm depth from a pit located on the same hillslope as the one studied in Dosseto et al. (2008b).

Luquillo Mountains, Puerto Rico

The river basins studied are located in the Luquillo Experimental Forest (Luquillo Mountains, eastern Puerto Rico; Fig. 2b). The Rio Icacos and Rio Sabana run from north to south and are tributaries of the Rio Blanco, which drains into the Caribbean Sea on the southeast side of the island. The Rio Mameyes runs south to north and discharges directly into the Atlantic Ocean on the north side of the island.

Relief is characterized by steep slopes in all three catchments with elevation varying between 616 and 844 m for Icacos above the stream gage, between 84 and 1040 m for Mameyes above the stream gage at Puente Roto, and between 330 and 1024 m for Sabana, which is not gauged. The Icacos and Sabana basins are underlain by the Rio Blanco quartz diorite (49-42 Ma; Smith et al., 1998) which constitutes 99% of the lithology drained, whereas the Rio Mameyes basin is mostly underlain by marine-deposited basaltic to andesitic volcaniclastics of the Fajardo and Tabonuco Formations (both about 100 Ma; Jolly et al., 1998b), with some quartz diorite and contact-metamorphosed volcaniclastics in the uppermost parts of the catchment. The vegetation in the studied catchments is mostly subtropical to lower montane rainforest, with dwarf forests at the highest elevations and Sierra Palm forests at lower elevations. The Mameyes River basin is covered by lower montane rainforest dominated by Tabonuco trees (*Dacryodes excelsa*) and the Icacos and Sabana River basins by lower
montane wet forest dominated by Colorado trees (*Cyrilla racemiflora*). Precipitation increases with elevation and ranges from 3530 to 4850 mm/yr with an average value of 4200 mm/yr in the Icacos basin and 3482 mm/yr in the Mameyes basin (Heartsill-Scaley et al., 2007; White et al., 1998). Mean annual temperature is 22 °C. Mean monthly temperatures at lowest elevations range from about 23.5 °C in January to 27 °C in September, and at the highest elevations from 17 °C to 20 °C. Discharge is highly variable with very high discharge during rain events returning quickly to very low base flows after the events. Mean annual runoff for Rio Icacos is 3610 mm/yr with a drainage area of 3.26 km2 (Peters et al., 2006). Mean annual runoff for Rio Mameyes is 2441 mm/yr with a drainage area of 17.8 km2 (Larsen and Stallard, 2000). Rio Icacos mean annual sediment yield is 954 t/km2 and the median annual sediment concentration is 27.7 mg/L (Larsen, 2012). Mameyes River mean annual sediment yield is 227 t/km2 and the median annual sediment concentration is 12.8 mg/L (Larsen, 2012). Runoff and sediment yields have not been determined for the Sabana River. Landslides are the major erosion drivers in the Icacos and Mameyes basins, where they constitute 93% and 98% of the total hillslope erosion, respectively (Larsen, 2012). Landslides are twice more frequent in the Icacos basin compared to Mameyes, which is accounted for by the more erodible nature of the soil and saprolite derived from the quartz diorite (Larsen, 2012). Mean landslide depth ranges from 2 to 9 m for Icacos, and 2 to 12 m for Mameyes (Larsen, 2012). Mass balance on in-situ 10Be concentrations in Icacos sediments suggest that, for the samples considered, 55% of the sediments are derived from mass wasting events (Brown et al., 1995). In both watersheds, fractured bedrock corestones are embedded in saprolite below about 5 m depth (Buss and White, 2012; Buss et
al., 2013; Buss et al., 2008), providing multiple weathering interfaces supplying freshly weathered sediments at depth.

Sampling was undertaken in July 2005 during base flow conditions. Water was filtered soon after collection (see “Analytical Techniques” section). Bedload sediments were collected from six streams. In all instances, bedload sediments were medium to coarse sands. For RI-2, RI-4 and RI-7, the stream width was <1 m and the water height <0.5 m, thus bedload samples were collected across the stream bed over a channel length of ~4 m. RI-7 “bank” sediments were collected from the side of the stream channel, above the water level. Similar aspect (grain size and mineral type) to RI-7 bed sediments suggests that the material sampled was not soil but indeed stream sediment. For RI-3 and RI-5, the channel width was 5-10 m and 2-4 m, respectively, and the water height <1.5 m; bed sediments were collected across the channel over a channel length of ~10-20 m. For RI-6, the channel width was 2-4 m and the water height <1 m; bed sediments were collected across the channel over a channel length of ~10 m. For samples RI-2 and RI-4, grain size of bedload sediments appeared finer (silt size) than for other sediment samples (based on field observations since grain size distribution was not measured).

Parent rock samples were also collected from outcrops in both the Icacos and Mameyes catchments. Although the composition of the parent rock varies somewhat across the catchments (e.g., Buss et al., 2013; Jolly et al., 1998a; Turner et al., 2003), these samples are only used as an estimate of the composition of the parent material for comparison to that of erosion products. Regolith samples from the LG1 weathering profile studied in Buss et al. (2005; Buss et al., 2010), Pett-Ridge et al. (2009a; 2009b), Schulz and White (1999) and White et al. (1998), were also analysed.
Analytical techniques

For Puerto Rico, river water samples were processed at the US Geological Survey at Guaynabo (Puerto Rico) using two different techniques: (i) filtration at 0.2 μm using acetate cellulose filters in a PTFE enclosure. The filtered water, i.e. <0.2 μm fraction, was labelled “dissolved+colloidal load”. The suspended load (i.e. >0.2 μm fraction) was recovered from the filter by rinsing it with 18 MΩ water, centrifuging the solution and discarding the supernatant, followed by drying at 80 °C in acid-washed PTFE containers. (ii) Filtration at 25 μm (cellulose mesh) followed by tangential filtration using a stack of membranes allowing successive filtrations at 0.2 μm, 100 kilo-daltons (kDa) and 10 kDa. Thus in the second procedure, we obtained two suspended load size fractions: >25 μm and 2-25 μm, two colloidal size fractions: 100 kDa - 0.2 μm, 10-100 kDa, and the dissolved load: <10 kDa. The size fraction >25 μm was collected by rinsing the mesh with 18 MΩ water, centrifuging the solution and discarding the supernatant, followed by drying at 80 °C in acid-washed PTFE containers. Colloidal fractions were dried down at 80 °C in acid-washed PTFE containers. For southeastern Australia, river water samples were filtered in the field at 0.2 μm as described above. At both study sites, the concentration of suspended matter was determined by filtering a known volume of water (generally 1L) and weighing the filter after drying. The error estimated on suspended matter concentrations is no more than 5-10 %.

Colloidal fractions, suspended, bedload sediments and regolith samples were homogenised and gently crushed in an agate mortar. Sediments and regolith were first dried at 100 °C to remove the water. The Loss-on-ignition (LOI) was determined at the Geochemical Analysis Unit (Macquarie University) by ashing a weighed amount of dry sample (~2g for each
sample) at 550 °C for 5 hours in a furnace. LOI is used as a proxy for soil organic content, as previously suggested in numerous studies (e.g. Bengtsson and Enell, 1986; Dean, 1974; Donkin, 1991; Goldin, 1987; Heiri et al., 2001; Spain et al., 1982), noting however that this parameter can also include dehydration of clay minerals and metal oxides (Heiri et al., 2001). Nevertheless, neglecting the role of clays on LOI values still accounts for 91% of the variance between LOI and measured organic carbon content (Spain et al., 1982). Soil samples were processed at the Research School of Earth Sciences (Australian National University) to produce quartz separates, as commonly performed for in-situ cosmogenic isotope measurement, and following a procedure modified from (Kohl and Nishiizumi, 1992).

For Zr (and other trace elements) analyses, standard methods were employed (e.g. Eggins et al., 1997). Sample preparation was performed at the Geochemical Analysis Unit (Macquarie University). Approximately 100 mg of ground solid sample was weighed into clean 15 ml Savillex® PFA vials. Samples were digested using a 1:1 mixture of HF (Merck, Suprapur grade) and HNO₃ (Ajax) at 160 °C for 24 h, then dried down and repeated. The samples were then further digested in 6M HNO₃ for 24 h, dried down again, and diluted to 10 ml in 2% HNO₃ with trace HF. Then 1:1000 dilutions of each sample were individually spiked with a 15 μl aliquot of a solution of Li, As, Rh, In, Tm and Bi in 2% HNO₃. Samples and standards were analysed by quadrupole inductively coupled plasma mass spectrometry (ICP-MS) on an Agilent 7500 c/s system at the GAU, Macquarie University. BCR-2 was used as a calibration standard to correct for instrument sensitivity and run drift. The background was measured on a 2% HNO₃ rinse solution.
For Sr isotope determination, sample preparation was undertaken at the Geochemical Analysis Unit (Macquarie University). Purification of Sr was carried out using powders digested in PFA vials with concentrated HF and HNO₃. Samples were then dried down and ~1 ml of concentrated HClO₄ was added, followed by 4 ml 6M HCl and H₂O₂. These were dried down once again, dissolved in 6M HCl, dried, dissolved in HCl and HF, and centrifuged to check for the presence of any undissolved residue (none was observed). The samples were then loaded onto Teflon columns using Biorad® AG50W-X8 (200–400 mesh) cation exchange resin and eluted in 2.5N HCl–0.1N HF. Strontium isotopic analyses were obtained by thermal ionization mass spectrometry (TIMS) using a Thermo Finnigan Triton system at the GAU, Macquarie University, Sydney. Strontium was loaded onto single rhenium filaments with a Ta activator and analysed between 1380 and 1430 °C in a static measurement mode with rotating amplifiers. NIST SRM 987 was analysed for instrument sensitivity during times of the analyses (n = 17) and gave a long-term reproducibility of $^{87}\text{Sr}/^{86}\text{Sr} = 0.710250$ (2SD = 0.000034). Ratios were normalized to $^{86}\text{Sr}/^{88}\text{Sr} = 0.1194$ to correct for mass fractionation.

For U-series isotope determination, sample preparation and analysis were performed at the Geochemical Analysis Unit (Macquarie University). A tracer solution enriched in ^{236}U-^{229}Th and another tracer solution enriched in ^{228}Ra were added to the ground solid sample, in order to determine U, Th and ^{226}Ra concentrations, respectively (Tables 1 and 2). The masses of sample and ^{236}U-^{229}Th tracer solution were chosen to minimise its contribution on ^{234}U, ^{235}U, ^{238}U, ^{230}Th and ^{232}Th (<0.1 %) while yielding beams greater than 50,000 cps for ^{236}U and ^{229}Th. The masses of sample and ^{228}Ra tracer solution were optimised to yield a measured $^{228}\text{Ra}/^{226}\text{Ra}$ as close to 1 as possible. The mixture of sample and tracer solutions was then dissolved in HClO₄, HF and
HNO₃. Fluorides were driven off by evaporation at 100 °C followed by step evaporation at 150 °C, 170 °C and 200 °C. Samples were then taken up in 7M HNO₃ and centrifuged to check for the presence of any undissolved residue (none was observed) before U-Th separation. For dissolved and dissolved+colloidal load samples, about 30 mg of ²³⁶¹⁻²²⁹²²⁹Th solution and ~500 mg of ²²⁸¹⁻²³⁰²³⁰Ra solution were added to ~300 g of <10 kDa fraction or to ~20 g of <0.2 μm fraction. This mixture was left to equilibrate at room temperature for 3-5 days. It was then dried down at 100 °C and re-dissolved in 7M HNO₃. U-Th were separated by ion chromatography using a BioRad™ AG1X8 anionic resin (yields >99 %; Dosseto et al., 2008b; Price et al., 2007). Ra was collected from the U-Th column and processed through a series of two columns with BioRad™ AG50W-X8 cationic resin and a last column with Eichrom Sr-SPEC resin (yields >99 %; Chabaux and Allègre, 1994). U and Th isotopes were measured on a Nu Instruments Nu Plasma™ multi-collector ICP-MS following procedures described in Sims et al. (2008). Briefly, mass bias and SEM/Faraday cup yield were corrected by standard bracketing using CRM145 for U and Th”U” for Th. A linear ²³²Th tail correction was applied on ²³⁰Th was measuring at masses 230.5 and 229.5. Ra was measured by TIMS on a Thermo Scientific Triton™ following a procedure similar to that described in Turner et al. (2000). Total procedure blanks were <10 pg for U and Th, and below detection limit (~10 fg) for Ra. Accuracy was determined by measurement of the gravimetric rock standard TML-3 (Table 1). U, Th and ²²⁶Ra concentrations are within 1.2, 0.7 and 1.4 %, respectively, of published values (Pietruszka et al., 2002; Sims et al., 2008) whilst (²³⁴U/²³⁸U), (²³⁰Th/²³⁸U), (²²⁶Ra/²³⁰Th) and (²³⁰Th/²³²Th) ratios are within 0.6, 0.3, 0.4 and 0.1 % respectively, of published values. In comparison, reproducibility of sample processing and analysis is poor, probably reflecting heterogeneity in nuclide distribution: 6, 3 and 1% for Th, U and ²²⁶Ra.
concentrations, respectively; 5 and 3% for $^{226}\text{Ra}^{230}\text{Th}$ and $^{230}\text{Th}^{232}\text{Th}$ activity ratios (each replicate was measured on a different aliquot of sample that underwent the entire preparation separately). Nevertheless, reproducibility was much more satisfying for $^{234}\text{U}^{238}\text{U}$ and $^{230}\text{Th}^{238}\text{U}$ ratios: respectively 0.1 and 0.01%. Note that the poor reproducibility on concentrations and $^{226}\text{Ra}^{230}\text{Th}$ and $^{230}\text{Th}^{232}\text{Th}$ ratios does not affect our conclusions because the model used to calculate sediment weathering ages only considers $^{234}\text{U}^{238}\text{U}$ and $^{230}\text{Th}^{238}\text{U}$ ratios.

Results and Discussion

U-series isotope composition of river-borne material

Southeastern Australia

The U and Th concentrations in Nunnock River suspended sediments are higher than those in the bedrock (by a factor 1 to 3 for Th, 2 to 3 for U). This is consistent with the loss of more soluble elements, effectively concentrating U and Th in the suspended load. In contrast, the U, Th and ^{226}Ra concentrations in bedload sediments are about an order of magnitude lower than those in the suspended load. This can be explained if quartz (a U-Th-poor mineral phase) is abundant in the bedload, effectively “diluting” U, Th and ^{226}Ra concentrations by a factor of 10. Assuming that quartz contains no Th (or in the expected range of 10's of ppb; Table 1), a bedload composition of 80-97 wt. % quartz would be required to explain the difference in Th concentrations between suspended and bedload sediments. Considering a higher Th concentration in quartz and/or a significant proportion of quartz in the suspended load would only increase the required proportion of quartz in the bedload. Although the
calculated proportions of quartz are high, they are not unrealistic for bedload (see similar calculations for Puerto Rico below).

In suspended sediments, U, Th and 226Ra concentrations are positively correlated to the Loss-on-ignition (LOI; Fig. 3). This suggests that the abundance of these elements in the suspended load is controlled by adsorption onto organic particles or coatings (the LOI being commonly used a proxy for organic matter; Bengtsson and Enell, 1986; Dean, 1974; Donkin, 1991; Goldin, 1987; Heiri et al., 2001; Spain et al., 1982). This relationship is not observed in bedload sediments despite higher LOI values, suggesting that organic matter has little effect on their U-Th-226Ra budget.

Activity ratios for suspended sediments fall between values for bedload sediments and dissolved+colloidal loads (Fig. 4). This is likely to reflect the contribution of secondary phases precipitated with the isotopic composition of the stream water or the soil pore water. For instance, (234U/238U) > 1 in suspended sediments is a common observation (see e.g. Chabaux et al., 2008; Chabaux et al., 2003b; Dosseto et al., 2008a; Plater et al., 1992) and is generally explained by an input of U during the precipitation of secondary phases from a solution with (234U/238U) > 1. (234U/238U) less than 1 and (230Th/238U) greater than 1 in bedload sediments follow the expected behaviour of 234U, 238U and 230Th during weathering: depletion of 238U over 230Th since U is generally more soluble than Th in oxidized conditions, and preferential loss of 234U over 238U as a result of (i) direct recoil of 234Th out of mineral grains and subsequent decay into 234U, (ii) preferential release of recoiled 234U from crystal lattice damages (Fleischer, 1980, 1982a, b; Fleischer and Raabe, 1978; Hussain and Lal, 1986; Kigoshi, 1971). Ra is also expected to be more soluble than Th because it is an alkali-earth and its behaviour is expected to follow
that of Ca or Mg, \(^{(226}\text{Ra}/^{230}\text{Th}) < 1\) should be found in stream sediments. However, the opposite is observed. A possible explanation for \(^{(226}\text{Ra}/^{230}\text{Th}) > 1\) in sediments could be via the deposition of dust with \(^{(226}\text{Ra}/^{230}\text{Th}) > 1\). This hypothesis has been invoked to account for \(^{226}\text{Ra}\) excesses in weathering profiles (Krishnaswami et al., 2004). However, Australian dust is characterised \(^{(226}\text{Ra}/^{230}\text{Th}) < 1\) (Table A1; Marx et al., 2005) such that bulk deposition cannot account for ratios greater than 1 in sediments. Alternatively, \(^{226}\text{Ra}\) excesses could be explained by the efficient adsorption of dissolved \(^{226}\text{Ra}\) onto biotite (Ames et al., 1983b) and clays (Ames et al., 1983a; Hidaka et al., 2007). Ames et al. have shown that (i) \(\text{Ra}\) can be adsorbed as soon as it is released into solution (Ames et al., 1983a) and (ii) \(\text{Ra}\) is more efficiently adsorbed on secondary minerals than \(\text{U}\) (Ames et al., 1983b). Thus, \(\text{U-Th}\) disequilibrium produced during mineral dissolution could be relatively unaffected by adsorption while the associated \(\text{Ra-Th}\) disequilibrium, \(^{(226}\text{Ra}/^{230}\text{Th}) < 1\), could be overprinted by \(\text{Ra}\) adsorption, resulting in \(^{(226}\text{Ra}/^{230}\text{Th}) > 1\). If the \(^{226}\text{Ra}\) excess in sediments is the result of \(^{226}\text{Ra}\) uptake from solution, the corresponding solution should have a \(^{(226}\text{Ra}/^{230}\text{Th}) < 1\). Since the stream dissolved load has a \(^{(226}\text{Ra}/^{230}\text{Th}) > 1\), the solution supplying \(\text{Ra}\) to sediments probably represents a small fraction of the solute flux to the stream. Soil pore waters of the upper part of the weathering profile could supply \(^{226}\text{Ra}\) for adsorption since sediments are mostly derived from the upper part of the profile whilst solutes originate from the deeper part (see below).

\hspace{1cm} \textit{Puerto Rico}

The U concentration of the parent rock sample for the Rio Icacos catchment is similar to that of the quartz diorite as measured by Chabaux et al. (2013) on outcropping corestones in...
the watershed, however the Th concentration is much lower (Table 2). These concentrations are also lower than average values measured in the Rio Blanco quartz diorite by Smith et al. (1998). This suggests that the parent rock sample analysed is not representative of the Rio Blanco quartz diorite and may represent a magma of different composition. However, our bedrock sample has a 87Sr/86Sr ratio (0.70433 ± 16) within error of that previously published for the Rio Blanco quartz diorite (0.70413; Pett-Ridge et al., 2009b). Chabaux et al. (2013) have noted that the Rio Blanco quartz diorite shows a wide range of textures and geochemical compositions, as illustrated by the presence of finer-grained, more mafic xenoliths. Note that the discrepancy between our measured U and Th concentrations and previously published data does not affect our discussion since modelling of weathering ages is not based on U and Th concentrations.

Th/U ratios in bedload and suspended sediments are greater than those measured in the Rio Blanco quartz diorite (Smith et al., 1998). This suggests that sediments have preferentially lost U during chemical weathering compared to Th. In contrast, U and Th concentrations in suspended sediments are greater than in the bedrock or bedload sediments. This concentration difference could be explained by a greater abundance of U,Th-rich secondary minerals in finer size fractions or an enrichment in U,Th-poor minerals like quartz in coarser size fractions. Note that in the second case, this would also imply that heavy minerals like zircon are unlikely to be present in coarser sediments (where they are generally expected to be concentrated) because this would result in higher U, Th concentrations in bedload sediments. Assuming no Th in quartz (or 10’s of ppb levels), 50-85% quartz in the >25 μm fraction and 82-95% in the bedload are required to account for Th concentration differences.
between the different sediment size fractions of Rio Icacos. Bedload in Rio Icacos contains ~90% quartz (Brown et al., 1995), consistent with our estimate. For Rio Sabana, which is also underlain by quartz diorite bedrock, these proportions are similar: 27-78% for the >25 μm fraction and 76-93% for the bedload. Calculations with U instead of Th yield similar estimates for both rivers.

In Icacos and Mameyes bedrock samples, 234U-238U is in secular equilibrium as expected. However, interestingly, 230Th-238U shows significant disequilibrium (Table 2). A (230Th/238U) ratio greater than 1 (Icacos bedrock) could indicate a recent loss of uranium during the early stages of water-rock interaction as the rock was recently exposed to meteoric waters. Conversely, a (230Th/238U) ratio less than 1 (Mameyes bedrock) suggests either a loss of Th or gain of U. What could induce either process is not well understood, however the very different 230Th-238U disequilibria in the Icacos and Mameyes bedrock samples suggest that, during the early stages of water-rock interaction, U-Th fractionation can be drastically different depending on the lithology.

As previously observed by Dosseto et al. (2006c) for the Murray-Darling river in Australia and Pogge von Strandmann (2011) in basaltic islands, there is a semi-continuous trend of activity ratios across size fractions (from <10 kDa dissolved loads to sand-sized bedload sediments; Fig. 5). Similar observations have been made for the Sr isotopic composition of colloidal and sediment size fractions (Douglas, 1993). To explain these variations, it was proposed that they reflect mixing between two components: on the one hand, detrital silicate grains (their abundance increasing with grain/colloid size) and on the other hand, natural organic matter and secondary minerals fingerprinting the isotopic composition of the solution.
As in Dosseto et al. (2006c), this hypothesis could also explain the U-series isotopic compositions observed in Figure 5 where an increasing contribution of detrital silicate grains with \((^{234}\text{U} / ^{238}\text{U}) \leq 1\) and \((^{230}\text{Th} / ^{238}\text{U}) \geq 1\) with colloid/sediment size, could account for the observed decrease in \((^{234}\text{U} / ^{238}\text{U})\) and increase in \((^{230}\text{Th} / ^{238}\text{U})\). In the same way, this model could also explain why suspended sediments in the Nunnock River have activity ratios intermediate to that of the dissolved+colloidal load and the bedload, since suspended sediments have a greater contribution of secondary minerals than the bedload.

Sediments show \((^{226}\text{Ra} / ^{230}\text{Th})\) ratios both lower and greater than 1. Whilst ratios less than 1 are an expected product of the greater solubility of Ra over Th, ratios greater than 1 could be explained by adsorption of radium onto biotite, goethite and/or clays, as suggested above for Nunnock River sediments.

Lithological control on the U-series isotope composition of river-borne material

Because the catchments studied in Puerto Rico are characterized by nearly identical climatic conditions but underlain with different lithologies (quartz diorite for Icacos and Sabana; mostly volcanioclastics for Mameyes), we are able to investigate the effect of different parent material compositions on the U-series characteristics of river-borne material. Note however that only one sample was collected for Mameyes, thus it is difficult to argue that observations are unequivocally representative of the composition of river material for this catchment. Here we only attempt to identify strongly contrasting differences between Rio Mameyes, on the one hand, and Rio Icacos and Sabana, on the other hand.
Although the Rio Icacos and Nunnock Rivers are characterised by very different climatic conditions, the degree of U release from the granitic bedrock, as measured by the ratio of U concentration in the dissolved load over that in the bedrock, is similar for both catchments (1 - 3x10^{-5} for the Nunnock River, 0.8 - 1.8x10^{-5} for Rio Icacos). In contrast, the degree of U release from the volcaniclastic bedrock of Rio Mameyes is much lower (3.5 - 3.7x10^{-6}). This suggests that lithology has a much stronger role on dissolved U concentrations than climate. This could be explained by the difference in weathering susceptibility of the minerals dominating the U budget of sediments: biotite and hornblende for the Rio Blanco Formation quartz diorite (White et al., 1996), chlorite for the Fajardo Formation volcaniclastic rock (Buss et al., 2013).

Whilst Mameyes and Icacos/Sabana show similar (\(^{230}\text{Th}/^{238}\text{U}\)) ratios across the range of size fractions analysed, there is a strong contrast in \(^{234}\text{U}/^{238}\text{U}\) disequilibrium in river-borne material between these two catchment groups. In the volcaniclastic catchment, sediments show a greater depletion in \(^{234}\text{U}\), and dissolved and colloidal fractions a greater \(^{234}\text{U}\) enrichment, than in granitic catchments. The contrasting \((^{234}\text{U}/^{238}\text{U})\) ratios in river-borne material between the Mameyes and Icacos/Sabana catchments could be explained by a difference in the surface properties of sediments exported from each basin: the parental material in the Mameyes catchment is a fine-grained volcaniclastic rock, thus likely to produce sediments with a greater surface area than those of Rio Icacos/Sabana. A high surface area promotes the loss of \(^{234}\text{U}\) during recoil, which would account for larger \(^{234}\text{U}\) depletions in sediments and enrichments in waters.
Tracking solutes and sediments back to the weathering profile

Thorium isotopes are unlikely to fractionate during chemical weathering. Although ^{230}Th can be preferentially lost by recoil during radioactive decay of its parent, ^{234}U, or leaching of recoil tracks in which it is embedded, ^{230}Th is rapidly re-adsorbed on the sediment surface because of its high reactivity with particles (e.g. Plater et al., 1992). Moreover, because the half-life of ^{230}Th is 75.6 kyr (Cheng et al., 2013), U-Th fractionation during solute and sediment transport in the river will only modify their ($^{230}\text{Th}/^{232}\text{Th}$) ratio if the transport time in the fluvial system is longer than a few 10’s of kyr. As it can be safely assumed that this is not the case for the catchments considered (because of the absence of contribution from old groundwater and the lack of significant alluvial deposits), the ($^{230}\text{Th}/^{232}\text{Th}$) ratio of solutes and sediments could be potentially used as a tracer of their origin.

For the Nunnock River, both bedload and suspended sediments have ($^{230}\text{Th}/^{232}\text{Th}$) similar to that in soils from the same catchment, but higher than saprolite values (Fig. 4c; Dosseto et al., 2008b). Conversely, in the dissolved load, ($^{230}\text{Th}/^{232}\text{Th}$) ratios are lower and less variable, ranging between 0.457 and 0.466, comparable to saprolite values (Fig. 4c). This suggests that stream sediments (both bedload and suspended load) are derived from the uppermost soil horizons (consistent with physical erosion dominated by near-surface soil transport in this catchment) whereas the dissolved load originates from the deeper parts of the weathering profile.

In Puerto Rico, ($^{230}\text{Th}/^{232}\text{Th}$) ratios increase systematically with size fraction (Fig. 5e). In comparison, in the LG1 weathering profile (located in theRio Icacos catchment), ($^{230}\text{Th}/^{232}\text{Th}$) ratios increase with decreasing depth, from the saprock (mean = 0.952 ± 0.012, weighted 2
standard error; n = 6), through the saprolite (1.460 ± 0.14; n = 10) to the soil (1.775 ± 0.024; n = 5) (Table A2 and Fig. A2). Note that all three means are statistically different (t-test, p=0.05).

Thus, similar to the Nunnock River, high \(^{230}\text{Th}/^{232}\text{Th}\) in Rio Icacos sediments (1.4-2.1) could indicate that they are derived from the upper horizons of weathering profiles whereas lower \(^{230}\text{Th}/^{232}\text{Th}\) ratios in colloidal and dissolved loads (1-1.2) could suggest that solutes and colloids originate from the lowermost horizons. This is consistent with previous studies in the Rio Icacos basin which have shown that most chemical weathering (thus solute production) takes place in the saprock (Buss et al., 2008; Pett-Ridge et al., 2009b; White et al., 1998). Kurtz et al. (2011) used Ge/Si ratios to determine that solutes in the Rio Icacos derive largely from the saprock and rock fractures during baseflow and from shallow soil and overland flow during stormflow.

The Sr isotopic composition of Icacos/Sabana stream sediments varies between 0.70471 and 0.70561 (Table 2). Pett-Ridge et al. (2009b) have shown that \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios decrease approximately linearly with increasing depth in the LG1 weathering profile, from values >0.710 in the topsoil to ~0.704 in the saprock (depth >5m). Thus, it is possible to reconcile the low Sr and high Th isotopic composition of stream sediments if they originate from intermediate depths of the weathering profile (4-5m). It is not implied that stream sediments derive exclusively from this horizon, but instead suggests that the sediment budget is dominated by material from the relatively deep saprolite. Because we are focusing on bedload sediments, it is possible that finer-grained material from the upper horizons was washed away preferentially by hydrodynamic sorting. The deep origin of stream sediments is not surprising since landslides 2-
12 m deep are the main mechanism for hillslope erosion in the Luquillo Mountains (Larsen, 2012; Larsen and Torres-Sánchez, 1992).

Although the origin of Rio Mameyes sediments is difficult to assess because there is no systematic (230Th/232Th) variation in the only weathering profile in this catchment studied for U-series isotopes (Dosseto et al., 2012), the (230Th/232Th) of the dissolved and colloidal fractions (1.64 ± 0.08) is similar to that of the bedrock sample analysed (1.754 ± 0.005). This would suggest that the relatively deep origin of solutes applies not only to different climatic environments (i.e. Puerto Rico vs. southeastern Australia) but also different lithologies. However, this hypothesis needs verification by further analyses of dissolved loads and bedrock of this catchment.

In summary, stream solutes and sediments have very distinct origins. On the one hand, solutes are derived from the deeper parts of the weathering profile, where minerals which dissolve readily have not yet been entirely consumed. On the other hand, sediments are derived from shallower horizons, from depths that depend on the mechanism of erosion (shallow depths where near-surface soil transport dominates like in the Nunnock River; deeper depths where landslides prevail like in the Rio Icacos). While these observations may not reflect global solute fluxes, considering the small size of the studied catchments, they seem valid regardless of climatic conditions (at least in tropical and temperate environments), and possibly for different lithologies. Thus, in slowly eroding environments where thick weathering profiles develop, not only do solute and sediment transport operate on different timescales, but they also are characterised by distinct spatial origins. Previous studies have used the geochemical composition of dissolved and sediment loads to assess whether erosion is in steady-state in a
catchment, i.e. whether the flux of solute and sediment exported is balanced by the flux
produced by bedrock weathering (Bouchez et al., 2011; Dosseto et al., 2006a; Dosseto et al.,
2006b; Dosseto et al., 2008a; Dosseto et al., 2006c; Gaillardet et al., 1995; Gaillardet et al.,
1997). However, these approaches assume that solutes and sediments have the same origin.
Our results suggest that this assumption might not be valid for catchments where thick
weathering profiles are present.

Quantification of the sediment weathering age

As explained above, it is possible to use the U-series isotope composition of river-borne
material to determine the weathering age of sediments (Fig. 1; Chabaux et al., 2008; Chabaux
et al., 2003b; Dosseto et al., 2008a; Vigier et al., 2001). We use the model of Dosseto et al.
(2008b) modified from (Dequincey et al., 2002), that describes the time evolution of a nuclide j
abundance in the sediments, N_j (in number of atoms), as follows (see also Chabaux et al.,
2013; Dosseto et al., 2012):

$$\frac{dN_j}{dt} = \lambda_i N_i - \lambda_j N_j + \Gamma_j N_{j,0} - w_j N_j \tag{1}$$

where N_i is the abundance of the parent nuclide i (in number of atoms), λ_i and λ_j are the
decay constants for nuclides i and j respectively (in yr$^{-1}$), Γ_j is the input constant (in yr$^{-1}$)
representing the gain of nuclide j for instance by precipitation of secondary minerals from the
solution or by aeolian input, $N_{j,0}$ is the initial abundance of nuclide j in the bedrock (i.e. at time
$= 0$, the onset of bedrock weathering) and w_j is the dissolution constant for nuclide j. Examples
of evolution curves are shown on Fig. 6.
This equation can be written for 238U, 234U and 230Th (note the first term of the right side of Equation (1) disappears for 238U since it has no parent nuclide). The weathering age, T_w, is defined as the duration of continuous loss and gain of nuclides to evolve from the bedrock composition to the observed composition in sediments. In the model, the following assumptions are made:

- The bedrock is in secular equilibrium. If the age of the bedrock is greater than 1 Myr, this assumption is verified. The observation of activity ratios ≠ 1 in a rock older than 1 Myr simply indicates it has undergone water-rock interaction. This could imply that the U-series isotopic “clock” starts at a depth greater than the rock-regolith boundary. If this is the case, calculated weathering ages should be taken as maximum values;

- For a given set of samples, common Γ and w values apply and the difference in activity ratio between each sample is the result of different weathering ages. This implies that conditions for gain and loss of nuclides are similar across the set of samples considered. This assumption is reasonable for weathering profiles and small catchments but could be problematic for large catchments. However, it has been shown that there is a good correlation between weathering ages (calculated with the same approach) and independent indices of chemical weathering at the scale of the Rio Madeira basin in South America (a major tributary of the Amazon River), suggesting that this assumption may still be valid at the regional scale (Dosseto et al., 2006b);

- The coefficients for nuclide loss, w, and gain, Γ, are constant over the duration of weathering. This assumption is commonly made in studies modelling chemical weathering (e.g. Chamberlain et al., 2005; Ferrier and Kirchner, 2008) and laboratory
experiments suggest constant w values for a given mineral (White and Brantley, 2003).

Moreover, this is a reasonable assumption considering that dissolution and input constants are likely to be similar at the small scale of the studied catchments, and climatic variations have not been extreme over the past 10’s of thousands of years in the areas investigated. Even if spatial and temporal variations were significant, the values calculated provide average estimates for each nuclide over T_w.

Only $(^{234}\text{U}/^{238}\text{U})$ and $(^{230}\text{Th}/^{238}\text{U})$ ratios in sediments are used to calculate weathering ages. Thus, the number of known parameters in the model is $2n$, where n is the number of samples (i.e. $(^{234}\text{U}/^{238}\text{U})$ and $(^{230}\text{Th}/^{238}\text{U})$ ratios for each sample). The number of unknown parameters is $n+6$, one Γ and one w value for each of the three nuclides considered and one weathering age for each sample. If the number of samples considered is such that there are more unknown parameters than known, further assumptions need to be made in order to reduce the number of unknowns. The model is solved by minimising the sum of the squared differences between the observed activity ratios and the activity ratios calculated with a random set of Γ, w and T_w values. The minimisation is performed using the genetic algorithm function in Matlab™. Variables are allowed to take values within a set range shown in Table A3. A large number of solution sets is generated (>1,000) and the solution retained is the median of this population. The error on solution parameters is calculated as the standard deviation of the population of solutions.

For Rio Icacos/Sabana catchments, we considered 5 bedload sediment samples, excluding RI-2 which shows a $(^{230}\text{Th}/^{238}\text{U}) < 1$ unlike other samples from these catchments. We used bedload sediment compositions as they are the least affected by secondary mineral
precipitation and their coarse grain size (typically fine sand) minimizes the contribution of aeolian material (Dosseto et al., 2006c). Note that the composition of Rio Mameyes sediments was not used in the model since it is shown above that U-series isotope fractionation differs significantly from that in the Rio Icacos/Sabana catchments (most likely as a result of contrasting parent rock lithologies). In order to have as many unknown as known parameters, 230Th dissolution is assumed to be negligible ($w_{230}/w_{234} = 10^{-10}$), which is often the case (Chabaux et al., 2008; Dosseto et al., 2008a). Results are presented in Table 3. Weathering ages vary between 5 and 20 kyr, except for RI-4 which shows a much older age of 170 kyr. This older age could be explained if colluvium was sampled instead of stream sediments: at this sampling location, it was difficult to confidently assess whether a stream was sampled or in fact a gully cutting into the hillslope. These weathering ages are somewhat younger than the regolith residence times of 27-109 kyr calculated by Ferrier et al. (2010). The dissolution constant for 238U is 4.7×10^{-6} yr$^{-1}$, which is similar to the values inferred for other tropical watersheds: Amazon lowlands: 4.4$ \times 10^{-6}$ yr$^{-1}$ (Dosseto et al., 2006a); Ganges: 0.8-7$ \times 10^{-6}$ yr$^{-1}$ (Granet et al., 2007) and Narmada-Tapti: 6.9-9.9$ \times 10^{-6}$ yr$^{-1}$ (Vigier et al., 2005). The input constant for 238U is similar to the dissolution constant, with a I_{238}/w_{238} of 0.5, suggesting that secondary mineral precipitation and/or aeolian input may be significant processes, at least for the U budget, even for coarse bedload sediments. This is in agreement with the findings in Pett-Ridge et al. (2009b), where a high dust flux was estimated for the Rio Icacos catchment (210 ± 70 kg ha$^{-1}$ yr$^{-1}$, based on a Sr isotope mass balance). The ratios of 234U to 238U dissolution constants, w_{234}/w_{238}, and input constants, I_{234}/I_{238}, are 1.095 and 1.128, respectively, which are similar to values commonly expected for natural environments (Dequincey et al., 2002).
We also considered a second scenario where the ^{230}Th dissolution constant is equal to that of ^{234}U, instead of being negligible. Results show that weathering ages are similar to those calculated in the first scenario assuming no ^{230}Th loss (except for RI-4; Table 3). The w_{234}/w_{238} and I_{234}/I_{238} ratios are very similar between the two scenarios, whilst w_{238} and I_{238}/I_{238} show some variability. The main difference is the significant gain of ^{230}Th in the second scenario. Note that results are surprisingly consistent, considering the extreme nature of the two scenarios investigated.

For the Nunnock River, because only 3 bedload sediment samples were available, we solved the model for suspended sediments (5 samples). In this case, a value for w_{230} must be assumed such that the model is not under-constrained. Previous studies have shown that the dissolution constant for ^{230}Th is generally negligible (e.g. Vigier et al., 2005; Vigier et al., 2001) and we set w_{230} to be 10^{-10} smaller than w_{234} (i.e. $w_{230}/w_{234} = 10^{-10}$). Results are shown in Table 4. Weathering ages range from 443 kyr to 1.8 Myr. Interestingly, these values are similar to those inferred for weathering profiles from the same catchment (550 kyr to 6.2 Myr; Dosseto et al., 2008b). Moreover, considering an average weathering profile thickness of 20-30 m (Green et al., 2006), we can use denudation rates of 7-53 mm/kyr determined in (Heimsath et al., 2000) to calculate weathering ages ranging from 377 kyr to 4.3 Myr, similar to those inferred from U-series. A corollary of this comparison is that the weathering age is largely dominated by storage in weathering profiles. This is consistent with the lack of field evidence for significant alluvial storage. The calculated ^{238}U dissolution constant is $1.60 \pm 0.04 \times 10^{-5}$ yr$^{-1}$ (Table 4). This is intermediate to the values determined for saprolite ($0.014-0.07 \times 10^{-5}$ yr$^{-1}$) and soil samples ($10-74 \times 10^{-5}$ yr$^{-1}$) in Dosseto et al. (2008b). Calculated ratios of ^{234}U to ^{238}U
dissolution \((w_{234}/w_{238}) \) and input constants \((I_{234}/I_{238}) \) are 1.114 ± 0.003 and 1.083 ± 0.004, respectively, similar to values obtained for Puerto Rico and commonly expected for natural systems. Finally, the gain of \(^{230}\)Th is negligible, with a calculated \(I_{230} \) of 1.7±0.4 \(\times 10^{-15} \) yr\(^{-1}\).

Dosseto et al. (2008b) have shown that for weathering profiles in the Nunnock River catchment, \(^{230}\)Th gain and loss could actually be significant. Consequently, we considered a second scenario where \(w_{230}/w_{234} \) is set to 0.5 (any values above 0.5 did not yield satisfying fit of the data). Results show that although there can be significant differences in weathering ages for a given sample, the range of values (350 kyr – 1.4 Myr) is similar to that calculated in the first scenario, assuming no Th mobility (Table 4). Moreover, input and dissolution constants for \(^{238}\)U and \(^{234}\)U are also comparable, the main difference being the significant gain of \(^{230}\)Th in the second scenario.

Although the model is poorly constrained for Nunnock River bedload sediments (only 6 known parameters), we performed calculations for different scenarios shown in Table 4. Inferred weathering ages for bedload sediments (from 380 to 480 kyr) are intermediate to those calculated for the suspended load. The dissolution constant for \(^{238}\)U is similar to that calculated for suspended sediments, whilst the input constant can vary extensively depending on the scenario considered. The ratio of \(^{234}\)U to \(^{238}\)U input coefficients, \(I_{234}/I_{238} \) reflects the \(^{234}\)U-\(^{238}\)U composition of the component supplying U to sediments. In bedload sediments, the \(I_{234}/I_{238} \) ratio is less than 1 and could be explained by the contribution of aeolian material with \((^{234}U/^{238}U) \) <1. In suspended sediments, dust contribution could be overprinted by the gain of U with \((^{234}U/^{238}U) \) >1 from metal oxides and organic matter coatings, resulting in an overall modelled \(I_{234}/I_{238} \) >1 for suspended sediments.
Catchment-wide weathering rates

Weathering ages as short as 5 kyr for Puerto Rico are surprising considering that weathering profiles in the Rio Icacos basin are several meters thick (White et al., 1998). Considering a minimum regolith thickness of 3 m (White et al., 1998), such a young age would imply a minimum erosion rate of 600 mm/kyr, which would be much greater than previous estimates using cosmogenic isotopes of ~43 mm/kyr (Brown et al., 1995) or 100 ± 23 mm/kyr (from amalgamated soil samples; Riebe et al., 2003). Moreover, weathering ages calculated here are somewhat younger than regolith residence times inferred in Ferrier et al. (2010). Young weathering ages suggest that stream sediments “bypass” the weathering profile and are instead removed directly from the deeper horizons, having undergone less chemical weathering (Fig. 1c). This scenario is plausible in Puerto Rico where hillslope erosion is strongly dominated by landslides with a mean depth between 2 and 12 m (Larsen, 2012). In contrast, older weathering ages calculated for the Nunnock River catchment reflect removal of sediment only from the top of old weathering profiles via near-surface soil transport (Fig. 1b).

An alternative hypothesis to explain older weathering ages for the Nunnock river would be to consider that weathering age is related to catchment size, where a larger catchment would imply a longer sediment transport time and thus a longer duration of weathering. Although the Nunnock River catchment is about ten times larger than Rio Icacos, there is no evidence for significant alluvial storage in either of these catchments that could justify such a relationship.
Yoo and Mudd (2008), building on work by White and Brantley (2003), proposed a law for the ground surface area-normalised weathering rate of minerals in regolith that combines mineral dissolution rate constants with weathering duration:

\[w_j = \frac{6a_j b_j \omega_j}{D_j \rho_{\mu,j}} \tau_j^{a_j + \beta_j} m_j \] \hspace{1cm} (2)

where subscript \(j \) refers to the mineral of interest, \(w_j \) is the weathering rate (in kg/m\(^2\)/yr), \(\omega_j \) the molar mass (in mol/kg), \(D_j \) the particle diameter (in m), \(\rho_{\mu,j} \) the density (in kg/m\(^3\)), \(m_j \) the present mass of mineral \(j \) per ground surface area (in kg/m\(^2\)) and \(\tau_j \) is the amount of time mineral \(j \) has been exposed to weathering, i.e. the weathering age of mineral \(j \). The constants \(a, b, \alpha \) and \(\beta \) describe the relationship between the mineral dissolution rate constant, \(R \), the mineral surface roughness, \(\lambda \), and time: \(R = a \tau^\alpha \) and \(\lambda = b \tau^\beta \). The evolution of the mass of mineral \(j \) is described by the following equation:

\[m_j = m_{j,0} \exp \left[-\frac{6a_j b_j \omega_j}{D_j \rho_{\mu,j} (1 + \alpha_j + \beta_j)} \tau_j^{1 + \alpha_j + \beta_j} \right] \] \hspace{1cm} (3)

where \(m_{j,0} \) is the initial mass of mineral \(j \) per ground surface area (in kg/m\(^2\)). It is calculated as \(m_{j,0} = X_{j,0} \rho_r h \), where \(X_{j,0} \) is the initial mass fraction of mineral \(j \) (in kg/kg), \(\rho_r \) is the density of the parent rock and \(h \) is the weathering profile thickness.

Equations 2 and 3 can be used to estimate catchment-wide weathering rates for specific minerals from the average weathering ages determined from U-series isotopes in sediments (this study) and values for the other parameters from the literature (Table 5; Buss et al., 2008; Ferrier et al., 2010; Murphy et al., 1998; White and Brantley, 2003; Yoo and Mudd, 2008). For Rio Icacos, using weathering ages between 5 and 20 kyr, we calculate catchment-wide biotite
weathering rates between 1.8×10^{-9} and 0.91×10^{-9} mol/m2/s. In a previous study, Murphy et al. (1998) have calculated biotite weathering rates from pore water Mg and K concentrations in a regolith profile of Rio Icacos. These weathering rates, $w_{\text{BET},j}$, were normalised to mineral surface area (measured by the N$_2$ Brunauer-Emmett-Teller, BET, method). They can be compared to our catchment-wide estimates by converting $w_{\text{BET},j}$ values to ground surface area-normalised rates:

$$w_j = w_{\text{BET},j} \frac{6\lambda m_j}{D_{\mu,j}}$$

The resulting biotite dissolution rate, w_j, is 0.63×10^{-9} mol/m2/s, which is slightly lower but comparable to our estimates.

Catchment-wide weathering rates can also be determined for other minerals with our approach. For plagioclase, we infer values ranging from 7.0×10^{-9} to 13×10^{-9} mol/m2/s. These rates are similar to those calculated from cosmogenic nuclides and mineral abundances: Ferrier et al. (2010) reported a plagioclase weathering rate of 9.8×10^{-9} mol/m2/s for Rio Icacos saprolite (at 2.2 m depth) whilst Buss et al. (2008) calculated a faster rate of 27×10^{-9} mol/m2/s for the Rio Icacos saprock (converted from a BET surface area-normalised rate using Equation 4, assuming a 5 kyr weathering age and a 0.5 m profile thickness representing the thickness of the saprock layer analysed).

As anticipated because of older weathering ages, calculated plagioclase weathering rates for the Nunnock river are slower than for Rio Icacos: between 0.075×10^{-9} and 0.78×10^{-9} mol/m2/s (calculated for weathering ages between 350 and 1800 kyr). This is similar to weathering rates estimated for a hillslope in this catchment by Green et al. (2006): $0.7 - 2.5 \times 10^{-9}$ mol/m2/s. A similar relationship between the two field sites is seen when comparing biotite
weathering rates, which are also much slower for the Nunnock River: 0.015×10^{-9} to 0.2×10^{-9} mol/m^2/s.

When considering the parameters in Equations (2) and (3), the differences in mineral weathering rates between southeastern Australia and Puerto Rico are largely driven by the weathering age, which in turn is controlled by the type of erosion operating in each catchment. The difference in mineral weathering rates between the two catchments is actually dampened by the three-fold difference in weathering profile thickness: ~9 m for Rio Icacos (White et al., 1998); ~30 m for Nunnock River (Green et al., 2006). Taking into account the climatic setting of both areas would further amplify differences in weathering rates since the Nunnock River catchment is characterised by lower average temperatures and annual rainfall than the Rio Icacos, such that the value of constant a in Equations 2 and 3 should be lower for the Nunnock River.

Although it is shown here that solutes mainly originate from the deeper parts of the weathering profiles (and thus where most of weathering takes place), sediment weathering ages determine how much (and how fast) additional chemical weathering (and associated CO$_2$ consumption) can take place during sediment transport and storage in alluvial plains. Recently it has been suggested that, at a global scale, weathering fluxes are dominated by sediment weathering in alluvial plains (Lupker et al., 2012), although the importance of weathering during sediment transport is debated (Bouchez et al., 2012). Dixon et al. (2009) have observed that at the scale of the weathering profile, soils derived from extensively weathered saprolite would undergo little additional weathering. Here, similar observations are made at the catchment scale: the calculations above show that the type of erosion that operates in a catchment (e.g.
near-surface soil transport vs. landslides) exerts a dominant control on the weathering rates measured in sediments, accounting for differences of up to 2 orders of magnitude and thus setting the stage for further weathering during sediment transport and storage in alluvial plains.

Conclusions

The application of U-series isotopes to river-borne material in two small granitic catchments allows quantitative constraint of the origin of erosion products and their transit times through the catchment, the latter reflecting different modes of erosion. The isotopes in river-borne material document the origin of stream solutes and sediments, in a similar manner to the use of U isotopes to identify water sources (Andersen et al., 2013; Andersson et al., 1995; Borole et al., 1982; Grzymko et al., 2007; Kraemer and Brabets, 2012; Porcelli et al., 2001; Riotte and Chabaux, 1999; Sarin et al., 1990). Both in the Nunnock River catchment and in Puerto Rico we find that sediments are mainly derived from the upper-intermediate parts of the weathering profile whilst solutes originate from the deeper parts, in agreement with previous findings for Puerto Rico (Buss et al., 2008; Ferrier et al., 2010; Kurtz et al., 2011; Turner et al., 2003; White et al., 1998).

The U-series isotope composition of river-borne material varies continuously between size fractions (dissolved, colloidal loads, suspended sediments and bedload), as previously observed for the Murray-Darling River basin (Dosseto et al., 2006c) and volcanic islands (Pogge von Strandmann et al., 2011). This observation is now generalized to catchments in various climatic settings and illustrates that the composition of erosion products carried by the river is a
mixture between detrital silicate grains on the one hand, and organic matter and secondary
minerals that fingerprint the composition of the solution on the other hand.

The weathering age of stream sediments is calculated for the granitic catchments in
southeastern Australia and Puerto Rico. Values for the Nunnock River range from 350 ± 10 kyr
to 1.8 ± 0.2 Myr and are greater than weathering ages calculated for the Rio Icacos/Sabana (5.1
± 0.1 to 19.4 ± 0.4 kyr). The range in weathering ages inferred for both regions is interpreted as
reflecting the dominant mechanism for erosion operating in these catchments: near-surface soil
transport for the Nunnock River, mobilizing sediments from the top of old weathering profiles
(in this case the weathering age also reflects the time required to develop these profiles) and
landslides for Puerto Rico, where sediments originate from deeper parts of the weathering
profile.

Using the model of Yoo and Mudd (2008), weathering ages can be used to calculate
catchment-wide weathering rates. In Puerto Rico, we infer mineral-specific sediment
weathering rates that agree with previous independent estimates from soil profiles (Buss et al.,
2008; Ferrier et al., 2010; Murphy et al., 1998; Schulz and White, 1999). This demonstrates that,
if mineralogical parameters and average weathering profile thicknesses are known, U-series
weathering ages of stream sediments may be useful for estimating catchment-wide weathering
rates in small catchments. For the southeastern Australian catchment, calculated mineral
weathering rates are slower. Differences in weathering rates between southeastern Australia
and Puerto Rico are mostly accounted for by contrasting weathering ages, which in turn are
controlled by the dominant type of catchment erosion operating in each catchment (near-
surface soil transport vs. landslides). Where landslides dominate, minerals bypass at least part
of the weathering profile thus supplying the lower catchment with sediments rich in soluble mineral phases that can undergo further weathering. In contrast, where near-surface soil transport dominates, the regolith mobilised into the river has already undergone extensive weathering and little additional weathering is expected during sediment transport. Consequently, the type of erosion in the upper catchment determines the possibility for further weathering during sediment transport and storage in alluvial plains, recently postulated to dominate global weathering fluxes (Lupker et al., 2012).

Acknowledgements
Logistical support was partially contributed by the NSF-supported Luquillo Critical Zone Observatory (NSF-LCZO, grant EAR 0722476 to F. Scatena, Univ. of Pennsylvania). Joseph Troester is thanked for support in the field and helpful discussions, Manuel Rosario Torres and all the staff at the US Geological Survey (USGS) Guaynabo, Puerto Rico, for their help and facilitating sample processing after collection. We also thank Grant Douglas for help with filtration logistics and Derek Fabel for preparing soil quartz samples. AD is supported by an Australian Research Council Future Fellowship (FT0990447). HLB acknowledges support of the USGS Water Energy and Biogeochemical Budgets program. This work was supported by two Australian Research Council Discovery grants (DP0451704 and DP1093708).

Figure 1. Illustration of the concept of sediment weathering age in the case where transport time of sediments in the river is short compared to the storage time in weathering profiles. (a) In a weathering profile, the weathering front is postulated to progress downward. At time $t = T_f$, the weathering front is at the elevation of regolith sample R_1 (assuming no uplift); at $t = T_2$, the weathering front is at the elevation of regolith sample R_7. At $t = T_3$, the weathering age of regolith samples R_1 and R_7 is $T_{w,R_1} = T_3 - T_1$ and $T_{w,R_7} = T_3 - T_2$, respectively. (b) Assuming that erosion occurs shortly after $T_3 (t = T_3 + \delta t)$, if near-surface soil transport is dominant and only the top of the profile is eroded, the weathering age of sediments, T_{w,S_1}, is similar to that of the regolith at the top of the weathering profile, T_{w,R_1}. (c) However, if landslides dominate, the sediment weathering age, T_{w,S_2}, will be younger than T_{w,S_1} since it will include regolith with a younger age (e.g. T_{w,R_7}) and integrates regolith ages over the depth of the landslide. (d) Representation of the possible U-series isotope composition of regolith R_1 and R_7, and sediments S_1 and S_2.

Figure 2. (a) Location map of stream samples (dots) in the Nunnock River basin, southeastern Australia. The location of the weathering profiles studied in Dosseto et al. (2008b) is also shown (square). (b) Location map of stream samples (dots) in Rio Icacos, Sabana and Mameyes basins, in the Luquillo Mountains, eastern Puerto Rico. The location of the LG1 weathering profile studied in (Dosseto et al., 2007; White et al., 1998) and the Bisley weathering profile studied in (Dosseto et al., 2011; Dosseto et al., 2012) are also shown (squares). The inset shows Puerto Rico and the Luquillo Mountains in the Greater Antilles. The topographic maps are taken from Google Maps™.

Figure 3. U (squares; in ppm), Th (diamonds; in ppm) and 226Ra (triangles; in fg/g) concentrations as a function of the Loss on Ignition (LOI; in wt. %) in suspended sediments from the Nunnock River catchment. This illustrates how organic matter, metal oxides and clays control the budget of these nuclides in the river suspended load. If not shown, error bars are smaller than the symbol size.

Figure 4. U-series isotope composition in river-borne material from the Nunnock River, southeastern Australia. (a) 234U/238U and (b) 226Ra/230Th versus 230Th/238U activity ratios. (c) 230Th/232Th versus 238U/232Th activity ratios. Equilines (i.e. secular equilibrium) are shown as dashed lines. In (c), the composition of saprolite, soil and bedrock from the same catchment are taken from Dosseto et al. (2008b).

Figure 5. U-Th geochemical variations across size fractions for Puerto Rico streams: (a) U and (b) Th concentrations (in ppm), (c) 234U/238U, (d) 230Th/234U, (e) 230Th/232Th activity ratios and (e) U/Th ratio. Thick lines are the compositions of size fractions from tangential filtration, while thin lines are the compositions of the <0.2 μm fraction obtained by “frontal filtration” at 0.2 μm (see Analytical Techniques).
Figure 6. Evolution curves for different sets of parameters of the nuclide gain/loss model. For the three upper curves: $w_{238} = 10^{-5}$ yr$^{-1}$, $\Gamma_{238}/w_{238} = 0.1$, $w_{234}/w_{238} = 1.05$, $w_{230}/w_{238} = 0.5$, $\Gamma_{230}/\Gamma_{238} = 0.2$ and the bold italicised numbers on the curves are $\Gamma_{234}/\Gamma_{238}$ values (1.1, 1.15 and 1.2). For the three lower curves: $w_{238} = 2 \times 10^{-5}$ yr$^{-1}$, $\Gamma_{234}/\Gamma_{238} = 0.9$, $w_{234}/w_{238} = 1.05$, $w_{230}/w_{238} = 0.1$, $\Gamma_{230}/\Gamma_{238} = 10^{-10}$ and the bold italicised numbers on the curves are Γ_{238}/w_{238} values (0.2, 0.5 and 1). Tick marks are modelled weathering ages. Symbols are data from the Nunnock River (squares: suspended sediments; diamonds: bedload sediments). Note that because data do not describe a well-defined trend, ages cannot be simply read off evolution curves. Instead, the best set of parameters is defined by the median of the large population of solutions ($n > 1000$) generated by inversion of the (234U/238U) and (230Th/238U) activity ratios.

Figure A1. Variations in (230Th/232Th) activity ratios versus depth for regolith samples of the LG1 weathering profile (see Fig. 2 for location). Despite unusual large errors possibly reflecting sample heterogeneity, there is a statistically significant increase in (230Th/232Th) between the saprock, saprolite and soil (Table A2).
Table 1. U-series composition of Nunnock River samples

Size fractions <0.2 µm (dissolved+colloidal load)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Th (ng/L)</th>
<th>U (ng/L)</th>
<th>226Ra (fg/L)</th>
<th>234U/238U</th>
<th>Std.Err.</th>
<th>235Th/238U</th>
<th>Std.Err.</th>
<th>233U/235Th</th>
<th>Std.Err.</th>
<th>226Ra/235Th</th>
<th>Std.Err.</th>
<th>238U/232Th</th>
<th>Std.Err.</th>
<th>230Th/232Th</th>
<th>Std.Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN01</td>
<td>29.1</td>
<td>29.5</td>
<td>1.058</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>NUN02</td>
<td>245.2</td>
<td>61.2</td>
<td>2.082</td>
<td>0.003</td>
<td>0.610</td>
<td>0.002</td>
<td>1.720</td>
<td>0.014</td>
<td>0.758</td>
<td>0.001</td>
<td>0.462</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUN03</td>
<td>187.5</td>
<td>57.7</td>
<td>2.056</td>
<td>0.004</td>
<td>0.499</td>
<td>0.002</td>
<td>2.495</td>
<td>0.016</td>
<td>0.934</td>
<td>0.001</td>
<td>0.466</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUN04</td>
<td>211.0</td>
<td>62.4</td>
<td>2.144</td>
<td>0.003</td>
<td>0.510</td>
<td>0.002</td>
<td>2.487</td>
<td>0.019</td>
<td>0.897</td>
<td>0.001</td>
<td>0.457</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUN05</td>
<td>229.4</td>
<td>84.2</td>
<td>2.167</td>
<td>0.003</td>
<td>0.412</td>
<td>0.002</td>
<td>2.351</td>
<td>0.021</td>
<td>1.114</td>
<td>0.001</td>
<td>0.459</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Size fractions >0.2 µm (suspended load)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>226Ra (fg/g)</th>
<th>234U/238U</th>
<th>Std.Err.</th>
<th>230Th/238U</th>
<th>Std.Err.</th>
<th>226Ra/230Th</th>
<th>Std.Err.</th>
<th>238U/232Th</th>
<th>Std.Err.</th>
<th>230Th/232Th</th>
<th>Std.Err.</th>
<th>LOI (wt. %)</th>
<th>Suspended matter concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN01</td>
<td>30.4</td>
<td>6.26</td>
<td>2508</td>
<td>1.049</td>
<td>0.003</td>
<td>1.004</td>
<td>0.007</td>
<td>1.155</td>
<td>0.004</td>
<td>0.626</td>
<td>0.002</td>
<td>0.628</td>
<td>0.004</td>
<td>0.49</td>
<td>12.4</td>
</tr>
<tr>
<td>NUN02</td>
<td>24.7</td>
<td>5.31</td>
<td>2142</td>
<td>1.005</td>
<td>0.004</td>
<td>0.891</td>
<td>0.006</td>
<td>1.923</td>
<td>0.005</td>
<td>0.652</td>
<td>0.002</td>
<td>0.581</td>
<td>0.003</td>
<td>0.53</td>
<td>5.8</td>
</tr>
<tr>
<td>NUN03</td>
<td>16.8</td>
<td>4.61</td>
<td>2057</td>
<td>1.042</td>
<td>0.005</td>
<td>0.967</td>
<td>0.006</td>
<td>1.320</td>
<td>0.006</td>
<td>0.830</td>
<td>0.002</td>
<td>0.803</td>
<td>0.004</td>
<td>0.24</td>
<td>2.3</td>
</tr>
<tr>
<td>NUN04</td>
<td>35.5</td>
<td>8.30</td>
<td>3304</td>
<td>1.066</td>
<td>0.003</td>
<td>0.866</td>
<td>0.004</td>
<td>1.315</td>
<td>0.005</td>
<td>0.710</td>
<td>0.002</td>
<td>0.615</td>
<td>0.002</td>
<td>0.71</td>
<td>7.5</td>
</tr>
<tr>
<td>NUN05</td>
<td>35.0</td>
<td>8.49</td>
<td>3186</td>
<td>1.079</td>
<td>0.003</td>
<td>0.827</td>
<td>0.003</td>
<td>1.298</td>
<td>0.003</td>
<td>0.736</td>
<td>0.002</td>
<td>0.608</td>
<td>0.001</td>
<td>0.55</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Bedload sediments

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>226Ra (fg/g)</th>
<th>234U/238U</th>
<th>Std.Err.</th>
<th>230Th/238U</th>
<th>Std.Err.</th>
<th>226Ra/230Th</th>
<th>Std.Err.</th>
<th>238U/232Th</th>
<th>Std.Err.</th>
<th>LOI (wt. %)</th>
<th>Suspended matter concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN03</td>
<td>3.54</td>
<td>0.672</td>
<td>291</td>
<td>0.894</td>
<td>0.001</td>
<td>0.993</td>
<td>0.004</td>
<td>1.278</td>
<td>0.005</td>
<td>0.576</td>
<td>0.001</td>
<td>0.572</td>
<td>0.002</td>
</tr>
<tr>
<td>NUN04</td>
<td>3.71</td>
<td>0.830</td>
<td>314</td>
<td>0.856</td>
<td>0.001</td>
<td>1.006</td>
<td>0.004</td>
<td>1.102</td>
<td>0.032</td>
<td>0.679</td>
<td>0.001</td>
<td>0.683</td>
<td>0.002</td>
</tr>
<tr>
<td>NUN05</td>
<td>2.99</td>
<td>0.721</td>
<td>269</td>
<td>0.858</td>
<td>0.001</td>
<td>1.045</td>
<td>0.004</td>
<td>1.046</td>
<td>0.018</td>
<td>0.732</td>
<td>0.001</td>
<td>0.765</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Soil quartz separates

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>238U/235U</th>
<th>Std.Err.</th>
<th>235Th/238U</th>
<th>Std.Err.</th>
<th>238U/232Th</th>
<th>Std.Err.</th>
<th>230Th/232Th</th>
<th>Std.Err.</th>
<th>LOI (wt. %)</th>
<th>Suspended matter concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth=30cm</td>
<td>0.085</td>
<td>0.012</td>
<td>0.980</td>
<td>0.002</td>
<td>2.72</td>
<td>0.01</td>
<td>0.414</td>
<td>0.001</td>
<td>1.125</td>
<td>0.005</td>
<td>0.005</td>
<td>1.06</td>
</tr>
<tr>
<td>Depth=50cm</td>
<td>0.075</td>
<td>0.019</td>
<td>0.976</td>
<td>0.007</td>
<td>2.02</td>
<td>0.02</td>
<td>0.768</td>
<td>0.005</td>
<td>1.553</td>
<td>0.006</td>
<td>0.006</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Rock standard

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>238U/235U</th>
<th>Std.Err.</th>
<th>235Th/238U</th>
<th>Std.Err.</th>
<th>238U/232Th</th>
<th>Std.Err.</th>
<th>230Th/232Th</th>
<th>Std.Err.</th>
<th>LOI (wt. %)</th>
<th>Suspended matter concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TML-3 (n=1)</td>
<td>29.79</td>
<td>10.58</td>
<td>3550</td>
<td>1.006</td>
<td>0.997</td>
<td>0.004</td>
<td>0.996</td>
<td>0.004</td>
<td>1.078</td>
<td>0.003</td>
<td>1.075</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Reported errors are internal analytical uncertainties (2 standard errors). Relative 2σ errors on Th, U and 226Ra concentrations are 6, 3 and 1%, respectively, and determined by replicate analysis of two solid sample aliquots.
Table 2. Geochemical data for river material and rocks from Puerto Rico.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RI-1</td>
<td>no name</td>
<td><0.2µm</td>
<td>1.94</td>
<td>1.39</td>
<td>2.18</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI-3</td>
<td>Mameyes</td>
<td><0.2µm</td>
<td>1.34</td>
<td>2.73</td>
<td>1.14</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.19</td>
<td>0.24</td>
</tr>
<tr>
<td>RI-5</td>
<td>Sabana</td>
<td><0.2µm</td>
<td>5.69</td>
<td>2.64</td>
<td>1.00</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.40</td>
<td>0.01</td>
</tr>
<tr>
<td>RI-6</td>
<td>Icacos</td>
<td><0.2µm</td>
<td>7.23</td>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>0.01</td>
</tr>
<tr>
<td>RI-6</td>
<td>Icacos</td>
<td><0.2µm</td>
<td>4.30</td>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Reported errors are internal analytical uncertainties (2 standard errors), except for the (87)Sr/(86)Sr where it is the standard deviation of 4 duplicate dissolutions of bedrock sample. Relative 2n errors on Th, U and (226)Ra concentrations are 6, 3 and 1%, respectively, and determined by replicate analysis of two solid sample aliquots.
Table 3. Solutions of the continuous loss-input nuclide model for Rio Icacos/Sabana catchments

w_{230}/w_{234} set to 10^{-10}

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>T_{res} (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI-4</td>
<td>174</td>
<td>3</td>
<td>4.65E-06</td>
<td>1.7E-07</td>
</tr>
<tr>
<td>Icacos</td>
<td>5.1</td>
<td>0.1</td>
<td>1.095</td>
<td>0.002</td>
</tr>
<tr>
<td>Quebrada Guaba bed</td>
<td>19.4</td>
<td>0.4</td>
<td>0.54</td>
<td>0.03</td>
</tr>
<tr>
<td>Quebrada Guaba bank</td>
<td>10.5</td>
<td>0.2</td>
<td>1.128</td>
<td>0.007</td>
</tr>
<tr>
<td>Sabana</td>
<td>11.7</td>
<td>0.3</td>
<td>0.022</td>
<td>0.003</td>
</tr>
</tbody>
</table>

w_{230}/w_{234} set to 1

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>T_{res} (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI-4</td>
<td>85</td>
<td>12</td>
<td>1.00E-05</td>
<td>8.3E-07</td>
</tr>
<tr>
<td>Icacos</td>
<td>5.4</td>
<td>0.3</td>
<td>1.100</td>
<td>0.002</td>
</tr>
<tr>
<td>Quebrada Guaba bed</td>
<td>22.1</td>
<td>0.8</td>
<td>0.19</td>
<td>0.08</td>
</tr>
<tr>
<td>Quebrada Guaba bank</td>
<td>12.1</td>
<td>0.3</td>
<td>1.341</td>
<td>0.013</td>
</tr>
<tr>
<td>Sabana</td>
<td>13.7</td>
<td>0.4</td>
<td>1.831</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Table 4. Solutions of the continuous loss-input nuclide model for Nunnock River

Suspended sediments

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>T_w (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (x10$^{-5}$ yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN01</td>
<td>443</td>
<td>10</td>
<td>1.60</td>
<td>0.04</td>
</tr>
<tr>
<td>NUN02</td>
<td>1423</td>
<td>88</td>
<td>1.114</td>
<td>0.003</td>
</tr>
<tr>
<td>NUN03</td>
<td>552</td>
<td>20</td>
<td>0.56</td>
<td>0.02</td>
</tr>
<tr>
<td>NUN04</td>
<td>1783</td>
<td>161</td>
<td>1.083</td>
<td>0.004</td>
</tr>
<tr>
<td>NUN05</td>
<td>1472</td>
<td>144</td>
<td>1.7E-10</td>
<td>4E-11</td>
</tr>
</tbody>
</table>

* w_{238}/w_{234} set to 10$^{-10}$

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>T_w (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (x10$^{-5}$ yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN01</td>
<td>346</td>
<td>12</td>
<td>0.92</td>
<td>0.05</td>
</tr>
<tr>
<td>NUN02</td>
<td>460</td>
<td>29</td>
<td>1.042</td>
<td>0.002</td>
</tr>
<tr>
<td>NUN03</td>
<td>378</td>
<td>29</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>NUN04</td>
<td>534</td>
<td>30</td>
<td>1.127</td>
<td>0.002</td>
</tr>
<tr>
<td>NUN05</td>
<td>1356</td>
<td>102</td>
<td>0.17</td>
<td>0.05</td>
</tr>
</tbody>
</table>

* w_{230}/w_{234} set to 0.5

Bedload sediments

<table>
<thead>
<tr>
<th>Sample name</th>
<th>T_w (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (x10$^{-5}$ yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN03</td>
<td>418</td>
<td>23</td>
<td>2.59</td>
<td>0.10</td>
</tr>
<tr>
<td>NUN04</td>
<td>407</td>
<td>21</td>
<td>0.22</td>
<td>0.01</td>
</tr>
<tr>
<td>NUN05</td>
<td>379</td>
<td>20</td>
<td>0.899</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* w_{238}/w_{234} and $\Gamma_{230}/\Gamma_{234}$ set to 10$^{-10}$, and w_{234}/w_{238} set to 1.05

<table>
<thead>
<tr>
<th>Sample name</th>
<th>T_w (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (x10$^{-5}$ yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN03</td>
<td>439</td>
<td>21</td>
<td>1.17</td>
<td>0.05</td>
</tr>
<tr>
<td>NUN04</td>
<td>425</td>
<td>19</td>
<td>0.30</td>
<td>0.01</td>
</tr>
<tr>
<td>NUN05</td>
<td>393</td>
<td>18</td>
<td>0.927</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* w_{238}/w_{234} and $\Gamma_{230}/\Gamma_{234}$ set to 10$^{-10}$, and w_{234}/w_{238} set to 1.1

<table>
<thead>
<tr>
<th>Sample name</th>
<th>T_w (kyr)</th>
<th>2std.err.</th>
<th>w_{238} (x10$^{-5}$ yr$^{-1}$)</th>
<th>2std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUN03</td>
<td>478</td>
<td>19</td>
<td>1.60</td>
<td>0.05</td>
</tr>
<tr>
<td>NUN04</td>
<td>471</td>
<td>16</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>NUN05</td>
<td>453</td>
<td>17</td>
<td>0.894</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* w_{238}/w_{234} and $\Gamma_{230}/\Gamma_{234}$ set to 0.5, and w_{234}/w_{238} set to 1.05
Table 5. List and values of parameters used to calculate weathering rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>j = biotite</th>
<th>j = plag</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>mol/m(^2)/yr</td>
<td>1.51x10^-5</td>
<td>1.09x10^-5</td>
<td>Constant relating mineral dissolution rate to time (White and Brantley 2003)</td>
</tr>
<tr>
<td>(\alpha_j)</td>
<td>unitless</td>
<td>-0.603</td>
<td>-0.564</td>
<td>Constant relating mineral dissolution rate to time (White and Brantley 2003)</td>
</tr>
<tr>
<td>(b_j)</td>
<td>unitless</td>
<td>13.6</td>
<td>13.6</td>
<td>Constant relating surface roughness to time (Yoo and Mudd 2008)</td>
</tr>
<tr>
<td>(\beta_j)</td>
<td>unitless</td>
<td>0.2</td>
<td>0.2</td>
<td>Constant relating surface roughness to time (Yoo and Mudd 2008)</td>
</tr>
<tr>
<td>(\omega_j)</td>
<td>kg/mol</td>
<td>0.408</td>
<td>0.263</td>
<td>Mineral molar mass</td>
</tr>
<tr>
<td>(D_j)</td>
<td>m</td>
<td>0.0005</td>
<td>0.0005</td>
<td>Mineral particle diameter (Murphy et al., 1998; Buss et al., 2008)</td>
</tr>
<tr>
<td>(\rho_{hi})</td>
<td>kg/m(^3)</td>
<td>3000</td>
<td>2600</td>
<td>Mineral density</td>
</tr>
<tr>
<td>(X_{j,0})</td>
<td>kg/kg</td>
<td>0.095</td>
<td>0.564</td>
<td>Initial mass fraction of mineral, Rio Icacos (White et al. 1998)</td>
</tr>
<tr>
<td>(X_{j,0})</td>
<td>kg/kg</td>
<td>0.05</td>
<td>0.12</td>
<td>Initial mass fraction of mineral, Nunnock River (Burg and Wilson, 1988)</td>
</tr>
<tr>
<td>(h)</td>
<td>m</td>
<td>9</td>
<td>9</td>
<td>Weathering profile thickness, Rio Icacos (White et al. 1998)</td>
</tr>
<tr>
<td>(h)</td>
<td>m</td>
<td>30</td>
<td>30</td>
<td>Weathering profile thickness, Nunnock River (Green et al. 2006)</td>
</tr>
</tbody>
</table>
\[T_{w,R1} = T_3 - T_1 \]
\[T_{w,R7} = T_3 - T_2 \]

Sediment weathering age \(T_{w,S1} \approx T_{w,R1} \)

Sediment weathering age \(T_{w,S2} < T_{w,R1} \)

\[T_{w,S2} = \int_{A_1}^{A_7} T_{w,x} \, dx \]
Figure 2
Figure 4

(a)

(b)

(c)

Legend:
- Blue diamonds: Bedload
- Red squares: Suspended load
- Green triangles: Dissolved+colloidal load
- Orange circles: Saprolite
- Black X: Bedrock

Sources of data:
- $^{234}\text{U}/^{238}\text{U}$
- $^{230}\text{Th}/^{238}\text{U}$
- $^{226}\text{Ra}/^{230}\text{Th}$
- $^{230}\text{Th}/^{232}\text{Th}$
Figure 5
Figure 6
Electronic Annex Tables A1-A4
Click here to download Electronic Annex: Tables A1-A4.pdf