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Abstract—In this paper, a stereoscopic video description
method is proposed that indirectly incorporates scene geometry
information derived from stereo disparity, through the manipu-
lation of video interest points. This approach is flexible and able
to cooperate with any monocular low-level feature descriptor.
The method is evaluated on the problem of recognizing complex
human actions in natural settings, using a publicly available
action recognition database of unconstrained stereoscopic 3D
videos, coming from Hollywood movies. It is compared both
against competing depth-aware approaches and a state-of-the-
art monocular algorithm. Experimental results denote that the
proposed approach outperforms them and achieves state-of-the-
art performance.

I. INTRODUCTION

Human action recognition refers to the problem of classi-
fying the actions of people, typically captured in spatiotem-
poral visual data, into known action types. It is an active
research field at the intersection of computer vision, pattern
recognition and machine learning, where significant progress
has been made during the last decade [1] [2] [3]. Despite recent
advances, recognition of complex actions from completely
unconstrained videos in natural settings, also called action
recognition in the wild [1], remains a highly challenging prob-
lem. Unknown camera motion patterns, dynamic backgrounds,
partial subject occlusions, variable lighting conditions, incon-
sistent shooting angles and multiple human subjects moving
irregularly in and out of the field of view, greatly increase the
difficulty of achieving high recognition performance.

Recently, the rise in popularity of 3D video content has
reoriented research towards the exploitation of scene depth
information, in order to augment action recognition capability.
A distinction must be made, however, between 3D data coming
from depth sensors, such as the popular Kinect peripheral
device, and stereoscopic 3D video content derived from filming
with stereo camera rigs (matched pairs of cameras). In the first
case, a depth map is provided along with each color (RGB)
video frame, assigning a depth value, i.e., distance from the
camera, to each pixel. In the second case, two images of the
scene are available for each video frame, taken at the same
time from slightly different positions in world space. From
every such stereo-pair, a disparity map may be derived using
a disparity estimation algorithm [4]. Thus, a binocular disparity
value (also called stereo disparity) is assigned to each color
video pixel, that indicates relative distance from the stereo rig.
Using a parallel camera setup, the less distance an imaged
object has from the cameras, the larger is the disparity of
its pixels in absolute value. Objects far from the cameras are
projected to pixels with near-zero disparity.

Most of the research regarding the exploitation of 3D data
for action recognition has focused on depth maps produced
with Kinect, e.g., for recognition of simple actions and gestures
[5]. The capabilities of Kinect, as well as of other depth sensors
like Time of Flight (ToF) sensors, are limited. For example,
Kinect provides depth maps at 640× 480 pixels and of range
around 0.8 - 3.5 meters. The resolution of depth maps produced
by ToF cameras is between 64 × 48 and 200 × 200 pixels,
while their range varies from 5 to 10 meters. Finally, but
most importantly, both Kinect and ToF sensors are saturated
by outdoor lighting conditions. This is why the use of such
devices is restricted only in indoor application scenarios. Ac-
tion recognition in the wild, however, is a problem concerning
recognition scenarios significantly more demanding than the
restricted experimental setups typically used with Kinect [6].
The exploitation of stereoscopic 3D data is currently being
examined as a promising research avenue towards the goal of
achieving high recognition performance in such scenarios. The
resolution of the obtained disparity maps can vary from low
to high, depending on the resolution of the cameras used. In
addition, the range of the stereo camera rig can be adjusted
by changing the stereo baseline, i.e., the distance between the
two camera centers. Thus, stereo cameras can be used in both
indoor and outdoor settings.

Stereo-enhanced action recognition has mainly been ap-
proached by extending monocular local video description
methods. This is achieved by considering stereoscopic videos
as 4-dimensional data and detecting on them interest points,
through the joint exploitation of spatial, temporal and dispar-
ity information. Finally, appropriate vectors describing local
shape and motion information in space, time and disparity
are computed on these interest points. Popular spatial or spa-
tiotemporal low-level feature descriptors include the Histogram
of Oriented Gradient (HOG), the Histogram of Optical Flow
(HOF) [2], the Motion Boundary Histogram (MBH) [3] and
features obtained by adopting a data-driven learning approach
employing deep learning techniques [7]. The resulting feature
set exploits information derived from sparsely sampled video
locations and can subsequently be summarized, by employing a
video representation scheme such as the Bag-of-Features (BoF)
model [8]. Such video representations have been shown to
provide good classification performance, taking into account
all the above mentioned issues relating to the unconstrained
action recognition problem. Furthermore, they do not suffer
from background subtraction problems [9], as is the case with
silhouette-based action recognition methods [10]. Furthermore,
there is no need to track particular body parts, e.g., arms, feet
[11] for action recognition.

In [12] two state-of-the-art descriptor types and their



disparity-enhanced proposed extensions, combined with two
state-of-the-art spatiotemporal interest point detectors and their
disparity-enhanced proposed extensions, are evaluated. The re-
sults denote that the incorporation of stereo disparity informa-
tion for action description increases recognition performance.
In [13], a deep learning approach is employed to simultane-
ously derive motion and depth cues from stereoscopic videos,
within a single framework that unifies disparity estimation and
motion description. By exploiting such a stereoscopic video
description within a typical action recognition pipeline, state-
of-the-art performance has been achieved.

Experimental results conducted on the recently introduced
Hollywood 3D database [12] [13] denote that, by using
disparity-enriched action descriptions in a BoF-based classi-
fication framework, enhanced action recognition performance
can be obtained. However, sparse action descriptions have
proven to provide inferior performance, when compared to ac-
tion descriptions evaluated on densely sampled interest points
[3]. This is due to the fact that sparse action descriptions
exploit information appearing in a small fraction of the avail-
able video locations of interest and, thus, they may not be
able to capture detailed activity information enhancing action
discrimination. The adoption of 4D sparse stereoscopic video
descriptions, computed jointly along the spatial, temporal and
relative-depth video dimensions, may further decrease the
number of interest points employed for action video represen-
tation, reducing the ability of such representations to properly
exploit the additional available information.

In this paper, we propose a flexible method for stereoscopic
video description that integrates stereo disparity-derived scene
depth information into the action recognition framework. This
method may be used in conjunction with any existing monocu-
lar interest point detector or local feature descriptor. It may also
be combined with any local feature-based video representation
scheme, such as Bag-of-Features [8] or Fisher kernel [14],
and any classification algorithm for the later stages of the
recognition process. In order to avoid the above mentioned
issues relating to sparse action representations, we exploit
information appearing in densely sampled interest points for
action description [3], along with a BoF representation and a
kernel SVM classifier. Experiments conducted on the Holly-
wood 3D database denote that the proposed stereoscopic video
representation enhances action classification performance and
reduces the computational cost, when compared to the monoc-
ular case. In addition, the proposed approach achieves state-
of-the-art performance on the Hollywood 3D database.

The remainder of this paper is organized in the follow-
ing way. Section II presents in detail several formulations
of the proposed method and discusses its key differences
from existing approaches. Section III describes experiments
conducted in order to test its performance in human action
recognition. In Section IV conclusions are drawn from the
preceding discussion.

II. STEREOSCOPIC VIDEO DESCRIPTION

Let us denote by V a set of N stereoscopic videos. Each
element vi, i = 1, ..., N , is comprised of a left-channel
RGB video vli and a right-channel RGB video vri . By vli,j
and vri,j , j = 1, ...,M , we denote the j-th frame of vli

and vri , respectively. Alternatively, vi can be considered as a
sequence of M stereo-pairs, with the j-th stereo-pair produced
by concatenating vli,j and vri,j . By employing a disparity
estimation algorithm, for each vi a disparity video vdi can also
be computed, consisting of the ordered (with respect to time)
disparity maps derived from the consecutive stereo-pairs in vi.
It must be noted that a disparity map may come in one of two
forms, a left disparity or a right disparity, which can be used
in conjunction with the left or the right image of a stereo-pair,
respectively. To simplify our description, in the following we
assume that vdi is composed of right disparity maps.

Let us also denote by Cri a set of descriptors calculated on
locations of interest identified on vri , according to a chosen
interest point detection (e.g. STIPs [15], Dense Trajectories
[3], etc.) and local feature description (e.g., HOG, HOF, etc.)
algorithms. Thus, Cr is the set of feature sets for all vri , i =
1, ..., N , and Cri,j refers to the j-th descriptor of the i-th video.
For each Cri , a corresponding interest point set C′ri can be
defined. Thus, Cri contains the descriptors calculated on the
right RGB channel of the i-th video and C′ri the corresponding
interest points. Additionally, C′r can be defined as the set of
all C′ri , i = 1, ..., N . Similar sets Cli , C′

l
i, Cl and C′l can be

defined by computing interest points and descriptors on the
left-channel RGB videos vli. In the same manner, sets Cdi , C′di ,
Cd and C′d can be constructed, by computing interest points
and descriptors on the stereo disparity videos vdi .

Using this approach, several different stereoscopic video
description schemes can be obtained by manipulating sets of
interest points and descriptors. For instance, employing the
feature set Cri or Cli for video description of the i-th video is
a formulation equivalent to standard, monocular local feature
approaches, where only spatial or spatiotemporal video interest
points in color are taken into account. Such locations are video
frame regions containing abrupt, either in space or space-time,
color changes. This method formulation is the typical video
description method, which lacks robustness in the presence
of image texture variance that does not contribute to action
discrimination.

Alternatively, one may use the combined feature set:

Crli = Cri ∪ Cli, (1)

in order to exploit the redundant data of two color channels
and, hopefully, achieve higher recognition performance. How-
ever, such an approach would not be beneficial for human
action recognition, since the two color channels, typically,
are almost identical and do not convey information different
or complimentary enough to facilitate discrimination between
actions. In contrast, the relative-depth information conveyed
by stereo disparity and associated with scene geometry, can
be considered as an independent modality and is more likely
to contribute to the discrimination of actions. Such data can be
more explicitly exploited by using the combined feature set:

Crdi = Cri ∪ Cdi , (2)

for stereoscopic video description of the i-th video. However,
our experiments have indicated that the recognition perfor-
mance achieved when employing disparity-derived features is
inferior to that achieved with RGB-derived features, possibly
due to the significant amount of noise present in the disparity



estimations and to the lower informational content with regard
to video aspects other than the scene geometry. Therefore,
the feature descriptors coming from Cdi are more likely to
contaminate the video description with noise and, thus, reduce
the overall recognition performance compared to a typical
monocular approach that only employs Cri or Cli .

Another formulation oriented towards more indirect ex-
ploitation of stereo disparity-derived scene depth information
can be devised, by implicating the interest point sets in the
process. That is, a stereo-enriched feature set Eri can be
constructed to achieve depth-aware video description of the i-
th video, by computing descriptors on vri at the video interest
points contained in the set:

E ′ri = C′di ∪ C′
r
i . (3)

In practice, to avoid duplicate computations, Eri can be con-
structed in two steps, first by calculating the feature set Êri ,
composed of descriptors computed at the interest points in the
set:

Ê ′
r

i = C′di \C′
r
i , (4)

where the symbol \ denotes the relative complement of two
sets. Subsequently, the stereo-enriched feature set Eri is ob-
tained by the union of Êri and Cri :

Eri = Êri ∪ Cri . (5)

Thus, local shape and motion information is calculated on
points corresponding to video locations holding interest either
in color or disparity, therefore, incorporating data regarding
the scene geometry without sacrificing information of possibly
high discriminative power that is unrelated to depth charac-
teristics. This way, an enriched and depth-aware feature set
is produced that may subsequently be adopted by any video
representation scheme.

Alternatively, descriptors can be computed on vri only at the
interest points within C′di , i.e., solely at the disparity-derived
interest points, instead of employing the enriched interest point
set E ′ri . This scheme has the advantage of increased texture
invariance, since the final feature set is more tightly associated
with the scene geometry and less with the scene texture.
However, information unrelated to depth characteristics is
not ignored, since the descriptors are computed on the color
channel. In Figure 1, an example of RGB-derived interest
points is shown and contrasted against stereo disparity-derived
interest points on the same video frame. As can be seen, the
stereo-derived interest points are more relevant to the depicted
action ”Run” and the background water surface, which is
characterized by high variance in texture but not in disparity,
is mostly disregarded.

Additionally, the computational requirements of the last
approach are significantly reduced in comparison to the previ-
ously presented method formulations, since the only sets that
need to be constructed are C′di and the RGB-derived feature
set Dr

i based on it. Moreover, our experiments indicate that
C′di is typically smaller in size than C′li or C′ri , an advantage
with regard to the computational requirements of the entire
recognition process, when employing a BoF video represen-
tation model. This is to be expected, since all interest point
detectors operate by considering video locations with locally

(a)

(b)

Fig. 1. Interest points of a video frame, contained in the Hollywood 3D
dataset, detected: (a) on the right color channel and (b) on the stereo disparity
channel.

high intensity variance, either spatially or spatiotemporally,
and abrupt disparity variations are less frequent than color
variations, since they are caused solely by scene geometry and
not the texture characteristics of the imaged objects.

III. EXPERIMENTS

In this section we describe experiments conducted in order
to evaluate the performance of the proposed stereoscopic video
descriptions.

We have adopted a state-of-the-art monocular video de-
scription [3], in order to evaluate the various formulations
of our method, which from now on will be referred to by
the feature set each one employs, according to the preceding
discussion. The adopted description performs temporal track-
ing on densely sampled video frame interest points across L
sequential frames and computes several local descriptors along
the trajectory. The interest points are essentially the pixels of
each frame coinciding with the nodes of a fixed superimposed
dense grid, although a subset of them are filtered out based on
criteria assessing local video frame properties. For comparison
reasons, we have followed the standard classification pipeline
used in [3], where classification is performed by using the BoF
model (4000 codebook vectors per descriptor type) and one-
versus-rest SVM classifiers employing a multi-channel RBF-
χ2 kernel [16].

The experiments have been conducted on the recently
introduced Hollywood 3D action recognition dataset [12]. It
contains 643 training and 308 testing stereoscopic videos
originating from 14 recent stereoscopic Hollywood films.
Training and test videos come from different movies. They
are spread across 13 action classes: “Dance”, “Drive”, “Eat”,
“Hug”, “Kick”, “Kiss”, “Punch”, “Run”, “Shoot”, “Sit down”,
“Stand up”, “Swim”, “Use phone”. In addition, a class con-
taining videos not belonging to these 13 actions is provided



TABLE I. A COMPARISON OF DIFFERENT VIDEO DESCRIPTION
APPROACHES ON THE HOLLYWOOD 3D DATASET.

Method mAP CR
[12] 15.0% 21.8%
[13] 26.11% 31.79%
Cd 14.46% 17.86%
Cl 28.96% 31.82%
Cr 29.44% 34.09%

Cr + Cl 29.29% 29.54%
Cr + Dr 29.80% 31.49%
Er 30.10% 32.79%
Dr 28.67% 35.71%

and referred to as “No action”. Performance is measured by
computing the mean Average Precision (mAP) over all classes
and the correct classification rate (CR), as suggested in [12].

A. Experimental Results

Three independent video descriptions of the Hollywood 3D
video dataset were computed, based on the feature sets Cr, Er
and Dr, respectively. For comparison purposes, descriptions
were also computed on Cl and Cd. Additionally, a combination
of the action vectors calculated on the left and right channels,
denoted by Cr + Cl, was evaluated, as well as a similar
combination for Cr + Dr. Thus, on the whole, 7 different
video description schemes were evaluated: Cd, Cl, Cr, Cr +
Cl, Cr + Dr, Er, Dr. The performance obtained for each of
them is shown in Table I.

The performance achieved by exploiting only color infor-
mation equals 34.09% (CR) and 29.44% (mAP). In the case
of Dr, the performance achieved is 35.71% (CR) and 28.67%
(mAP), while Er leads to a performance equal to 32.79% (CR)
and 30.10% (mAP). In Table I we also provide the currently
published performance results in Hollywood 3D [12] [13]. As
can be seen, the proposed method outperforms the state-of-
the-art approach presented in [13], by 3.92% (CR) and 3.99%
(mAP), respectively.

Table II shows the average precision measured per action
class, for the best-performing monocular method formulation
(Cr), the best-performing stereoscopic method formulations
(Dr and Er) and the best method reported in [13]. These results
indicate that the benefit of exploiting stereo disparity-derived
scene geometry information, with regard to augmenting recog-
nition performance, is evident mainly in outdoor scenes, such
as the ones dominating action classes ”Drive”, ”Run” or
”Swim”, where interest point detection using disparity data
implicitly facilitates segmentation of foreground objects from
background by focusing attention on object boundaries in
relative-depth. This intuition explains the gap in classification
rate between method formulations Er and Dr: with Er no such
filtering takes place and the modest gains in mean average
precision, in comparison to the monocular approach, may
simply be attributed to the more dense video description, since
E ′ri = C′di ∪ C′

r
i . It also confirms the conclusions reached in

[17], regarding the use of stereoscopic data to exploit video
background-foreground segmentation for action recognition.

TABLE II. AVERAGE PRECISION PER CLASS IN HOLLYWOOD 3D.

Action Cr Er Dr [13]
Dance 42.07% 41.79% 30.88% 36.26%
Drive 59.30% 61.66% 63.54% 59.62%
Eat 9.04% 8.76% 7.31% 7.03%
Hug 10.83% 14.22% 16.63% 7.02%
Kick 19.43% 20.52% 17.44% 7.94%
Kiss 46.28% 46.32% 34.88% 16.40%

No action 11.78% 11.82% 11.60% 12.77%
Punch 26.95% 28.01% 34.41% 38.01%
Run 45.96% 49.51% 53.15% 50.44%

Shoot 37.95% 37.43% 36.25% 35.51%
Sit down 11.61% 10.67% 9.84% 6.95%
Stand up 53.19% 52.79% 39.82% 34.23%

Swim 23.18% 23.08% 31.27% 29.48%
Use phone 14.54% 14.86% 14.35% 23.92%
mean AP 29.44% 30.10% 28.67% 26.11%

However, contrary to [17], the proposed method formulation
Dr operates along these lines only implicitly, through increas-
ing texture invariance and scene geometry content of the video
description, as well as in a generic manner, not associated with
any specific feature descriptor.

For most indoor scenes, average precision is either un-
affected or reduced by employing Dr. Therefore, the pro-
posed method seems to be more suitable for outdoor actions,
where object boundaries in relative-depth play a significant
discriminative role and the background is located at a distance
from the cameras large enough for its disparity values to be
relatively homogeneous. Additionally, as one would expect,
our experiments indicated a strong link between the quality of
the detected interest points in disparity videos and the disparity
estimation characteristics.

It should also be noted that, due to the reduced size of
the feature set Dr before the application of the BoF video
representation scheme, the total running time of the entire
recognition pipeline in our experiments on the Hollywood
3D dataset was significantly smaller for the stereoscopic Dr

approach, in comparison both to the monocular Cl or Cr and
the stereoscopic approach employing Er. More specifically, Dr

ran for approximately 70% of the time needed by Cl or Cr,
while Er ran for approximately 115% of the time needed by
the monocular formulations.

IV. CONCLUSIONS

We have proposed a method to describe stereoscopic videos
in a way that exploits disparity-derived relative-depth informa-
tion. Such an approach seems to facilitate the determination
of video interest points relevant to scene geometry and to
enhance texture invariance of the process. This way, the feature
set needed for achieving maximum action recognition perfor-
mance can be reduced in size, a significant benefit regarding
the overall time and memory requirements of the recognition



pipeline, while classification accuracy is increased in certain
cases.
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