
Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1021/acs.langmuir.6b04161

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via American Chemical Society at http://doi.org/10.1021/acs.langmuir.6b04161. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Emulsion Photographs

Figures S1 and S2 show photographs of montmorillonite stabilised hexadecane emulsions suspensions at a range of NaCl and Na₄P₂O₇ concentrations after storing for 30 days. Initial concentrations were 40% wt. hexadecane and 3% wt. montmorillonite in the continuous phase. Volumes were then increased by 5% to result in the desired NaCl or Na₄P₂O₇ concentrations.
Figure S1: Photographs of montmorillonite stabilised hexadecane emulsions suspensions at 0.01 M NaCl (left), 0.1 M NaCl (middle) and 40 μmol g$^{-1}$ (right) after 30 days.

Figure S2: Photographs of montmorillonite stabilised hexadecane emulsions suspensions at 0.01 M NaCl (left), 0.1 M NaCl (middle) and 40 μmol g$^{-1}$ (right) with excess particles removed from the aqueous phase after 30 days.
Oscillatory Rheology

Figures S3, S4 and S5 show oscillatory amplitude sweeps of montmorillonite stabilised hexadecane emulsions and montmorillonite suspensions prepared as noted above and in the main report. These were used to calculate G'_0 and σ_y in the main report.

Figure S3: Rheological amplitude sweeps for montmorillonite stabilised emulsions with a continuous phase montmorillonite concentration of 2.5% wt. (left) and 3% wt. (right) at a variety of hexadecane weight fractions: 0% wt. (squares), 15% wt. (circles), 20% wt. (up triangles), 25% wt. (down triangles), 30% wt. (diamonds), 35% wt. (left triangles) and 40% wt. (pentagons).

Figure S4: Rheological amplitude sweeps for montmorillonite stabilised emulsions (left) and corresponding montmorillonite suspensions (right) at a variety of NaCl concentrations: 0.01 M (squares), 0.025 M (circles), 0.05 M (up triangles), 0.075 M (down triangles) and 0.1 M (diamonds).
Figure S5: Rheological amplitude sweeps for montmorillonite stabilised emulsions (left) and corresponding montmorillonite suspensions (right) at a variety of Na₄P₂O₇ concentrations: 0 µmol g⁻¹ (squares), 1 µmol g⁻¹ (circles), 5 µmol g⁻¹ (up triangles), 10 µmol g⁻¹ (down triangles), 20 µmol g⁻¹ (diamonds) and 40 µmol g⁻¹ (hexagons).
Montmorillonite Suspensions without Berol R648

Figure S6 shows oscillatory amplitude sweeps of montmorillonite suspensions prepared as noted in the main report but without Berol R648.

![Rheological amplitude sweeps for montmorillonite suspensions at 0.01 M NaCl (squares), 0.1 M NaCl (triangles) and 40 μmol g⁻¹ (circles).](image)

Comparing figure S6 to figures S4 and S5 shows that the addition of Berol R648 to aqueous suspensions of montmorillonite at 3% wt. slightly increases G'_0 at 0.1 M NaCl and has little effect at 0.01 M NaCl and 40 μmol g⁻¹.