Molecular Hydrogen Storage in Fullerenes – A Dispersion-Corrected Density Functional Theory Study

D. J. Durbin†§, N. L. Allan§, C. Malardier-Jugroot†

†Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Cecile.Malardier-Jugroot@rmc.ca
§School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

Abstract

H₂ physisorption within curved carbon nanomaterials for potential fuel storage on board vehicles is studied using dispersion-corrected Density Functional Theory. Full Cₙ (n = 20, 60, 180, 540, 960) fullerenes were considered along with single-walled carbon nanotubes ((3,3), (5,5), (9,9)) and graphene to investigate the effects of curvature, confinement, platinum and non-metal (B, N, O) dopants, C_{fullerene}–H₂ and H₂–H₂ distances, H₂ orientation on C_{fullerene}–H₂ interactions. The study mainly focuses on H₂ stored within the fullerene with some investigation into external H₂. A significant attractive C_{fullerene}–H₂ interaction energy of -28 kJ/mol is observed for H₂ in curved carbon nanomaterials where H₂ molecules are located ca. 2.9 Å from carbon atoms in a highly confined system. Dopants have the potential to increase the favourability of C_{fullerene}–H₂ interactions when multiple H₂ molecules are present by affecting the orientation of H₂ molecules within the carbon nanomaterial. This paper presents analysis of several carbon nanosystems and then proposes possible materials for H₂ storage on board vehicles.
1. Introduction

The Earth’s fossil fuel reserves are depleting quickly and their use creates significant environmental problems. Optimization of alternative fuels is key to sustainable energy usage. Hydrogen gas is a strong contender to replace gasoline in automobiles due to the increasing efficiency and uses of hydrogen fuel cells (FCs). Hydrogen FCs are preferred to combustion engines because they produce energy efficiently with minimal pollution through the combination of H\textsubscript{2} with O\textsubscript{2} to produce H\textsubscript{2}O. Since their use in NASA’s Gemini space program in the 1960’s hydrogen FCs have entered the regular consumer market in a variety of automobiles. The most common fuel cells, PEMFCs (polymer electrolyte membrane FCs or proton exchange membrane FCs), use a proton exchange membrane to transfer the protons produced by H\textsubscript{2} splitting then combine with oxygen to form H\textsubscript{2}O, and electrons, which are used to power the vehicle [1].

Hydrogen fuel cells have been extensively researched for the past six decades because hydrogen gas is a strong candidate to replace gasoline in automobiles. At 143.0 MJ/kg, H\textsubscript{2} has the highest energy density of common fuels by weight (ca. three times larger than gasoline). Unfortunately, it will not be commercially viable until reliable storage methods are developed. Storage of hydrogen is challenging because, at 0.0108 MJ/L, gaseous H\textsubscript{2} has the lowest energy density by volume (over 3000 times smaller than gasoline) and it is highly diffuse and buoyant [1]. Therefore, compact and efficient storage techniques must be developed.

Traditionally, hydrogen storage techniques are evaluated by analysis of the gravimentric density (GD) and volumetric density (VD) of the storage system. The GD is the weight percentage of hydrogen relative to the total weight of the system (hydrogen + storage medium). The VD is the mass of hydrogen stored per unit volume of the system. The US Department of Energy (DoE) has released 2015, 2017 and ultimate targets for H\textsubscript{2} storage. These targets address GD, VD and the ideal temperatures for H\textsubscript{2} sorption and release [2]. The DoE GD and temperature targets are shown in figure 1 along with the placement of current H\textsubscript{2} storage methods.
As shown in figure 1, at present the ammonia borane (AB) family of chemical hydrides are the only hydrogen storage methods that meet the DoE targets. However, these materials present challenges because the hydrogen is stored through the formation of chemical bonds so on board chemical reactions are required to release H₂. This can be done through thermal dehydrogenation when AB is in the solid state or solvolysis (hydrolysis or methanolysis) when in solution. Thermal dehydrogenation typically requires high temperatures and a large energy input. Therefore, AB hydrides can only be used if catalysts are added to assist in dehydrogenation. However, the use of catalysts produces problems of cost, deactivation and control of reaction kinetics [3]. Therefore, alternative storage methods are still under investigation.

The ideal storage media should be lightweight (to meet the GD requirements), inexpensive, and store a high density of H₂ by physisorption (to meet VD goals and limit the energy required to released H₂). Carbon nanostructures are a potential cheap, abundant, and lightweight storage system that has become increasingly prominent in the last few decades. Initial work began with carbon nanotubes (CNTs) in the late 1990s and has since expanded to include a wide variety of sp²-hybridized carbon structures including graphene and spherical fullerenes [4-8]. Fullerenes have a theoretical maximum storage capacity of 58 hydrogen atoms in C₆₀ (7.5 wt%) at 0 K. This
produces a metastable structure with an internal pressure of 1.3 Mbar. The practical storage capacity will be lower, but storage in fullerenes is still promising [9].

There are two main approaches to hydrogen storage on large area carbon nanomaterials. The first, hydrogen chemisorption, considers hydrogen chemisorbed on an expansive carbon surface to create C–H terminations through covalent bonds. The most extreme possibility is graphane, an extended 2-dimension hydrocarbon derived from chemisorption of hydrogen at every available position on graphene, leading to a GD of 8.3 wt%. Unfortunately, thermal annealing, a complex and high-energy processes, is required to add and remove hydrogen from this system so it is not commercially viable [10-12]. In general, hydrogen storage by chemisorption experiences the same issues observed with ammonia boranes with difficult and energetically expensive processes required to release H₂ on board a vehicle. In particular, both adsorption and desorption of hydrogen on carbon nanomaterials have energetic barriers greater than 100 kJ/mol [13].

The other method of hydrogen storage on carbon nanomaterials is via physisorption, in which H₂ is weakly attracted to the carbon surface by van der Waals forces. The strength of C–H₂ physisorption interactions is two orders of magnitude smaller than C–H chemisorption (368 – 535 kJ/mol) [14]. However, despite the lower interaction strength and volumetric storage density, physisorption is advantageous because it utilizes the benefits of carbon nanomaterials without requiring on board chemical reactions to release H₂ [15-16]. Therefore, physisorption is the method analyzed in the present study. A summary of the potential storage capacities of several carbon nanomaterials are illustrated in figure 2 relative to the DoE 2015 and ultimate targets.
Figure 2 – Calculated and predicted H₂ storage capacity of several carbon sp²-hybridized nanomaterials relative to the DoE 2015 and ultimate targets (purple and green boxes respectively). Chemisorption materials are shown in red; physisorption materials in blue. For chemisorption storage materials, a volumetric density range is estimated for a full system from single layer experiments. For physisorption on nanotubes, the points correspond to different nanotube sizes. Data from [13].

As can be seen in figure 2, carbon nanomaterials are promising for H₂ storage even though physisorption storage has lower VD’s than chemisorption. This occurs because dispersion forces between carbon and hydrogen are weak, typically being less than 6 kJ/mol [17]. As a result, carbon substrates are often activated by introducing areas of sp³-hybridized carbon or decorating with alkali or transition metals with care taken to avoid introducing chemisorption and additional weight. These modifications allow the substrate to contribute more electron density to the C–H₂
interaction and so strengthen the van der Waals forces to increase the GD and VD of the systems [18-20].

Many computational studies have been performed to determine the most favourable carbon nanomaterial for H₂ physisorption storage. Classical Monte Carlo studies of large carbon systems have concluded that the gravimetric storage capacity on flat carbon surfaces is greater than that on curved carbon. In addition, these studies also found that a larger GD can be obtained when there is a larger interlayer distance or diameter in graphite and carbon nanotubes respectfully. For instance, at 100 atm and 77 K, Rzepka et. al. reported a GD of 2.5 wt% in a SWCNT compared to 7 wt% in graphite when both systems have a C–C distance of 10.0 Å. At 100 atm and 77 K, Meregalli et. al. reported a GD of 12.5 wt% in graphite with a C–C interlayer of distance of 20 Å compared to 3 wt% in graphite with a C–C distance of 6 Å [13, 21-24].

Ab initio studies, in contrast, have found that hydrogen storage in curved carbon is more promising than in planar carbon substrates. These studies [25-27] have also concluded that an internal diameter near 6 Å is most favourable for C–H₂ interactions. For example, Chandrakumar et. al. found that the interaction energy of H₂ with a benzene ring increases from -7.0 kJ/mol on flat benzene to -9.8 kJ/mol on benzene with 35º of local curvature [27]. Patchkovskii predicted that a graphene interlayer distance of 6 Å is optimal for H₂ physisorption storage [17].

H₂ physisorption interactions are stronger on concave carbon surfaces because of the greater degree of sp³-hybridization at areas of curvature. In addition, in curved surfaces different electron densities on the two sides of the surface are observed. On the convex side, electron density in the p orbitals is more available for chemisorption. On the concave side, the adjacent carbon atoms are closer, enhancing physisorption [13, 27, 28].

These ab initio studies have investigated optimization of H₂ storage on curved carbon nanomaterials by analyzing properties such as carbon bonding sites, orientation of H₂ and substrate curvature. They provide good preliminary understanding of H₂ physisorption on carbon nanomaterials with a high level of theory. However, analyses were performed on molecules containing only a very small number of carbon atoms, sometimes as little as five [27]. Therefore, these studies did not allow for the effects of multiple carbon interactions with one H₂ molecule, which can occur in large systems. Consideration of only a small surface section is also liable to spurious edge effects. To ensure that these effects are considered, the current study modeled complete fullerenes.
In order to produce the strongest H₂ physisorption storage with the smallest energy input, H₂ physisorption on carbon nanomaterials must be better understood. This is especially needed because previous Monte Carlo and ab initio studies produced conflicting results with Monte Carlo simulations finding flat carbon nanomaterials more favourable for H₂ storage and ab initio results finding curved materials more favourable. Therefore, the present study works to bridge the gap between classical Monte Carlo and ab initio simulations by analyzing large carbon systems with a high level of theory.

The present study uses DFT with dispersion corrections to model H₂ interactions with full Cₙ (n = 20, 60, 180, 540, 960) fullerenes. In order to analyze the effects of curvature and confinement, H₂ storage in the fullerenes is compared with single-walled carbon nanotubes of similar diameter and graphene. In addition, due to the higher H₂ storage capacities previously predicted and observed in carbon nanomaterials containing dopants (fig. 2), exohedral and substitutional platinum, and boron, nitrogen and oxygen substitutional dopants are considered in an attempt to strengthen the C–H₂ physisorption interaction.

Platinum was chosen because it has been shown to be useful for hydrogen storage, both as bulk platinum, due to strong Pt–H interactions [29], and for hydrogen spillover [30-31]. In addition, it is known that platinum nanoparticles disperse well on carbon nanomaterials, especially single-walled carbon nanotubes [32-33]. This has been confirmed by the authors in experimental studies (not shown here).

Boron, nitrogen, and oxygen substitutional dopants were chosen because these elements are similar in size to carbon and so substitute readily into the carbon material [34-35]. However, the differences between the dopant elements are such that they affect the electronic properties of the carbon nanomaterial differently and so could potentially affect hydrogen storage [36]. Boron and nitrogen dopants in carbon nanomaterials, both in the presence [37] and absence [38-39] of Pt, have been previously found to increase the rate of the oxygen reduction reaction, and thus prevent CO poisoning, in fuel cells. Oxygen dopants have not been extensively studied previously.

Platinum has been found to have strong interactions with carbon nanomaterials due to an exchange in electron density between the carbon and platinum valence electrons. Detailed studies also found that the platinum’s core 4f electrons are involved, creating a very strong Pt–C interaction [40]. Further analyses found that nitrogen substitutional dopants affect the Pt–substrate interaction by drawing electron density from neighbouring carbon atoms to interact with Pt, in
addition to the N electron density. Boron dopants interact with the platinum valence d orbitals. Therefore, the presence of both N and B substitutional dopants increases the strength of the interaction between Pt and the carbon substrate [41].

This work extends previous studies on similar systems, which showed that modification of a graphene/Pt substrate can have a large effect on the interaction of the substrate with small gas molecules, including H₂ and CO [42-43].

2. Methods

All simulations were performed using Density Functional Theory (DFT) as implemented in the Gaussian 09 software package [44]. The B3LYP functional was used to perform an initial analysis of H₂ interactions in all systems. B3LYP combines the Becke and Lee-Yang-Parr gradient correction energies with the exact non-local Hartree-Fock exchange energy to calculate the exchange-energy functional. This is particularly useful for systems containing transition metals because the functional is reliable for modeling the strong onsite Coulomb repulsions between d and f electrons including a substantial contribution from exact exchange [45-46]. An empirical dispersion correction was then added using the DFT-D3 software [47-48].

The LANL2MB basis set was used in conjunction with B3LYP because it is specifically designed for transition metals. Minimal and split-valence basis sets are very computationally expensive for atoms with a large number of electrons. LANL2MB, therefore, uses previously-determined effective potentials [49-51] to describe core electrons and a minimal basis set for valence electrons; in order minimize computation time, the STO-3G minimal basis set is used [52-53]. This combination allows some flexibility for the valence electrons while the frozen core potential does not significantly increase computation time. The B3LYP functional and the LANL2MB basis set have been shown to produce trustworthy results for similar systems [42-43].

More detailed analyses were performed on the most promising systems with the B97D functional. B97D includes dispersion interactions during optimization, which are very important when analyzing the interaction between H₂ and carbon. B97D is a generalized gradient approximation (GGA) type functional that combines Becke’s power-series initial guess with
explicit parameterization including (damped) atom-pairwise dispersion corrections [54]. This functional has been shown to produce good results for similar systems [55]. Two basis sets were used for these calculations. The LANL2DZ basis set was employed for Pt; 6-311G(d,p) for C and H. LANL2DZ is similar to LANL2MB in that it uses a frozen core potential for large atoms but LANL2DZ uses D97V, a Dunning/Huzinaga valence double-zeta basis set, for the valence electrons [56]. The inclusion of polarization functions is often important for properties such as physisorption [57].

The results reported in sections 3.1.1, 3.1.4, 3.1.5, 3.1.6 were obtained with B3LYP/LANL2MB/DFT-D3 due to the size, complexity and large number of systems analyzed. All other results were obtained with B97D/LANL2DZ/6-311G(d,p). Results from both methods were compared for small systems and provided similar trends.

Calculations were carried out for complete fullerenes \((C_n, n = 20, 60, 180, 540, 960)\) containing up to six internal \(H_2\) molecules, one exohedral or substitutional Pt atom, and one to three substitutional non-metal dopant atoms \((N, B \text{ or } O)\) where applicable. One non-metal substitutional dopant was included in systems that also contained Pt, located directly under the Pt dopant; three non-metal substitutional dopants were used in systems without Pt, arranged in an alternating pattern within one six-membered ring. Similar systems containing a large carbon surface with a limited number of dopant atoms have been shown to be effective in previous studies by the authors, which investigated the interaction of carbon nanomaterials with \(H_2\) and \(CO\) [42-43].

SWCNTs of the form \((n,n)\) where \(n = 3, 5, 9\) were modelled in a similar fashion. These nanotubes were chosen because they have similar diameters to \(C_{20}, C_{60}\) and \(C_{180}\) respectively and so are most useful for analyzing confinement effects. An 8.5 Å segment of nanotube was considered. Periodic boundary conditions were applied to the segment when the less computationally expensive B3LYP functional was used. The nanotube segment was hydrogen terminated when the B97D functional was applied. Graphene sheets were modelled with a hydrogen-terminated 14.5 x 14.8 Å section throughout.

Coordinates for the structures of the smaller fullerenes \((20 \leq n \leq 540)\) were obtained from the Computational Chemistry List, Ltd. on-line fullerene database [58]. Coordinates for the \(C_{960}\) structure were provided by Henrard at the University of Namur. Coordinates for the SWCNTs
were generated by TubeGen On-line (version 3.4) [59]. All systems were optimized without constraints.

Once geometries were optimized, the C–H₂ and H₂–H₂ bond distances and the fullerene–H₂ interaction energy, ΔE (eq. 1), were calculated. A negative value shows that the fullerene–H₂ systems is more stable than the sum of the carbon substrate and H₂ molecules individually.

\[
\Delta E = E_{\text{fullerene.nH}_2} - \left[E_{\text{fullerene.}(n-1)H_2} + E_{H_2} \right] \quad [1]
\]

Basis set superposition error (BSSE) is always a concern when minimizing the energy of systems with multiple compounds as a function of geometry [60]. BSSE was considered in this study using the counterpoise correction method [61-63]. The correction ranged from ca. 9 kJ/mol for C₂₀ systems to ca. 1 kJ/mol for C₁₈₀. It did not change any trends or conclusions.

Two computational methods were used in this study. Initially, a large number of systems were analyzed with B3LYP and LANL2MB with a DFT-D3 empirical dispersion correction. These allowed for characterization of the effects of fullerene size and curvature; H₂ confinement; nature, amount and location of dopants; and, optimal C–H₂ and H₂–H₂ distances. The most interesting systems were then further analyzed with B97D and LANL2DZ/6-311G(d,p).

The primary concern with B3LYP is that it does not include dispersion effects, which are the primary interaction in physisorption storage. However, the addition of the DFT-D3 correction does allow the characterization of dispersion effects. This was confirmed by comparison of systems run with both B3LYP/DFT-D3/LANL2MB and B97D/LANL2DZ/6-311G(d,p), which showed very similar results for C–H₂ interaction energy (differing by ≤3 kJ/mol for one H₂ molecule in Cₙ, n ≥ 60). Identical trends in C–H₂ interactions were observed from both methods and so both methods are deemed satisfactory for the systems studied.
3. Results and Discussion

3.1. Effects on C–H$_2$ interaction energy with internal H$_2$

3.1.1. Curvature

When the position of H$_2$ within the fullerene is analyzed for C$_n$ fullerenes of increasing diameter ($n = 60, 180, 540, 960$), an inverse correlation between fullerene size and C–H$_2$ interaction energy is observed (fig. 3). One hydrogen molecule in undoped C$_{60}$ has an interaction energy of -27 kJ/mol. In the larger undoped C$_{180}$ fullerene, this energy decreases to -4 kJ/mol and in the largest C$_{540}$ and C$_{960}$ fullerenes, the C–H$_2$ interaction is negligible, similar to that for graphene.

Figure 3 – C–H$_2$ interaction energies (kJ/mol) for C$_{20}$, C$_{60}$, C$_{180}$, C$_{540}$, C$_{960}$, graphene (undoped or with substitutional or exohedral platinum dopants), calculated with the B3LYP functional and LANL2MB basis set with a DFT-D3 dispersion correction. Insert shows magnification of C$_{60}$, C$_{180}$, C$_{540}$, C$_{960}$, graphene systems.
One of the primary reasons that the magnitude of C–H₂ interaction energy decreases with increasing fullerene size is the decreasing curvature. The transition of fullerene shape from a sphere at C₆₀ to a polygon with flat sides at C₉₆₀ is apparent in figure 4. This reduction of curvature occurs in larger fullerenes to reduce strain on the C–C \(\sigma \) bonds [64]. It has a large impact on H₂ physisorption because the large curvature in C₆₀ allows a large number of carbon atoms to interact with the H₂ molecule. However, as the fullerene size increases, this interaction is lost as the fullerene surface becomes flatter. As a result, H₂ has an attractive interaction with C₆₀ but the C–H₂ interactions in C₅₄₀ and C₉₆₀ are negligible.

![Figure 4](image)

Figure 4 – Optimized geometry of C₆₀, C₁₈₀, C₅₄₀ and C₉₆₀ (containing internal H₂), calculated with B3LYP and LANL2MB (C = grey, H = light blue).

It should be noted that C₂₀ is not considered in this section because of the large unfavourable C–H₂ interaction energy. This endothermic interaction is a result of heavy confinement of H₂ in the small fullerene that results in a small C–H₂ distance. This is discussed in section 3.1.2.

3.1.2. C–H₂ distance: One H₂ molecule

The characterization of the interaction energy as a function of the C–H₂ distance found that the shortest distance has a large influence on the magnitude of the C–H₂ physisorption interaction. Indeed, an optimal C–H₂ distance was observed at ca. 2.9 Å, the sum of the van der Waals radii of carbon and hydrogen [65]. When H₂ is forced into a fullerene where a minimum distance of 2.9 Å cannot be achieved, such as C₂₀ (diameter = 3.7 Å), repulsive interactions dominate. This leads to a C–H₂ interaction energy of 509 kJ/mol, an unfavourable interaction, the magnitude of which is 20x larger than the favourable interaction observed in C₆₀ (-25 kJ/mol).
In contrast, one H\(_2\) molecule in C\(_{60}\) (diameter = 7.0 Å), where H\(_2\) is ca. 2.9 Å from each carbon atom, experiences a notable attractive interaction. The C–H\(_2\) interaction then decreases as H\(_2\) moves more than 2.9 Å from the fullerene wall in larger systems (C\(_{180}\), C\(_{540}\), C\(_{960}\)). This was observed, for example, when the interaction energy of H\(_2\) with C\(_{180}\) was calculated with the B97D functional without optimizing the position of H\(_2\) within the fullerene. When H\(_2\) is 4.9 Å from the fullerene wall, the C–H\(_2\) interaction energy is -5.2 kJ/mol; when H\(_2\) is 2.8 Å from the fullerene surface, the interaction energy is -12.8 kJ/mol occurs. This finding furthers those of Cabria et. al. and Patchkovskii et. al. who found that a C–H\(_2\) distance of 2.7 Å, or a graphene interlayer separation of ca. 6 Å, is optimal for a (flat) layered graphite structure storing H\(_2\) [17,66].

3.1.3. C–H\(_2\) distance: Two H\(_2\) molecule

When the C–H\(_2\) interaction energy is calculated for the addition of a second H\(_2\) molecule to a carbon system that already contains one H\(_2\) molecule, the C–H\(_2\) interaction is repulsive in C\(_{60}\) (fig. 5). This occurs because the small size of C\(_{60}\) forces the C–H\(_2\) distance below 2.9 Å upon addition of multiple H\(_2\) molecules. In contrast, at least six H\(_2\) molecules (fig. 6) can be added to C\(_{180}\) without repulsive C–H\(_2\) interactions because even with six hydrogen molecules in C\(_{180}\), the C–H\(_2\) distance does not decrease below 2.9 Å. This is discussed further in section 3.1.4.

![Graph showing interaction energies for different fullerenes](image-url)
Figure 5 – Fullerene–H\textsubscript{2} interaction energies (kJ/mol) for C\textsubscript{60} and C\textsubscript{180} (undoped or with substitutional or exohedral platinum dopants) for addition of a first and then a second H\textsubscript{2} molecule, calculated with the B97D functional and 6-311G(d,p) (for C, H) and LANL2DZ (for Pt).

In larger systems, such as C\textsubscript{180}, the C–H\textsubscript{2} interaction energy correlates strongly with the position of H\textsubscript{2} within the fullerene. For example, for two H\textsubscript{2} molecules in C\textsubscript{180} there is a C–H\textsubscript{2} interaction energy of ca. -20 kJ/mol when the H\textsubscript{2} molecules are placed 2.7 Å from the fullerene wall. However, when there is a C–H\textsubscript{2} separation of 3.8 Å, the C–H\textsubscript{2} interaction decreases to ca. -8 kJ/mol.

3.1.4. C–H\textsubscript{2} distance: Multiple H\textsubscript{2} molecules

As seen in section 3.1.2, addition of subsequent H\textsubscript{2} molecules to a C\textsubscript{60} system that already contains an H\textsubscript{2} molecule requires an input of energy. However, at least six H\textsubscript{2} molecules can be added to C\textsubscript{180} exothermically (fig. 6).

<table>
<thead>
<tr>
<th>Addition of subsequent H\textsubscript{2} molecules</th>
<th>Interaction Energy per H\textsubscript{2} Molecule, Fullerene-nH\textsubscript{2} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>C\textsubscript{60} (no Pt)</td>
</tr>
<tr>
<td>Second</td>
<td>C\textsubscript{60} (sub-Pt)</td>
</tr>
<tr>
<td>Third</td>
<td>C\textsubscript{60} (exo-Pt)</td>
</tr>
<tr>
<td>Fourth</td>
<td>C\textsubscript{180} (no Pt)</td>
</tr>
<tr>
<td>Fifth</td>
<td>C\textsubscript{180} (sub-Pt)</td>
</tr>
<tr>
<td>Sixth</td>
<td>C\textsubscript{180} (exo-Pt)</td>
</tr>
</tbody>
</table>

Figure 6 – Fullerene–nH\textsubscript{2} interaction energies per H\textsubscript{2} molecule (kJ/mol) for C\textsubscript{60} and C\textsubscript{180} (undoped or with substitutional or exohedral platinum dopants) for addition of successive H\textsubscript{2}
molecules, calculated with the B3LYP functional and LANL2MB basis set with a DFT-D3 dispersion correction.

Figure 6 shows that addition of multiple H₂ molecules to C₆₀ becomes increasingly endothermic for each subsequent H₂. Addition of a second H₂ molecule requires an input of 21–33 kJ/mol; 68–91 kJ/mol is then needed for addition of each of the third and fourth H₂ molecules; finally, 161–196 kJ/mol is necessary to add the fifth or the sixth.

As seen in section 3.1.3, an energy input is required to add the second H₂ molecule to C₆₀ because the minimum C–H₂ distance decreases to as low as 2.5 Å. A greater energy input is then required for the third and fourth H₂ molecules because the C–H₂ distance decreases to as little as 2.2 Å. This C–H₂ distance does not change as the fifth and sixth H₂ molecules are added to C₆₀ but more energy is required to add these later H₂ molecules. In order to accommodate them, the H₂–H₂ distance decreases to 1.5 Å, substantially smaller than the combined van der Waals radii of two hydrogen atoms (2.4 Å). As a result, the H₂ molecules experience repulsive interactions with other H₂ molecules as well as with the fullerene wall. In contrast to C₆₀, the H₂–H₂ distances in C₁₈₀ never decrease below 2.2 Å and this system does not show any repulsive interactions.

The location of two, four, and six H₂ molecules in C₆₀ is shown in figure 7. It can be seen that the H₂ molecules orient to produce a symmetrical configuration within the fullerene.

![Figure 7 - C₆₀ fullerenes optimized with two (left), four (middle) and six (right) internal H₂ molecules.](image)

3.1.5. Platinum dopants

The results presented in section 3.1.1 also show the binding energies of H₂ in fullerenes doped with a substitutional or exohedral platinum atom (fig. 8). Figure 3 indicates that the binding
energies are similar with and without a metal dopant. The presence of a Pt dopant is insignificant to the C–H$_2$ interaction energy when one H$_2$ is contained within the fullerene. The interaction energies presented in figure 3 appear to differ slightly between undoped and doped fullerene system but these differences are negligible considering the uncertainty in the method. For example, in C$_{60}$ the basis set superposition error is 3–4 kJ/mol, which is greater than the difference of 2 kJ/mol between the C–H$_2$ interaction energy for an H$_2$ molecule within an undoped and doped fullerene.

Figure 8 – Optimized geometry of undoped C$_{60}$ (left) and C$_{60}$ containing an exohedral Pt (middle) and substitutional Pt (right) dopant, calculated with B3LYP and LANL2MB (C = grey, Pt = dark blue).

The presence of exohedral Pt does not affect the C–H$_2$ interaction energy for internal H$_2$. However, substitutional Pt can affect the C–H$_2$ interaction energy. When the second and fifth H$_2$ molecules are added to C$_{60}$ systems, the presence of substitutional Pt decreases the magnitude of the C–H$_2$ repulsive energy compared to undoped fullerenes or those with exohedral Pt (fig. 6). The substitutional Pt decreases the symmetry of the arrangement of H$_2$ molecules within the fullerene because the H$_2$ molecules become perpendicular to each other instead of parallel (fig. 9). The H$_2$–H$_2$ distance then increases slightly, which enhances favourability of the C–H$_2$ interaction because there is less H$_2$–H$_2$ repulsion. It should be noted that the average interaction energy is not substantially affected by the presence of Pt.
Exohedral Pt dopants were not observed to affect the C–H₂ interaction energy or H₂ geometry. It is well known that metallic Pt (or Pt at the surface) forms a strong bond with H₂ via chemisorption, which breaks the H–H bond to form two Pt–H bonds [67]. However, this is not possible here because of the barrier between H₂ and Pt created by the carbon surface. This suggests that the potential for Pt–H₂ chemisorption interactions is insufficient to cause a geometric change that would enable H₂ to be in closer physical contact with sub-Pt or exo-Pt in fullerenes. As result, only Pt–H₂ physisorption interactions are present in these systems.

Analysis of the natural bond orbitals (NBOs) of undoped and Pt-doped C₆₀ finds that the addition of both substitutional and exohedral platinum dopants affects the electron density within the fullerene with sub-Pt having a larger effect. The change in NBO occupancy was calculated from equation 2, which compares the electron density of a Pt/fullerene–H₂ system to the Pt/fullerene and H₂ individually. A positive value indicates that the orbital gains electron density in the Pt/fullerene–H₂ system compared to the Pt/fullerene and H₂ separately, suggesting that this orbital is involved in a Pt/fullerene–H₂ (C–H₂ or Pt–H₂) interaction.

\[\Delta NBO \equiv NBO_{Pt/\text{fullerene}:H_2} - NBO_{Pt/\text{fullerene}} + NBO_{H_2} \]

All these NBO analyses were calculated with B3LYP and LANL2MB. The C₆₀ systems were also analyzed with B97D and LANL2DZ/6-311G(d,p). The results from both methods...
showed identical trends. However, the changes in electron density were found to be larger with B97D, which models dispersion interactions more accurately.

As shown in figure 10, electron density becomes localized on Pt and a small number of carbon atoms when a platinum dopant is present. This suggests that the H₂ molecule interacts primarily with these atoms.

In particular, H₂ is found to interact with the Pt atom and one carbon atom on the opposite side of the Pt/fullerene. When platinum is substituted into the fullerene, H₂ interacts with all the valence orbitals of the Pt atom and does not interact with the carbon atoms surrounding the Pt dopant. When Pt is an exohedral dopant on the fullerene, H₂ does not have direct access to the Pt atom and so it interacts only with the platinum 5pₓ orbital and also interacts with the carbon atoms neighbouring the Pt dopant.
Figure 10 – Difference in natural bond orbital electron density of C and Pt orbitals in a Pt/fullerene containing H$_2$ compared to an empty Pt/fullerene for C$_{60}$ with substitutional Pt (top)
or exohedral Pt (bottom). All C and Pt valence orbitals (s, p, d) are shown. A positive value indicates that the orbital gains electron density when H_2 is located in the Pt/fullerene, calculated with B3LYP and LANL2MB ($C =$ grey, $H =$ light blue, $Pt =$ dark blue).

The interaction of H_2 with atoms located at opposite ends of the Pt/fullerene is primarily observed when H_2 is stored in C_{60} and not the larger fullerenes because in C_{60}, H_2 is located in the centre of the Pt/fullerene (ca. 2.9 Å from all atoms) so it is possible for H_2 to experience a dispersion interaction with atoms on opposite sides of the cage. In contrast, in the larger fullerenes, H_2 is located to one side of the cage where it is only 2.9 Å from a smaller number of atoms and dispersion interactions fall off rapidly with distance.

In C_{20}, there is a large change in electron density at all the carbon atoms and platinum when H_2 is incorporated. This is in contrast to the larger fullerenes where the platinum orbitals show notably larger changes in electron density than the carbon orbitals. In C_{20} the H_2 interaction is strongly endothermic and there is a large repulsive interaction of H_2 with all the atoms in the cage.

Although not depicted in figure 10, a substantial change (>0.001) in the electron density of the hydrogen atoms between H_2 contained within the Pt/fullerene and individual H_2 is required for a strong Pt/fullerene–H_2 interaction. The change in electron density of the hydrogen atoms in H_2 is 10x larger in C_{20} than C_{60} and it is negligible in C_{180}.

There is also a fundamental change in the type of interaction between these fullerenes. In C_{20}, repulsive interactions dominate, making the process endothermic. However, in the larger fullerenes, the interaction is exothermic because dispersion determines the overall weak C–H_2 interaction.

3.1.6. Non-metal dopants

Non-metal dopants showed promising effects in previous work by two of the authors when investigating CO and H_2 binding to Pt/graphene systems [42-43]. Addition of non-metal substitutional dopants to the Pt-doped graphene surface changed the electron density in the Pt–C interaction, which in turn altered the Pt–gas interaction. In the present study, one or three boron (electron acceptor) or nitrogen or oxygen (electron donor) dopants replaced carbon atoms in C_{60} and C_{180} and the effect on the C–H_2 interaction was observed with and without Pt dopants. The boron-doped fullerenes are shown in figure 11.
Figure 11 – Optimized geometry of B-doped C\textsubscript{60} fullerenes (C = grey, Pt = blue, B = pink). Systems containing one boron atom were optimized with B3LYP and LANL2MB; the fullerene with three boron atoms was optimized with B97D and 6-311G(d,p).

In systems containing platinum, the non-metal dopant was substituted for one of the carbon atoms directly connected to the Pt atom. These systems were analyzed with B3LYP and LANL2MB with a DFT-D3 dispersion correction. Addition of a non-metal dopant does not affect the C–H\textsubscript{2} interaction energy (fig. 12). This is consistent with the polarizability of these dopants relative to carbon.
Figure 12 – Fullerene–H\textsubscript{2} interaction energies (kJ/mol) for C\textsubscript{60} and C\textsubscript{180} (undoped or with substitutional or exohedral platinum dopants) for systems containing no non-metal dopants and those doped with boron, nitrogen or oxygen, calculated with the B3LYP functional and LANL2MB basis set with a DFT-D3 dispersion correction.

Substitution of three atoms in C\textsubscript{60} with non-metal dopants was also studied. The dopant atoms were added in an alternating pattern to one of the benzene rings in the fullerene. These systems were then analyzed with B97D and LANL2DZ/6-311G(d,p). Even with this higher number of dopant atoms, the C–H\textsubscript{2} physisorption interaction was unaffected.

3.1.7. 2D and 3D Confinement

To further understand H\textsubscript{2} storage in curved carbon nanomaterials, the effects of 2-dimensional versus 3-dimensional confinement were studied by comparing fullerenes with (m,m) single walled carbon nanotubes (SWCNTs) of similar diameters. C\textsubscript{20}, C\textsubscript{60} and C\textsubscript{180} fullerenes were compared with (3,3), (5,5) and (9,9) SWCNTs respectively.

As is shown in figure 13, identical trends in C–H\textsubscript{2} interaction energy are observed for the 2D and 3D systems. However, a difference is observed in the magnitude of the interaction energies for C\textsubscript{20} versus SWCNT (3,3) and C\textsubscript{60} versus (5,5). The interactions were endothermic and weakly exothermic respectively.

In both cases, there is a stronger C–H\textsubscript{2} interaction when confining H\textsubscript{2} in a 3D system, consistent with the larger number of both repulsive and attractive C–H\textsubscript{2} interactions. However, the C–H\textsubscript{2} interactions are similar in C\textsubscript{180} and SWCNT (9,9). This shows that in systems with larger diameters, where there is minimal confinement in either system, the shape of the carbon structure does not significantly affect the magnitude of the C–H\textsubscript{2} interactions.
Figure 13 – C–H₂ interaction energies (kJ/mol) for H₂ inside C₂₀, C₆₀ and C₁₈₀ compared with (3,3), (5,5) and (9,9) SWCNTs respectively to determine the effects of 2D vs 3D confinement.

Carbon systems are undoped or contain substitutional or exohedral platinum dopants. Insert shows a zoom in of C₆₀, C₁₈₀, SWCNT (5,5) and (9,9), calculated with the B97D functional and 6-311G(d,p) (for C, H) and LANL2DZ (for Pt).

Visualization of the molecular orbitals further indicated that the larger magnitude of C–H₂ interactions in the 3D system result from an increased number of C–H₂ interactions. As can be seen in figure 14, the H₂ 1σ₉ orbital in C₂₀ is spherical and can interact with every atom in the fullerene. In contrast, the H₂ 1σ₉ orbital in SWCNT (3,3) is more angled and interacts only with the carbon atoms immediately surrounding the H₂ molecule.
Figure 14 – Visualization of the H$_2$ 1σ$_g$ molecular orbital in optimized SWCNT (3,3) (top) and C$_{20}$ (bottom) systems showing the effect of confinement, calculated with B3LYP and 6-311G(d,p) (C = grey, H = white, H$_2$ molecular orbital = red/green). The orbitals displaced have an energy of -1387 kJ/mol for SWCNT (3,3) (orbital 92) and -1569 kJ/mol for C$_{20}$ (orbital 37). All molecular orbitals were computed using an isovalue of 0.04.

The change in electron density of carbon and hydrogen orbitals between an individual carbon nanosystem and H$_2$ and H$_2$ confined within the carbon nanosystem is >10x greater in C$_{60}$ compared to SWCNT (5,5). In addition, the changes in electron density in SWCNTs are localized on the carbon atoms surrounding the H$_2$ molecule; carbon atoms further along the nanotube are significantly less involved.

3.2 Effects on C–H$_2$ interaction energy with external H$_2$

This study has so far considered only the storage of H$_2$ within fullerenes on the concave surface. However, it is also important to understand how changes to the carbon structure affect H$_2$ that is external to the fullerene and so interacts with the convex surface. Ideally, H$_2$ will be stored both on the interior and the exterior surfaces of the fullerene to maximize efficiency of the storage system.
Figure 15 shows the C–H$_2$ interaction energy of C$_n$ fullerenes ($n = 20, 60, 180$) with external H$_2$. The exothermic interaction of external H$_2$ in undoped systems is notable in C$_{20}$ and then becomes negligible in the larger fullerenes. Similarly, the H$_2$ interaction with fullerenes containing substitutional Pt is larger in C$_{20}$ and then decreases in C$_{60}$ and C$_{180}$. In contrast, the interaction of H$_2$ with fullerenes containing exohedral Pt is weakest in C$_{20}$ and then becomes stronger as the fullerene size increases.

![Figure 15 – Fullerene–H$_2$ interaction energies (kJ/mol) for C$_{20}$, C$_{60}$ and C$_{180}$ (undoped or with substitutional or exohedral platinum dopants) with external H$_2$, calculated with the B97D functional and 6-311G(d,p) (for C, H) and LANL2DZ (for Pt).](image)

The interaction of external H$_2$ with undoped fullerenes suggests that there is only a notable C–H$_2$ interaction when the fullerene is very small (-14 kJ/mol in C$_{20}$). In the small fullerene, the curvature is so high that a large amount of electron density from the carbon p orbitals becomes available on the convex surface of the fullerene to interact with H$_2$, creating a physisorption interaction of -14 kJ/mol. Although previous research suggests that physisorption is favoured on a concave carbon surface [13], in the particular case of C$_{20}$, the convex surface shows a notable C–H$_2$ interaction, while H$_2$ cannot be placed within the fullerene to interact with the concave surface.
The notable C–H₂ interaction on the convex surface of C₂₀ likely occurs because the high curvature of C₂₀ produces greater sp³ character in the carbon atoms.

In fullerenes containing substitutional Pt dopants, the C–H₂ interaction is strongest in C₂₀ (-34 kJ/mol) and is then consistently weaker in C₆₀ and C₁₈₀ (-16 kJ/mol). It should be noted that Pt–H chemisorption bonds are not observed in the C₆₀ and C₁₈₀ systems because Pt is contained within the carbon surface and so does not have enough electron density available to bind with hydrogen due to a steric hindrance.

In contrast, the interaction of external H₂ with fullerenes containing exohedral Pt increases with fullerene size as the fullerene surface becomes flatter. When H₂ is placed external to a fullerene with exohedral Pt, there are no physical barriers between Pt and H₂ so H₂ dissociates and two Pt–H chemisorption bonds form. Previous studies by the research group found that the properties of an sp²-hybridized carbon surface greatly influence the electron density in exohedral Pt that is available to interact with external molecules [42-43].

The interaction of external H₂ with SWCNTs was also investigated to determine the effect of the shape of the carbon material on its interactions with external H₂ (fig. 16). The trends are similar to those observed in figure 15 where the C–H₂ interaction is strongest in systems with exohedral Pt and weakest in undoped carbon nanomaterials. However, the C–H₂ interaction varies less between nanotubes of different diameters and is consistent with the absence of a clear flattening of the nanotube surfaces with increasing diameter, unlike the fullerenes (fig. 4).
Figure 16 – SWCNT–H₂ interaction energies (kJ/mol) of \((n,n)\) SWCNTs \((n = 3, 5, 9)\) (undoped or with substitutional or exohedral platinum dopants) with external H₂, calculated with the B97D functional and 6-311G(d,p) (for C, H) and LANL2DZ (for Pt).

Finally, the interactions of external H₂ with fullerenes containing non-metal dopants were investigated with B3LYP and LANL2MB with a DFT-D3 correction. The trends observed in figure 15 were also observed for fullerenes containing non-metal dopants. However, in C\(_{180}\) with exohedral Pt, the presence of non-metal dopants decreases the Pt–H interaction significantly. This is consistent with previous studies by two of the authors [42-43], which found that the addition of non-metal dopants increase the strength of the Pt–C interaction. This effect appears to be more prominent in flatter systems.

3.3 Promising hydrogen storage systems

This study has investigated several properties of fullerenes with the overall objective of predicting a promising H₂ storage system for use on board vehicles. The storage system should be low cost, lightweight, straightforward to manufacture, and simple to use and refill. Carbon
nanomaterials are attractive for this purpose because they are relatively cheap, lightweight and abundant. Systems in which H₂ is physisorbed should allow for simple use and refilling.

H₂ was primarily modeled inside the fullerene because concave carbon surfaces are thought to be better for physisorption interactions [13]. The effect of curvature, confinement, Pt and non-metal (B, N, O) dopants to the fullerene, C–H₂ distances and the orientation of H₂ molecules were examined. The interaction of external H₂ was also briefly considered to provide further understanding of the systems. In conclusion:

(i) **Curvature:** Systems with higher curvature are more promising for H₂ physisorption because in more highly curved systems H₂ is able to interact with a greater number of carbon atoms.

(ii) **C–H₂ distance:** A C–H₂ distance of 2.9 Å is ideal for physisorption because this is the combined van der Waals radii of carbon and hydrogen. At this distance repulsive forces do not dominate, at larger distances the attractive dispersion interactions diminish.

(iii) **H₂ orientation:** When multiple H₂ molecules are within a fullerene, the molecules orient so that the distances of each H₂ molecule are equal from the fullerene surface. In addition, the most favourable interactions are observed when the H₂ molecules are at least 2.4 Å from each other. Dopants can affect the orientation of H₂ molecules and, consequently, the C–H₂ interaction energy.

(iv) **Platinum dopants:** The addition of substitutional or exohedral Pt dopants have a minimal effect on the C–H₂ interaction energy (and do not cause Pt–H chemisorption interactions) but addition of substitutional Pt can affect H₂ orientation within the fullerene.

(v) **Non-metal dopants:** Similar to Pt dopants, the addition of boron, nitrogen or oxygen non-metal dopants have minimal effect on the C–H₂ interaction energy. When non-metal and platinum dopants are combined, the effect of Pt is reduced.

(vi) **Confinement:** C–H₂ interactions have a large magnitude in highly confined systems because the H₂ molecule is able to interact with more carbon atoms. In general, this results in stronger C–H₂ interactions in smaller fullerenes and in fullerenes over
carbon nanotubes. However, it must be noted that in very highly confined systems, such as C\textsubscript{20}, the C–H\textsubscript{2} interactions are repulsive; in large systems (C\textsubscript{60} and larger), the C–H\textsubscript{2} interactions are attractive.

(vii) **External H\textsubscript{2}:** The stronger interactions of external H\textsubscript{2} occur with systems containing exohedral Pt where the favourable fullerene–H\textsubscript{2} interaction increases with increasing fullerene size. H\textsubscript{2} shows a consistent weak attractive interaction with substitutional Pt in fullerenes of all sizes. H\textsubscript{2} typically has no external interaction with fullerenes that do not contain Pt dopants. An exception is C\textsubscript{20}, which shows a notable exothermic interaction with external H\textsubscript{2} even without a Pt dopant. Single-walled carbon nanotubes of all sizes showed the same external H\textsubscript{2} interactions as the larger fullerenes. Non-metal dopants typically have little effect on C–H\textsubscript{2} interactions with external H\textsubscript{2} except that they reduce the interaction of H\textsubscript{2} with systems containing exohedral Pt.

From this study, two promising H\textsubscript{2} storage systems are proposed. One system involves H\textsubscript{2} storage within carbon nanotube/fullerene hybrides, such as those synthesized by Nasibulin et. al. (fig. 17) [70]. These structures, termed NanoBuds, are promising for H\textsubscript{2} storage because they can produce large carbon nanostructures containing spaces with a variety of curvatures and confinement. Once H\textsubscript{2} gas is inserted into these systems, the H\textsubscript{2} molecules can spread throughout the system, concentrating in areas of high curvature and confinement. Because of the size of the system, H\textsubscript{2} molecules will able to disperse adequately such that they will not be forced into positions where the C–H\textsubscript{2} distance or H\textsubscript{2}–H\textsubscript{2} distance are less than 2.9 or 2.4 Å respectively.

Figure 17 – Synthesized fullerene-SWCNT hybrid structures, termed NanoBuds. Reprinted from [70] with permission.
Another promising H\textsubscript{2} storage system will utilize the unexpectedly strong physisorption observed for H\textsubscript{2} external to C\textsubscript{20}. It is well known that C\textsubscript{60} fullerenes can form well-defined crystal structures [71-72]. Less research has gone into producing a crystal structure composed of C\textsubscript{20} molecules. However, if C\textsubscript{20} molecules were to form a crystal structure where the fullerene molecules are 5 – 6 Å apart, H\textsubscript{2} should be readily stored because of a large number of strong physisorption interactions.

Both of the proposed systems are open and so will not require extreme pressure to add or release H\textsubscript{2} from the system, such as would be required if H\textsubscript{2} was stored within a closed fullerene.

\textbf{3.4 Exploratory storage systems: Heme dopants}

Neither platinum or non-metal dopants are recommended because their effects on C–H\textsubscript{2} interactions are minimal and their inclusion would lead to higher production costs. Furthermore, addition of exohedral Pt could result in Pt–H chemisorption, which is undesirable for H\textsubscript{2} vehicle storage because complex on board endothermic reactions would be required to release this hydrogen.

Nevertheless, because Pt dopants were found to influence the fullerene/H\textsubscript{2} electron density, more complex dopants should be considered for future storage systems. The present group has began research into a heme dopant, which is a heterogeneous dopant consisting of an iron atom surrounded by four nitrogen atoms inserted into a surface. When the heme dopant is combined with the desirable curvature and confinement properties of fullerenes, it is hoped that heme-fullerene systems will increase interaction with H\textsubscript{2} but sterically prevent chemisorption to the heme dopant, thereby producing a very favourable storage system.

Preliminary results show that the addition of a heme dopant reduces repulsive forces when multiple H\textsubscript{2} molecules are placed in a fullerene. Therefore, a second H\textsubscript{2} molecule can be added to C\textsubscript{60} with a heme dopant with an energy input of 13.1 kJ/mol compared to 20.1 kJ/mol for undoped C\textsubscript{60}. This increased favourability is likely to occur because the heme group causes a change in the orientation of the H\textsubscript{2} molecules from parallel in undoped C\textsubscript{60} to perpendicular in heme-doped C\textsubscript{60} (fig. 18). This is also observed when two or five H\textsubscript{2} molecules were put in C\textsubscript{60} with a substitutional Pt dopant with a corresponding increase in the favourability of the fullerene–H\textsubscript{2} interactions (section 3.1.5).
Figure 18 – C\textsubscript{60} fullerene containing a heme dopant optimized with two internal H\textsubscript{2} molecules showing the perpendicular orientation of the H\textsubscript{2} molecules. The topmost six carbon atoms have been excluded to observe the H\textsubscript{2} molecules more clearly. C = grey, H = light blue, N = dark blue, Fe = purple. Calculated with the B97D functional and 6-311G(d,p) (for C, H, N) and LANL2DZ (for Fe).

A natural bond orbital analysis showed that changes in electron density are similar in C\textsubscript{60} containing a heme dopant or substitutional platinum. However, the change in electron density of the Fe orbitals are an order of magnitude larger than the Pt orbitals.

4. Conclusions

The present study investigated hydrogen adsorption in curved carbon nanomaterials. Favourable H\textsubscript{2} storage can be achieved when the H\textsubscript{2} molecule is located such that physisorption interactions with many carbon atoms are possible. This requires the C\textsubscript{fullerene}–H\textsubscript{2} distance to be similar to the combined van der Waals radii of carbon and hydrogen, 2.9 Å. Hydrogen storage becomes unfavourable when the C\textsubscript{fullerene}–H\textsubscript{2} or H\textsubscript{2}–H\textsubscript{2} distances decrease below 2.9 Å and 2.4 Å (the combined van der Waals radii of the atoms concerned) respectively. Despite these minimum distance requirements, increased confinement (for fullerenes larger than C\textsubscript{20}) is advantageous because it allows for a higher number of C\textsubscript{fullerene}–H\textsubscript{2} interactions.

Investigation of metal dopants found that platinum affects the electron density of the fullerene during C\textsubscript{fullerene}–H\textsubscript{2} interactions and also influence the H\textsubscript{2} orientation within the fullerene.
These changes can increase the favourability of the $C_{\text{fullerene}}-\text{H}_{2}$ interaction but only an occasional weak increase in favourability is observed.

$C_{\text{fullerene}}-\text{H}_{2}$ physisorption interactions are typically stronger inside fullerenes because of the concave carbon surface. However, significant $C_{\text{fullerene}}-\text{H}_{2}$ physisorption interactions are also observed when H_{2} is placed external to C_{20} fullerenes.

It is proposed that a carbon nanotube/fullerene hybride or a C_{20} crystal structure have potential for H_{2} storage on board vehicles. In addition, $C_{\text{fullerene}}-\text{H}_{2}$ interactions can be strengthened by adding heterogenous dopants, such as a heme group, to the fullerene. Expanded work on H_{2} storage in non-carbon fullerenes is currently underway.

Acknowledgements

The authors thank the Centre for Computational Chemistry at the University of Bristol, especially Chris Tothill, for instruction, computational resources, and support during this project. In addition, the authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

References

58. Computational Chemistry List, Ltd. on-line fullerene database compiled by Cramer at the University of Minnesota

59. TubeGen On-line (version 3.4) created by Frey and Doren at the University of Delaware.

60. Liu, B.; McLean, A. D. (1973) Accurate calculation of the attractive interaction of two ground state helium atoms. Journal of Chemical Physics. 59: 4557

