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Introduction 1 

Patellar fractures in cats have been reported infrequently in the veterinary literature 2 

(1, 2), but a recent report presented a survey of 34 cats with 52 patellar fractures (3). 3 

The fractures consistently occurred in the proximal half with transverse configuration 4 

and sclerosis at the fracture site, suggestive of stress fracture(4). Radiographic union 5 

is rare, though has been documented in three cases (5, 6). Complications after 6 

surgical repair were found to be common, with 86% of cases managed with pin and 7 

tension band wire failing (3), however, insufficient numbers of other repair methods 8 

were compared in this study to allow assessment of alternative techniques. A recent 9 

paper suggested that conservative management was associated with a good 10 

prognosis (6), although this also reported very few cases, with no long term evaluation. 11 

In the authors’ opinion, many animals have a varying degree of ongoing lameness and 12 

reduced hindlimb function (e.g. inability to jump). 13 

Patellar fractures in humans are relatively common, accounting for 1% of all fractures 14 

(7). The commonest fracture configuration in humans is transverse, usually due to 15 

trauma, although stress fractures are also reported (4). In human orthopaedics, a large 16 

number of fixation methods for patellar fractures have been described (7-14). 17 

Historically, the most favoured technique has been pin and tension band fixation, 18 

though implant related complications are common with this technique (15). The size 19 

of the fracture gap and motion at the fracture site are important considerations for 20 

fixation, with excessive motion leading to high levels of strain which impedes bone 21 

healing. Interfragmentary gap is dependent upon compression achieved during 22 

fixation and the stability of the construct (16). 23 

Several biomechanical studies for patellar fracture repair in humans have been 24 

reported (7, 10, 11, 16-22). In general, techniques involving fixation into bone such as 25 

pin and tension band wiring or screw fixation have been recommended based on these 26 

studies, however a recent report found good clinical results with combined 27 

circumferential and tension band wiring (23). Pin and tension band wiring has been 28 

recommended in small animals (24) which may not be appropriate in felines that may 29 

have underlying bone pathology. In addition, many repair techniques documented in 30 

humans are not possible in felids due to the small size of the patella. 31 



Only one biomechanical study of patellar fractures has been published in the peer 32 

reviewed veterinary literature(25). This study compared the use of a prototype locking 33 

plate with pin and tension band wire and concluded that pin and tension band wiring 34 

was an unsuitable method in the dog. Our aim was to compare the biomechanical 35 

strength of the repair construct generated by different repair methods, using a 36 

cadaveric model of feline patellar fracture. Knowledge of repair strength using different 37 

methods will help decision making in future clinical cases.(16) 38 

Materials and methods 39 

Pelvic limbs were collected from young adult to middle aged cats (age estimated 40 

based on clinical examination), mean body weight 3.75Kg (2.45-5.74Kg) that were 41 

euthanatized or died for reasons unrelated to orthopaedic disease. CT imaging was 42 

performed on all limbs to ensure they were free of orthopaedic disease. The limbs 43 

were stored at -20oC then thawed gradually in a cold room. 44 

The soft tissue on the tibia and caudal aspect of the femur was removed leaving the 45 

extensor mechanism intact. The quadriceps muscle was freed from the underlying 46 

bone. Care was taken to preserve the joint capsule and ligaments around the stifle. 47 

The patellae were measured with Vernier callipers and the level of the proximal 35% 48 

calculated. The bone was cut at this level using an oscillating saw (Depuy Synthes 49 

Colibri II with sagittal saw attachment) fitted with a 0.4mm blade. The medial and 50 

lateral retinaculae were divided by scalpel to simulate a displaced fracture. 51 

The femur was cut transversely at 50% of its length measured from the proximal 52 

greater trochanter to distal aspect of the lateral condyle. The medullary cavity was 53 

filled with dental cement and an Ellis pin (4.5mm) driven into the distal femur. The  54 

fracture was repaired using one of four methods: Group A–Circumferential wire, Group 55 

B–Figure eight wire, Group C–Combined circumferential and figure eight wire, Group 56 

D–Pin and tension band wire (Fig 1). 57 

Legs were assigned to groups by block randomisation with 10 legs in each group.  All 58 

legs were treated independently. A lateral arthrotomy was performed in each case to 59 

assess reduction and ensure congruity of the articular surface and to replicate surgery 60 

in a clinical case.  Once the fracture was stabilised the patella retinaculae were sutured 61 

with 2-0 (3m) polyglactin 910 (Vicryl®) in a simple interrupted pattern to aid stability, 62 



with the first sutures placed as close as possible to the patella. The arthrotomy was 63 

closed with 2-0 (3m) polyglactin 910 (Vicryl®) in a simple continuous pattern. Markers 64 

were glued to the cranial surface of the patella adjacent to the osteotomy as a 65 

reference point for measurements to be made during video analysis. All wire loops 66 

utilised 0.8mm (20 gauge) stainless steel orthopaedic wire. All limbs were tested on a 67 

custom jig fitted to the testing platform of a materials testing machine (Instron 3367 68 

with 10kN static load cell). This held the stifle at 135o flexion to simulate a normal 69 

weight bearing angle (Fig2) and was positioned such that the patella was pulled up 70 

the femoral trochlea (26). The femoral intramedullary pin was clamped in position so 71 

that any proximal pull on the tibia was resisted by the femur.  72 

The quadriceps was then fitted into a clamp through which needles were passed to 73 

give increased grip on the muscle belly. To attempt to simulate forces on the fracture 74 

experienced in a cage rested cat, the stifles were loaded for 1000 cycles between 5N 75 

and 50N at 0.1Hz and the fracture site filmed for the first five and last five cycles to 76 

assess changes at the fracture gap.  77 

After cyclic testing, the repairs were adjusted if fragment distraction or movement had 78 

occurred to ensure that all repairs were being tested from the same start point for the 79 

next stage of testing. The clamp was cooled in liquid nitrogen prior to securing the 80 

quadriceps, and the repair tested to failure. Failure was defined as an increase in 81 

fracture gap of 3mm (26), as indicated by the markers.  82 

Tests were recorded using a video camera (Kodak PlaySport Zx5, 720p, 60fps) and 83 

analysed using video editing software (Pinnacle Studio 20™). A ruler was included in 84 

the field of view adjacent to the patella and equidistant from the camera. A 85 

measurement marker was created from the ruler for each video and this was then used 86 

to measure the distance between the markers at the start and the end of the 87 

experiment. The start measurement was taken prior to the first loading cycle and final 88 

measurement at peak loading on the last cycle. For test to failure experiments a timer 89 

accurate to 0.1s was included in the field of view. The time in the frame immediately 90 

prior to the first instrument movement, and the time when the fracture gap reached 91 

3mm as measured from the markers was noted.  The difference between the two time 92 

points was calculated and this allowed the force at failure to be taken from the 93 



instrument log. The recorded extension from the Instron was not adequate, as this 94 

also includes flexure across the whole tissue unit rather than only at the fracture gap. 95 

Surgical technique 96 

Group A–Circumferential wire: a 19g needle was passed over the proximal aspect of 97 

the proximal fragment and distal aspect of the distal fragment by ‘walking-off’ the 98 

needle lateral to medial. A loop of orthopaedic wire was passed into the tip of each 99 

needle and the needles withdrawn. The fragments of patellar were reduced and the 100 

wire tightened with care to ensure that over tightening did not occur. Care was also 101 

taken to ensure that the wire did not slip caudal to the bone resulting in interference 102 

with the articular surface.  103 

Group B–Figure eight wire: a 19g needle was passed under the tendinous attachments 104 

of the patella proximally and distally with the needle being passed medial to lateral 105 

proximally and lateral to medial distally. The proximal needle was bent slightly prior to 106 

placement in order to ease passage around the proximal tissues. The wire was formed 107 

into an S-shape and the ends passed into the needle tips. The needles were withdrawn 108 

and the distal end of the wire twisted around onto the medial aspect of the stifle. The 109 

fragments were reduced and the wire tightened.   110 

Group C–Combined circumferential and figure eight wire: The figure eight wire was 111 

placed as described for group B. The circumferential wire was then placed as 112 

described for group A ensuring that the needles were placed cranial to the proximal 113 

and distal aspect of the figure eight wire to prevent slip caudal to the patella. Wire 114 

positioning was such that the twists were on opposite sides of the joint. 115 

Group D–Pin and tension band: A 0.9mm k-wire was drilled through the distal fragment 116 

from the centre of the fracture surface distally. The wire was removed and driven back 117 

proximally through the hole and into the proximal fragment taking care to ensure 118 

accurate alignment of the articular surface. A figure eight tension band wire was placed 119 

around the proximal and distal aspects of the pin and tightened. 120 

All of the repairs in this study were performed by a single surgeon (ML). 121 

Statistical Analysis  122 



Fracture gap opening after 1000 cycles and force at failure data was analysed using 123 

a commercially available statistics analysis software (IBM SPSS statistics for 124 

Windows, version 21.0) to compare groups. Data was assessed for normality and 125 

analysed using a one-way ANOVA to compare the means between groups with a 126 

Tukey post-hoc test. Significance was set as p<.05. Data was presented as mean +/- 127 

standard deviation (SD). 128 

Results 129 

Mode of failure 130 

The mode of failure in destructive testing was found to be similar between groups A 131 

(circumferential wire), B (figure eight wire) and C (combined circumferential and figure 132 

eight wire). Group A was observed to have opening of the fracture gap in all cases 133 

during the cyclic loading with varying levels of outward (cranial) rotation of the fracture 134 

surface. Failure was ultimately caused by fracture fragment rotation, retinacula tearing 135 

or tearing of the wire through the soft tissue, or a combination of these factors. One 136 

repair from this group failed during cyclic loading due to outward rotation of the fracture 137 

fragments. Groups B and C failed via one of, or a combination of; retinacula 138 

stretching/tearing, wire distortion or wire tearing through distal soft tissue. The mode 139 

of failure for group D was by distortion of the tension band wire with subsequent pull 140 

out of the pin either distally or proximally (3 cases), or by the pin breaking through the 141 

bone of the distal fragment (6 cases) or proximal fragment (1 case). 142 

Cyclic loading 143 

The mean gap opening (+/- SD) at peak load after 1000 cycles for each group was: 144 

Group A: 1.66mm (+/- 0.69), Group B: 1.01mm (+/- 0.45), Group C: 0.81mm (+/- 0.58), 145 

Group D: 0.65mm (+/- 0.54). Group C and D had statistically lower fracture gap 146 

opening after 1000 cycles when compared to group A (p=0.01 and 0.002 respectively). 147 

Group B approached statistical significance when compared to group A, but was not 148 

statistically different from any other group (p=0.07) (Fig. 3). In all but one case in group 149 

A, opening at the fracture line of >1mm occurred and resulted in an opening of 3mm 150 

in one case. Video data showed that there was some tendency for the fragments to 151 

pivot around the wire proximally and distally. This led to rotation of the fragments with 152 

exaggerated opening of the fracture gap (six cases). After cyclic loading, the repair 153 



was adjusted by rotating the fragments back into their original position if necessary. 154 

This was required for five cases in group A. No specimens from other groups required 155 

adjustment. 156 

Test to failure 157 

The mean load (+/-SD) at failure in the test to failure analysis were: group A: 171.4 158 

(+/-62.2)N, group B: 208.7 (+/-20.7)N, group C: 288.2 (+/-62.5)N and group D: 219.5 159 

(+/-48.0)N. Group C had statistically higher load to failure than all other groups 160 

(p<0.001, p=0.007 and p=0.02 for group A, B and C respectively). There was no 161 

difference between other groups (Fig. 4). 162 

Discussion 163 

Our study showed some significant differences when comparing techniques for the 164 

fixation of simulated transverse patellar fractures in feline limbs. 165 

A study in humans found that wiring techniques which did not incorporate fixation into 166 

bone did not provide sufficient stability for early mobilisation of the limb (18). However, 167 

clinical experience in felines (3) has shown that pin and tension band wiring has a high 168 

failure rate (86%). This may relate to an underlying bone pathology in cats causing 169 

fragility which may not be a consideration in humans. Anecdotal reports exist of the 170 

patella fragmenting when drilling is attempted. This was not encountered in the current 171 

study but this may reflect the fact that the limbs used were from normal cats. 172 

Furthermore, the small size of the patella in cats makes options for fixation into the 173 

bone limited. For these reasons we evaluated techniques which did not involve fixation 174 

into the bone and rely on the integrity of the soft tissues surrounding the patella. The 175 

pin and tension band technique was included to provide a comparison to the previously 176 

recommended technique. 177 

It was elected to perform cyclic loading between limits of 5-50N. This limit was selected 178 

knowing that an average cat weighs approximately 4-5Kg and that strict cage rest 179 

would be recommended following surgical repair of patellar fractures. This may 180 

however be an underestimate of the force applied in a clinical case depending upon 181 

the level of patient activity and size of animal.  182 



Opening of the fracture gap with outward rotation of the fracture surface was observed 183 

in some stifles in group A following cyclic loading as noted in previous human studies 184 

(18). No displacement of fragments was noted with techniques B, C and D. 185 

Groups A, B and C had similar failure modes with elongation of the wire loops and 186 

stretching of periarticular soft tissues leading to fracture gap opening. This was likely 187 

due to the implants not being directly apposed to the bone and the reliance of these 188 

fixation methods on the integrity of the soft tissues (17, 18). Group D was found to 189 

have two mechanisms of failure. Initially elongation of the tension band wire loop was 190 

noted in both testing modes, but this was accompanied by either sliding of the pin 191 

distally through the proximal fragment as the inter-fragmentary gap increased, or by 192 

the pin cutting through the bone proximally or distally as previously noted (25). It is 193 

possible that had thicker wire been utilised then resistance to elongation and reduced 194 

gap opening would have been observed. The wire chosen in this study was considered 195 

to be that most likely to be used in a clinical setting. 196 

Accurate and consistent wire placement was technically demanding. This was more 197 

difficult for group A than group B, due to a tendency of the wire to slip off the bone 198 

during twisting. This was also a challenge for group C and is a direct result of reliance 199 

on the soft tissue for fragment stabilisation. This may explain some of the variability in 200 

the load at failure results for these techniques. Group B was found to have lower level 201 

of variation which may be a consequence of more consistent implant placement. K-202 

wire placement in group D was very challenging due to the small size of the patella. In 203 

groups A, B and C, apposition of the articular surface was easier although the 204 

reduction tended to be less stable. Stability was much improved following suture repair 205 

of the retinaculae, as reported in humans (18). In groups A, B and C, the degree of 206 

wire tightening was critical for accurate apposition of the fragments. Over tightening 207 

led to opening of the fracture gap on the articular surface, insufficient tightening would 208 

result in rapid loss of reduction when loaded. To ensure methodological consistency, 209 

the techniques were performed on multiple limbs prior to the measured experiments.  210 

We defined failure as fracture opening of greater than 3mm. In humans, patellar 211 

fracture gap of greater than 2-3mm is considered as an indication for surgical 212 

intervention (15, 16). Use of 3mm as definition of failure was considered reasonable 213 



given recent recommendations to manage cases with minimal displacement 214 

conservatively (6) and this value has been used in human studies (26).  215 

Currently, there is little clinical evidence supporting any patellar repair technique in 216 

cats. In the largest report on repair of patellar fractures in cats (3) repair with pin and 217 

tension band failed in 12 of 14 of cases that were followed up. Five cases were 218 

repaired with circumferential wire and in all cases fragment distraction was observed 219 

on follow-up radiographs. In a separate report circumferential wiring of a patellar 220 

fracture in a kitten documented healing of the fracture (5). Only one reported use of a 221 

figure eight wire has been published to the author’s knowledge (2). A potential concern 222 

with the combined technique is irritation caused by the wire knots, a common 223 

complication in humans (15). 224 

This study had a number of limitations. Little historical information was available for 225 

the cadavers used.  It was therefore not possible to definitively verify the absence of 226 

diseases (e.g. renal disease) that could influence results.  There was some difficulty 227 

in measurement of the fracture gap by video assessment due to movement of the soft 228 

tissues overlying the patellar fragments. Other studies (10, 18, 20) have utilised 229 

extensiometer gauges fixed with pins to directly measure opening at the fracture gap. 230 

The small size of the patella fragments in this study precluded such an approach. 231 

Additionally, video assessment meant that only the dorsal surface could be visualised. 232 

Previous studies have found that fracture gap opening varied according to stifle angle 233 

(10, 18). In this study we elected to test the stifle at a static standing angle, enabling 234 

assessment of the fracture gap by video data capture and allowing both cyclic loading 235 

and test to failure experiments to be performed sequentially. Video data capture would 236 

not have been possible with a dynamic system since the angle of the patella with 237 

respect to the camera would change affecting gap measurements. Maximum 238 

disruptive forces on the patella have been shown to occur at around 45 degrees of 239 

stifle flexion in humans, which is equivalent to the 135 degree standing angle used in 240 

this study (17).  241 

In conclusion, our study found that a combination of circumferential and figure eight 242 

wires had the overall best performance of the techniques. Further work is required to 243 

determine whether this technique is suitable for use in clinical cases. 244 



Figure 1.  Patellar fracture repair methods: A – Circumferential wire, B – Figure eight 245 

wire, C – Combined circumferential and figure eight wires, D –Pin and tension band 246 

wire.  247 

Figure 2. Jig utilised for testing feline patellar fracture repairs: The limb was clamped 248 

with the stifle held at 135o. The femur was secured by an intramedullary pin held in 249 

place with dental cement. During cyclic loading the muscle was clamped and needles 250 

passed through the clamp. In test to failure experiments the clamp was cooled in liquid 251 

nitrogen prior to securing the muscle. 252 

Figure 3. Maximum fracture gap opening at peak load under cyclic loading (mean ± 253 

SD). Groups C and D had significantly lower fracture gap opening than group A (p 254 

.012 and p .002 respectively) but were not significantly different from group B. The 255 

difference between group A and B approached statistical significance (p .07). 256 

Figure 4. Load at failure in test to failure experiments (mean ± SD). Group C had 257 

significantly higher force at failure when compared to all other techniques (p <.05). 258 

There was no difference between the other groups.  259 

 260 
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