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Synchronization and local convergence analysis of networks with dynamic
diffusive coupling

Daniel A. Burbano L.1, a) and Mario di Bernardo1, b)

Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, 8125,
Italy.

(Dated: 5 August 2016)

In this paper we address the problem of achieving synchronization in networks of nonlinear units coupled by
dynamic diffusive terms. We present two types of couplings consisting of a static linear term, corresponding
to the diffusive coupling, and a dynamic term which can be either the integral or derivative of the sum
of the mismatches between the states of neighbouring agents. The resulting dynamic coupling strategy is
a distributed proportional-integral (PI) or proportional-derivative (PD) law that is shown to be effective in
improving the network synchronization performance for example when the dynamics at nodes are nonidentical.
We assess the stability of the network by extending the classical Master Stability Function approach to the
case where the links are dynamic ones of PI/PD type. We validate our approach via a set of representative
examples including networks of chaotic Lorenz and networks of nonlinear mechanical systems.

PACS numbers: Valid PACS appear here
Keywords: Synchronization, Master stability function, Networks

The study of the mechanisms and fundamen-
tal laws that enable the emergence of com-
plex behaviour in ensembles of cooperative units
has become a fundamental problem for science33

and technology as it is of relevance in many
applications23. A particular yet important phe-
nomenon often used as a paradigm to investi-
gate the emergence of coordinated behaviour in
networks is synchronization32. When this hap-
pens the trajectories of all the components of the
ensemble, asymptotically converge toward each
other onto a common solution. Examples include
frequency synchronization in power grids, robot
vehicle coordination and even abnormal synchro-
nisation in neural networks15,29,44. Typically, the
interconnecting links among each component are
assumed to be diffusive and static25,44. however,
this represents a gross oversimplifications since in
more realistic scenarios the communications links
are often of dynamic nature. The aim of this pa-
per is to present a simple yet effective extension
of the linear diffusive coupling by adding an in-
tegral or derivative term depending on the mis-
match between the states of neighbouring agents.
The resulting dynamic coupling strategy is a PI
or PD law that is shown to be effective in improv-
ing the network synchronization performance7.

a)Electronic mail: danielalberto.burbanolombana@unina.it
b)Electronic mail: mario.dibernardo@unina.it; Also at Department
of Engineering Mathematics, University of Bristol, U.K.

I. INTRODUCTION

Many natural and engineered systems can be described
as ensembles of dynamical systems interacting with each
other over a network of interconnections. This approach
has been found to be successful for capturing and char-
acterising the behaviour of large and complex systems
such as the world-wide-web, metabolic networks, the
electrical power grid, and animal groups among many
others6,42. A particular phenomenon in networks of dy-
namical systems is synchronisation32. When this hap-
pens the trajectories of all the components of the en-
semble, asymptotically converge toward each other onto
a common solution. Synchronization is relevant for dif-
ferent applications ranging from frequency synchronisa-
tion in power grids, robot vehicle coordination and traf-
fic congestion3,20 to synchronous phenomena observed
in Nature as, for instance, in neural networks or flock
of birds15,29,44. Typically, these multi-agent systems
are modelled as networks of dynamical systems inter-
connected via static linear diffusive coupling15,25,44, and
their local stability and convergence are often studied us-
ing the Master Stability Function approach (MSF)28.

The MSF has been widely accepted for assessing local
convergence to synchronisation in this class of networks.
The main advantage of the MSF is that it allows to re-
duce the computational complexity required to assess if
synchronization is possible, since instead of studying the
stability of the whole network, it is just required to study
the stability of one node (master node), which represents
all the others in the ensemble.

The MSF approach is a powerful tool for investigating
synchronisation in generic networks of identical oscilla-
tors, by providing theoretical predictions of such syn-
chronous behaviour. Different extensions and applica-
tions of the MSF are available in the literature; for exam-
ple, an extension of the MSF to the case of nearly iden-
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tical oscillators has been reported in43, while the MSF
has also been exploited for studying networks with gen-
eral delays on the links21. Also, the MSF has been used
for studying synchronization in hypernetworks41, and for
networks with switching links11,22. More recently, the
MSF has been used for characterising and predicting the
formation of clusters (or patterns) in networks with topo-
logical symmetries30.

The aim of this paper is two fold, (i) firstly to present a
simple yet effective dynamic extension of linear diffusive
coupling that can be used for enhancing synchronisation
in networks of identical nonlinear units possibly with pa-
rameter mismatches. Secondly, (ii) to extend the well
known MSF approach to study convergence in the case
where the links are dynamic of PI/PD type.

To extend the classical diffusive coupling, we add an
integral or derivative term depending on the mismatch
between the states of neighbouring agents. The resulting
dynamic coupling strategy is a proportional-integral (PI)
or proportional-derivative (PD) law that has been shown
to be effective in improving the network synchronization
performance7. From a control theoretic viewpoint the
approach can be seen as the deployment of distributed
PI or PD controllers over a network of interest8. The use
of PI couplings has been proposed in the literature for
achieving consensus in networks of identical nodes with
linear dynamics2,16. More recently, a distributed PID
coupling structure8 has been proposed for guaranteeing
consensus in networks of heterogeneous first order lin-
ear agents with constant disturbances. It is important
to highlight that distributed PI/PID actions have been
also used in different applications comprising synchro-
nization and frequency control in power grids5,38,40, clock
synchronization in networks of discrete-time integrators
in10, autonomous space satellites2, congestion control47,
containment control of mobile robots12. Further results
still focused on networks of linear agents are reported
in26,45,46.

Contrary to the previous results in the literature, in
this paper we consider dynamic PI/PD couplings for net-
works of nonlinear possibly chaotic units. The stabil-
ity of the synchronous solutions is studied by extending
the MSF approach to the case where the couplings are
dynamic, i.e. PI/PD. Here, the “master node” equa-
tions are derived and the theoretical results are illus-
trated via a representative example using networks of
Chaotic Lorenz systems. Finally, the approach is ap-
plied to study synchronization in networks of mechani-
cal nonlinear oscillators. We convincingly show that the
dynamic couplings can be properly tuned for enhancing
synchronization; as well as, for decreasing the residual
error when some heterogenities are present at all or some
of the nodes. We wish to emphasize that our results
can also be useful to investigate synchronization in net-
works of other nonlinear systems such as those consisting
nonlinear circuits13,14,36 where inductive and capacitive
couplings can be modelled as PI/PD coupling.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

We denote by IN the identity matrix of dimension N×
N ; by 1N a N × 1 vector with unitary elements. The
Frobenius norm is denoted by ‖·‖. A diagonal matrix,
say D, with diagonal elements d1, . . . , dN is indicated by
D = diag{d1, . . . , dN}. The ordered eigenvalues of an
n× n matrix A with real entries are denoted by λ1, λ2,
· · · , λn, and ⊗ denotes the Kronecker product4.

An undirected graph G is defined by G = (N , E) where
N = {1, 2, · · · , N} is the finite set of N node indices, and
E ⊂ N ×N is the set containing the E edges between the
nodes (i, j) for any i, j ∈ N . The architecture of the net-
work of interconnections is represented by the adjacency
matrix A ∈ RN×N whose entries A = [Aij ]are given by
Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise.

B. Network Model

We consider ensembles of N nonlinear units, each one
described by a set of nonlinear ordinary differential equa-
tions (ODEs) of the form dxi/dt = f(xi) where xi ∈ Rn,
f(x) : Ω ⊆ Rn 7→ Rn is a nonlinear smooth function
and i ∈ {1, · · · , N}. Assuming diffusive coupling among
neighbouring units25, the overall network dynamics can
be written as

dxi

dt
= f(xi)− σ

N∑
j=1

Lijh(xj ,yj), xi(0) = xi0, i, j ∈ N

(1)
where N := {1, · · · , N} is the set of indices while xi(0) =
xi0 ∈ Ω ⊆ Rn, i ∈ N are the vectors of initial conditions.
The constant and positive scalar σ is the global coupling
strength. The function h(xi,yi) : Rn 7→ Rn represents
the coupling between neighbouring units which is char-
acterized by static and dynamic terms via xi and yi re-
spectively. We consider two particular functional forms
for h (see Section II C), where we assume the dynamic

variable yj to be yj =
∫ t

0
xj(τ)dτ or yj = dxj/dt. The

network of dynamical units (1) is represented by a graph
G = (N , E) which can be described in terms of its asso-
ciated Laplacian matrix L := diag{A1N}−A, where A
is the adjacency matrix representing the topology of the
network.

Assumption II.1 The network of interconnections in
(1) represented by a graph G = (N , E) is assumed to
be undirected, unweighted and connected.

It is important to highlight that for any connected
and undirected graph G , the associated Laplacian
matrix L is a symmetric matrix; therefore, it can
be eigen-decomposed8 as L = QΛQT , where
Q ∈ RN×N is an orthonormal matrix given by
Q := [q1, · · · ,qN ] where qi ∈ RN×1 are the eigenvectors
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of L, and Λ := diag{0, λ2, . . . , λN} with λi, i ∈ N
being the eigenvalues of L, which can be ordered as
0 = λ1 < λ2 ≤ · · · ≤ λN .

Here, we are interested in finding necessary and suf-
ficient conditions guaranteeing that all states xi in the
network of dynamical units (1) asymptotically converge
towards each other, i.e. synchronization.

Definition II.1 Network (1) is said to reach local syn-
chronisation if there exists a set of initial conditions
xi(0) = xi0 ∈ Ω ⊆ Rn such that

lim
t→∞

‖xj(t)− xi(t)‖ = 0, i, j ∈ N (2)

C. Dynamic Couplings

Rather than considering the standard static diffusive
coupling, we use a control theoretic approach to define
two types of dynamic diffusive couplings8

- Proportional and Integral (PI)

h(xj ,yj) = αΓPxj + βyj (3)

yi = ΓI

t∫
0

xj(τ)dτ, i ∈ N (4)

where nodes exchange information on their states
using proportional and integral terms. Here, α, and
β are non-negative constants each representing the
strength of the proportional, and integral contri-
butions respectively. The inner coupling matrices
ΓP ,ΓI ∈ Rn×n capture the way in which informa-
tion among nodes is being exchanged by identify-
ing what states a node transmits to its neighbours.
For instance in Example III C, each unit is a third
order system where x = [x1, x2, x3]T . Therefore,
setting for example ΓP = ΓI = diag{1, 0, 0} means
that nodes are solely coupled through the first state
variable x1. Note that, in general, the matrices ΓP

and ΓI are not necessarily the same opening the
possibility of choosing independently the variables
that can be coupled via static or dynamic terms.

The second dynamic coupling we consider is

- Proportional and Derivative (PD)

h(xj ,yj) = αΓPxj + γyj (5)

yi = ΓD
dxj

dt
, i ∈ N (6)

where nodes exchange information on their states using
proportional and derivative terms. Here, α, and γ are
non-negative constants each representing the strength
of the proportional, and derivative contributions respec-
tively, and ΓD ∈ Rn×n is the inner coupling matrix for
the derivative term.

III. MASTER STABILITY FUNCTION FOR NETWORKS
WITH DYNAMIC COUPLINGS

To study convergence towards synchronization, we
next extend the MSF28 to networks with dynamic cou-
plings of PI and PD type. For the sake of clarity we split
the analysis in two cases and we derive the master equa-
tions for detecting local stable synchronous solutions in
network (1).

A. MSF for Dynamic Proportional-Integral Coupling

Consider network (1) with dynamic PI coupling (3);
setting h(·) = hI yields

dxi

dt
= f(xi)− σ

N∑
j=1

Lij(αΓPxj + βyj) (7)

dyi

dt
= ΓIxi, yi(0) = 0 (8)

From (7) and (8) and from the fact that L has zero row-
sum it is immediate to note that the synchronous solution
s = x1 = · · · = xN must be such that

ds

dt
= f(s) (9)

dw

dt
= ΓIs (10)

where dy1/dt = · · · = dyN/dt = dw/dt. The master
stability function approach, studies the local stability of
the synchronous solution s(t), w(t) in the presence of
small perturbations28. For the sake of clarity, we split
the MSF approach into four steps.

S1: We first assume that the uncoupled dynamical
system (9)-(10) has at least one asymptotic attractor,
so that the synchronous solution s(t), w(t) is invariant.

S2: Next, we study the local stability of the syn-
chronous solution (9)-(10), in the presence of small per-
turbations δx and δy respectively. Thus we set s =
xi − δxi, and w = yi − δyi. It follows from Taylor
series expansion that f (δxi + s) ≈ f(s) +Df(s)δxi, with
Df(s) being the time-varying Jacobian matrix of f(·). Let
∆x := [δxT

1 , · · · , δxT
N ] and ∆y := [δyT

1 , · · · , δyT
N ] be the

stack vectors of the perturbed states of the network, we
can recast the overall perturbed dynamics about the syn-
chronous solution as

d∆x

dt
= [(IN ⊗Df(s))− σα (L⊗ ΓP )] ∆x

−σβ (L⊗ In) ∆y (11)

d∆y

dt
= (IN ⊗ ΓI) ∆x (12)

S3: Then, a state transformation is considered in order to
decouple the perturbation dynamics of any single node
from the others. In particular, from the fact that the
network is assumed to be undirected and connected (see
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Assumption II.1), we can eigen-decompose the Laplacian
matrix as L = QΛQT with Q being an appropriate or-
thonormal matrix. Then, using the state transformation
ζ :=

(
Q−1 ⊗ In

)
∆x and ξ :=

(
Q−1 ⊗ In

)
∆z we can

recast equations (11)-(12) in block-diagonal form as

dζi
dt

= [Df(s)− σαλiΓP ] ζi − σβλiINξi (13)

dξi
dt

= ΓIζi (14)

Note that for λ1 = 0 the equations are equal to those of
a single uncoupled system, while the other N − 1 blocks
differ from each other by the coupling terms σαλk and
σβλk for k = {2, · · · , N}. Therefore, each block of (13)-
(14) can be parametrised considering a “master node”

equation28, by setting α̃ = σαλi, and β̃ = σβλi, yielding
the parametrized equations

dζ̃

dt
= [Df(s)− α̃ΓP ] ζ̃ − β̃ξ̃ (15)

dξ̃

dt
= ΓI ζ̃ (16)

S4: Finally, local transversal stability of the synchronous
solution (9)-(10) can be assessed by computing the Maxi-
mum Lyapunov Exponent (MLE) of the variational equa-

tion (15)-(16) as a function of the parameters α̃ and β̃.

We denote this MLE value as ΨI(α̃, β̃), which we term
as the PI Master Stability Function (PI-MSF).

It is important to highlight that if the matrix ΓI has
r null rows; then, r zero Lyapunov Exponents (LEs)
will appear when studying the variational equation (16).
Those zero values should not be taken into account
when calculating the PI-MSF since they represent non-
existing interconnections between the variables of each
node. Hence, let Σ1 be the set of all the LEs denoted by
λ̃k for k = {1, · · · , 2n} of the variational equation (15)-
(16), and let Σ2 be the set of all the null LEs, then the
PI-MSF can be defined as

ΨI(α̃, β̃) =

 max
k

λ̃k, λ̃ ∈ Σ1 m > r, β̃ 6= 0

max
k

λ̃k, λ̃ ∈ Σ1 \ Σ2 otherwise
(17)

where m is the cardinality of Σ2, i.e. the number of null
LE. Note that positive values of ΨI represent unstable
modes, i.e. the network does not exhibit synchronised
motion; while, negative values indicate that the network
synchronises.

Note that if the synchronous solution s(t) represents
an equilibrium point; then, the stability problem be-
comes equivalent to that of studying the sign of the real
part of the dominant eigenvalue of (15)-(16). An ex-
ample of nonlinear systems with this characteristics are
bistable (or multistable) systems, like the unforced Duff-
ing oscillator18 or the toggle model in synthetic gene reg-
ulatory networks17. In this case the solution s(t) of the
nonlinear model can be selected as one of the different
equilibrium points exhibited by these systems. Moreover,

(a) (b)

FIG. 1. Generic schematic representation of two possible dif-
ferent scenarios of the MSF for the network (1) with dynamic
couplings. The blue dotted-line represents the zero-plane,
while the red curve represents the intersection ΨI(α̃, β̃) = 0.

when considering linear dynamics at nodes, the synchro-
nization problems becomes equivalent to the consensus
problem8,9 where for the specific case of identical dynam-
ics synchronization is always achieved for any nonzero
coupling strength.

Remark III.1 Analogously to the classic MSF for net-
works with only static coupling6, the PI-MSF can also be
classified according to how ΨI(α̃, β̃) intersects the zero
manifold. Specifically, we can define the following generic
types of PI-MSF. Type I: if ΨI(α̃, β̃) is an increasing
function (never becomes negative); then, synchronisation
cannot be attained, no matter the value of the coupling
strengths. Type II: the surface ΨI(α̃, β̃) intersects the
zero manifold along a single well defined curve in the
gain parameter space as shown in Fig 1(a). In this case
synchronisation is guaranteed for the set of values α̃ and
β̃ that do not belong to the set where ΨI(α̃, β̃) is positive.

Type III: The intersection between ΨI(α̃, β̃) and the zero-
manifold defines a limited or unlimited region where the
PI-MSF is negative (see Fig. 1(b)). In this case synchro-

nization is attained for the set of values α̃ and β̃ where
ΨI(α̃, β̃) remains negative.

Remark III.2 We wish to emphasize that the PI-MSF
can be extended to the case of directed network struc-
tures, by considering that the eigenvalues of L in this sce-
nario are complex variables λi ∈ C in (15)-(16). Specif-
ically, by setting λi = λRe,i + iλIm,i with i :=

√
−1

and λRe,i, λIm,i ∈ R one has that (15) can be writ-

ten as dζ̃/dt = [Df(s)− (α̃Re + iα̃Im)ΓP ] ζ̃ − β̃ξ̃, where
α̃Re := σαλRe,i and α̃Im := σαλIm,i. In this case, the
PI-MSF depends on three parameters making more diffi-
cult its computation and visualization.



5

B. MSF for Dynamic Proportional-Derivative Coupling

Next, we study convergence of the network when the
proportional and derivative coupling (5) is considered.

Letting L̃ := InN +σγ(L⊗ΓD), the closed-loop network
can be written as

L̃
(
dx

dt

)
= F(x)− σα(L⊗ ΓP )x (18)

where F(x) :=
[
f(x1)T , · · · , f(xN )T

]T
and x(t) :=[

xT
1 (t), · · · ,xT

N (t)
]T

are the stack vectors of the nonlin-
ear functions and node states, respectively. From the
fact that the network is undirected (Assumption II.1),
one has that L = QΛQT where QQT = IN . Hence, we
can write

L̃ = (QQT ⊗ In) + σγ(QΛQT ⊗ ΓD)

and regrouping terms yields

L̃ = (Q⊗ In)Λ̃(QT ⊗ In) (19)

where, Λ̃ is a diagonal matrix with positive entries given

by Λ̃ = InN + σγ(Λ⊗ ΓD).

Note that the entries of the diagonal matrix Λ̃ are all
positive values and they correspond to the eigenvalues of

L̃; therefore, L̃ is a non-singular matrix and its inverse
exists8. Next, from (18) we have

dx

dt
= L̃

−1
F(x)− σαL̃

−1
(L⊗ ΓP )x (20)

Existence of a synchronous solution can be obtained from
(20), by setting s = x1 = · · · = xN yielding

ds̄

dt
= L̃

−1
(1N ⊗ f(s))− σαL̃

−1
(L⊗ ΓP )(1N ⊗ s) (21)

where s̄ = (1N ⊗ s) = [sT , · · · , sT ]T . Since L has zero
row-sum we have that L1N = 0N×1; hence the last term
of the right-hand side of (21) is null. Moreover, from

the definition of L̃ it is easy to see that L̃(1N ⊗ f(s)) =

(1N ⊗ f(s)); hence, L̃
−1

(1N ⊗ f(s)) = (1N ⊗ f(s)). Con-
sequently, we have that ds̄/dt = (1N ⊗ f(s)) which corre-
sponds to the equation governing the synchronous motion
for each node, which is given by (9). Moreover, letting

P := L̃
−1

(L ⊗ ΓD), and denoting by L̂ij and Pij the

n×n blocks of matrices L̃
−1

and P respectively, we have

L̃
−1

=

 L̂11 · · · L̂1N

...
. . .

...

L̂N1 · · · L̂NN

 ,P =

 P11 · · · P1N

...
. . .

...
PN1 · · · PNN


so that, the dynamics of the ith node of network with
PD coupling (20) can be written as

dxi

dt
=

N∑
j=1

L̂ijf(xj)− σα
N∑
j=1

Pijxj ,∀i ∈ N (22)

Analogously to the case where dynamic PI couplings are
considered, here we also follow four steps for assessing
the local stability of the synchronous solution (9).

S1: As in the case of Proportional-Integral coupling,
we assume the existence of a synchronous invariant tra-
jectory s(t) which is a solution of the dynamical equations
of an isolated node.

S2: Next, we study the stability of the synchronous
solution of the closed-loop network (22), in the presence
of small perturbations δx(t) whose dynamics are given
by

dδxi

dt
=

N∑
j=1

L̂ijDf(s)δxj − σα
N∑
j=1

Pijδxj (23)

which in compact form reads

d∆

dt
= L̃

−1
(IN ⊗Df(s)) ∆− σαP∆ (24)

where ∆(t) :=
[
δxT

1 (t), · · · , δxT
N (t)

]T
.

S3: From (19) one has that L̃
−1

= (Q⊗In)Λ̃−1(QT ⊗
In); therefore,

P = L̃
−1

(L⊗ ΓP )

= (Q⊗ In)Λ̃−1(Λ⊗ ΓP )(QT ⊗ In)
(25)

Hence, by applying the state transformation ζ =(
QT ⊗ In

)
∆(t) to (24) yields

dζ

dt
= Λ̃−1 ((IN ⊗Df(s))− σα(Λ⊗ ΓP )) ζ (26)

Note that (26) is in triangular form with N decoupled
blocks given by

dζi
dt

= (In + σγλiΓD)−1 (Df(s)− σαλiΓP ) ζi (27)

Then, letting γ̃ = σγλi, and α̃ = σαλi we have that the
general equation describing the perturbed dynamics of
the synchronous state for any node in the network can
be written in the parametric form

dζ̃

dt
= (In + γ̃ΓD)−1 (Df(s)− α̃ΓP ) ζ̃ (28)

S4: Similarly to the PI case, local stability of the syn-
chronous solution s(t) can be investigated by computing
the MLE, say ΨD(α, γ), of the variational equation (28).
Hence, synchronisation is guaranteed for the set of values
α̃ and γ̃ such that ΨD(α̃, γ̃) remains negative.

C. Illustrative Example

Next, we validate numerically the theoretical deriva-
tions of the Master Stability Function for networks with
dynamic diffusive coupling of PI/PD type.
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Consider network (1), where the non-linear vector-field
modelling the intrinsic dynamics of each unit is described
by the well known Lorenz equation

f(x) =

 µ(x2 − x1)
x1(ρ− x3)− x2
x1x2 − ωx3

 (29)

with the parameters set as µ = 10, ρ = 28 and ω = 2 for
which the Lorenz system exhibits a chaotic solution19.

1. Computation of the PI-MSF

To compute the PI-MSF (17) we start by assuming
that the coupling is only through the first state variable,
i.e. the inner coupling matrices are set as ΓP = ΓI =
diag{1, 0, 0}. Note that for this particular choice of the
inner coupling matrix ΓI we have that r = 2 in (17). We
can obtain the synchronous trajectory s(t) by integrating
(9)-(10) with f(·) being the Lorenz system until it reaches
its chaotic attractor.

Next, using the Jacobian matrix of (29) given by

Df(x) =

 −µ µ 0
ρ− x3 −1 −x1
x2 x1 −ω

 (30)

we compute the PI-MSF (ΨI(α̃, β̃)) by solving the vari-
ational equation (15)-(16), using standard methods for
estimating the Lyapunov exponents37. We then repeat
this computation for different values of the parameters
α̃ and β̃ obtaining the plot shown in Fig. 2(a). For the
sake of clarity we also show the projection of the PI-
MSF onto a two dimensional space (see Fig. 2(b)). Here
positive values of the PI-MSF are colored in a red scale,
while negative values are depicted in blue. Note that pure
static coupling (β = 0) or dynamic coupling (α = 0) are
both able to guarantee synchronization above a certain
threshold. These cases are represented by the red and
green curves in Fig. 2. However, both gains can be con-
siderably reduced by using both actions together with a
proper tuning. This represents an enhancement of the
stability of the synchronous state. Moreover, from Fig.
2(b) we can see that along the line β̃ = 10α̃ (white-dashed
line in Fig. 2(b)) the Lyapuonv Exponents decrease al-
most in a linear manner, suggesting that a faster con-
vergence to synchronization is expected as long as both
gains increase. We point out that the enhancement pro-
vided by the dynamic PI-coupling can be also exploited
for controlling synchronization in networks, by adding
extra links such that the PI-MSF becomes negative24.

To validate our theoretical predictions for the PI-MSF,
we next consider a group of one hundred (N = 100)
chaotic Lorenz with ΓP = ΓI = diag{1, 0, 0} and three
different network configurations: random, scale-free and
small-world as shown in Fig. 3. As a measure of syn-

(a)

(b)

FIG. 2. (a) PI-MSF for Chaotic Lorenz with Γ =
diag{1, 0, 0}. The red and light-green curves represent the
case when β = 0 (classic diffusive coupling), and α = 0
(purely integral coupling). The blue plain corresponds to

ΨI(α̃, β̃) = 0 (b) Two dimensional representation of the PI-
MSF.

chronisation we use the average error dynamics (or dis-
agreement dynamics) given by

d(t) :=
∥∥x(t)− (1/N)

(
1N1T

N ⊗ I3
)
x(t)

∥∥ (31)

where d(t) = 0 indicates that the network has reached
synchronisation. We simulate the network at two points
in the control parameter space (see Fig. 2(b)). At point

P1: (α̃ = 4, β̃ = 6), where the PI-MSF is positive, and
synchronisation should not be attained, and at point
P2:(α̃ = 4, β̃ = 20) where synchronization is ensured.
For tuning the proportional α and integral β coupling
strengths we notice that α̃ = ασλi and β̃ = βσλi, for
any i ∈ N .

Without loss of generality we set σ = 1 and explore
different network structures setting α = α̃/(σλ2) and

β = β̃/(σλ2) at each of the two points (P1 and P2) and
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(a) (b) (c)

FIG. 3. Three different network structures: (a) Random, (b)
Scale-free and (c) Small world

TABLE I. Coupling gains for the PI

Point Rand. (λ2 ≈ 1.6) S.F. (λ2 ≈ 0.5) S.W. (λ2 ≈ 0.3)
α(P1) 2.547 8 12.578
β(P1) 3.821 12 18.867
α(P2) 2.547 8 12.578
β(P2) 12.738 40 62.893

(a)

(b)

FIG. 4. Evolution of the error dynamics for a network of 100
Lorenz coupled with dynamic PI for three different network
topologies: random, scale free and small-world: (a) at point
P1, (b) at point P2

for each of the network structures being considered. A
summary of the gain selection is reported in Table I to-
gether with the algebraic connectivity λ2 of the networks
under investigation.

The time responses of the error dynamics d(t) at point
P1 and P2 for the three network configurations are shown
in Fig. 4(a) and Fig. 4(b) respectively. As expected at P1

no synchronization is attained, while at P2 the error d(t)
asymptotically converges to zero indicating that all the
node states converge toward each other in all the three
network configurations.

Note that for the random network the synchroniza-
tion error d(t) at P1 oscillates in a lower range of values

(a)

(b)

FIG. 5. (a) PD-MSF for Chaotic Lorenz with Γ =
diag{1, 0, 0}, (b) Two dimensional representation of the PD-
MSF.

than the scale-free and small world, suggesting better
performance is achieved with this particular configura-
tion. This is strongly related with the algebraic connec-
tivity of the network λ2, which for the random structure
is the highest one (see Table I).

2. Computation of the PD-MSF

Following a similar approach to that used to compute
the PI-MSF, we now compute the PD-MSF by solving
the variational equation (28) with Γ = diag{1, 0, 0}. The
PD-MSF together with its two-dimensional representa-
tion are depicted in Fig. 5. From the diagrams of
Fig. 5 we note that similarly to the PI case, a purely
static (γ = 0) or dynamic (α = 0) coupling is found able
to guarantee synchronization above a certain threshold.
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(a)

(b)

FIG. 6. Evolution of the error dynamics for a network of
100 Lorenz coupled with dynamic PD for the three different
network topologies: (a) at point P1, (b) at point P2

Most importantly, we note once again that an appropri-
ate choice of α̃ and γ̃ can considerably enhance the stabil-
ity of the synchronous solution, suggesting that depend-
ing on the network structure (via λk, for k ∈ {2, · · · , N}),
the static (α) and dynamic (γ) coupling gains can be
properly adjusted in order to guarantee synchronization.

In the following we validate the theoretical predictions
of the PD-MSF shown in Fig. 5 by considering the same
three networks structures of the previous example. Note
that at the point P1 = (α̃, γ̃) = (4, 4) the networks should
not synchronize, while at P2 = (α̃, γ̃) = (4, 8) (see dia-
gram in Fig. 5(b)) synchronization should be attained.

Hence, for P1 we have that α = β is equal to 2.54,
7.2 and 12.17 for the random, scale-free and small world
networks respectively, while for P2 : (4, 8) we have that β
is 5.09, 14.41 and 25,15 for each network configuration.
The time response of the three networks at points P1 and
P2 are shown in Fig. 6 which confirms the theoretical
findings.

IV. APPLICATION TO NETWORKS OF MECHANICAL
OSCILLATORS

Synchronization in mechanical systems can be traced
back to the seventeenth century, to the observation on
coupled pendulum clocks made by the Dutch scientist
Christiaan Huygens32. Nowadays, synchronization in
mechanical networks is an active research field with ap-
plications inlcuding networks of robot manipulators27,
networks of electromechanical power generators15, hor-
izontal platform systems1, harmonic oscillators35, etc.
Here, we consider a nonlinear oscillator, which is a mass-

damper-spring system described by the paradigmatic
Duffing equations31 with an external forcing signal.

A. Mathematical Model of the Duffing Oscillator

The free-body diagram of a duffing oscillator is de-
picted in Fig. 7 , and its dynamics are described by31

FIG. 7. Free body diagram representation of a nonlinear duff-
ing mechanical oscillator.

dx

dt
= v (32)

m
dv

dt
= −dyv − (−ky + kdx

2)x+ k(Fi − x) (33)

where x and v are the position and velocity of a mass m
respectively. dy is the viscous damping, while ky and kd
are both constants representing the linear and nonlinear
stiffness of the spring respectively. Fi(t) := δ(t)+ui(t) is
an external forcing signal which is transmitted through a
linear spring with associated constant stiffness k. δ(t) is
the periodic forcing signal given by δ(t) := qsin(ωt) and
ui is a control input.

B. Mechanical Network Model

We consider the case where N Duffing oscillators
can be interconnected through ideal linear springs and
dampers with associated constants kc and dc respectively
(see Fig. 8). Thus, the mechanical network of duffing os-
cillators can be represented by a graph G = (N , E ,A),
where N is the set of indices for each oscillator and A
denotes the adjacency matrix representing the architec-
ture of the interconnections between any pair of Duffing
oscillators. The overall network dynamics can then be
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FIG. 8. Network of interconnected mechanical duffing oscil-
lators.

written as

dxi
dt

= vi (34)

m
dvi
dt

= −dyvi − (−ky + kdx
2
i )xi + k(δ(t)− xi) + kui

+

N∑
j=1

aij

[
kc(xj − xi) + dc

d

dt
(xj − xi)

]
(35)

where xi and vi represent the position and velocity of
the ith oscillator. aij are the elements of the adjacency
matrix with aij = 1 if there is an interconnection between
oscillator i and j and aij = 0 otherwise, for any i, j ∈
N . Next we show that the mechanical network (34)-
(35) can be written as network (1) with dynamic diffusive
coupling of PD type, and we study the synchronization
of the network when the control action is first absent and
then when there is coupling through a feedback on the
accelerations of neighbouring oscillators.

C. Mechanical network neglecting the control input

In this case we consider ui = 0 in (35) and we assess the
stability of the synchronous solutions. Then, by setting
xi := [xi, yi]

T , a = −dy/m, b = (ky − k)/m, c = −kd/m,
d = k/m, the overall network dynamics can be written
in compact form (1) with σ = 1/m, and

f =

[
v

av + bx+ cx3 + dδ(t)

]
(36)

while the dynamic coupling h(xj ,yj) is a proportional-
derivative one (5) with α = kc, γ = dc and

ΓP = ΓI =

[
0 0
1 0

]
Note that the first row of the inner coupling matrix are
zeros since the first state variable of each oscillator is

(a)

(b)

FIG. 9. Two dimensional representation of the PD-MSF, for
networks of Duffing oscillators with (a) null control input
ui, i = {1, · · · , N}, and (b) distributed acceleration control
(37) with Ku = 2.

not affected by any coupling term and feedback is im-
plemented through the second state variable with contri-
butions depending only on the position xi of the neigh-
bouring Duffing systems. We set the parameters of each
oscillator as a = −0.1, b = 0, c = 1, k = 3, q = 1.8667
and ω = 1 so that they exhibit chaotic behaviour19. Also
without loss of generality we assume all oscillators have
unitary mass m = 1 so that σ = 1. Then following a
procedure similar to that followed for the Example III C,
we obtain the two dimensional diagram of the PD-MSF
shown in Fig. 9(a), for the network of Duffing oscillators.

Note that when the oscillators are only coupled
through springs, i.e. via purely proportional coupling
(γ̃ = 0) we have that the MSF exhibits multiple inter-
sections at zero leading to two unstable regions where
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synchronization is not attained. When a damper is in-
cluded in the coupling i.e. an additional derivative action
is added to the coupling among oscillators, stability is
much improved as for values of γ̃ > 0.16 we observe the
PD-MSF to be always negative for any value of α̃.

D. Mechanical network with distributed acceleration
control

Next we use our theoretical derivations to design a dis-
tributed control action to extend the network synchro-
nizability region. Specifically, we consider the following
coupling protocol based on the accelerations of the oscil-
lators in the network. Namely, we set

ui = Ku
dc
k

N∑
j=1

aij

(
dvj
dt
− dvi

dt

)
(37)

where dvi/dt is the acceleration of the ith oscillator and
Ku is the control gain. Using the notation introduced
above, we can rewrite the resulting network as a network
of the form (1) coupled through the PD protocol in (5)
with

ΓP =

[
0 0
1 0

]
,ΓI =

[
0 0
1 Ku

]
Solving the variational equation (28), we obtain the two
dimensional diagram shown in Fig. 9(b) when Ku = 2.
Note that the new coupling strategy notably extends the
stability region when compared to Fig. 9(a). In particu-
lar, we now observe the PD-MSF to remain negative for
any value of α̃ when γ̃ is greater than 0.05.

Contrary to the case where no control action is present
and the coupling matrices are set to be identical ΓP =
ΓI , the addition of the feedback control term (37) makes
the coupling matrices ΓP and ΓI to be different from each
other. Such independence of the coupling matrices has
a notably effect on the stability by expanding the region
where synchronization is attained. Even, recent studies
on this aspect39 support the idea that this independence
on the inner coupling matrices represents an extra degree
of freedom that may be used to enhance synchronization.

We wish to emphasize that the uncontrolled network
of mechanical oscillators can be also studied with the
classic MSF approach by considering only diffusive static
couplings31, nevertheless, when the acceleration feedback
is present the overall network dynamics cannot be recast
as a static problem and a PD coupling should be consid-
ered instead.

V. ROBUSTNESS ASSESSMENT: HETEROGENEOUS
NODE DYNAMICS

In many practical applications networks are often het-
erogeneous with nodes being described by different vec-
tor fields. Therefore, we investigate next synchroniza-
tion of networks with dynamic PI/PD couplings when a

mismatch on the parameters of each node dynamics is
present. In particular we consider a network of the form

dxi

dt
= f(xi, µi)− σ

N∑
j=1

Lijh(xj ,yj),∀i ∈ N (38)

where µi represents a generic constant parameter. Note
that µi renders the node dynamics heterogeneous when
at least one parameter µi of the ith node is different from
the others. In this case exact synchronization cannot be
achieved since the nodes do not share a common solution
onto which to synchronize. Instead, trajectories remain
asymptotically close to each other with a bounded error
depending on the coupling strength value and the net-
work structure43.

A. Case study I: nonidentical Lorenz oscillators

For the sake of simplicity we consider four chaotic
Lorenz (29) coupled in an All-to-All network configura-
tion. We set µi = ωi as the parameter undergoing mis-
matches so that µi = −2 for i = 1, 3 (just nodes 1 and 3),
while µi = −2.15 otherwise. As a measure of synchro-
nization and to better expound the results of our analysis,
we first average the disagreement signal d(t) defined in
(31) neglecting the transient response. We denote such
average as < d >. Next we rescale < d > in the range
[0, 1] by considering an exponential function

d̃ := e−c<d> (39)

where c is a non-negative constant representing the sen-
sitivity of the rescaling. Note that for large values of
< d >, d̃ takes values close to zero (high synchronization
error), while if instead < d > is close to zero the function

d̃ tends to one (corresponding to a lower synchronization
error).

We calculate d̃ varying the static coupling gain in the
range α ∈ [0, 15] with an increment step of 0.125 for
different values of the integral and derivative coupling
strengths. The results are shown in Fig. 10 where for
each point we calculate the average of d̃ over 100 trials
starting from random initial conditions.

It is important to highlight that for tuning the value of
the sensitivity c, the worst case scenario is considered, i.e.
all the oscillators are uncoupled. First, note that simpli-
fying c from (39) one has that c = −ln(d̃)/ < d > with

d̃ representing the level of synchronization. Since the
oscillators are uncoupled, no synchronization is attained
and d̃ should be exactly zero; however, in our numerical
simulator we assume d̃ = 10−5 for this worst case sce-
nario. Finally, we calculate < d > for 100 different initial
conditions yielding c = −ln(10−5)/mink(< d >) where
mink(< d >) is the best error case out of the k = 100
trials, yielding c = 0.5459. Note from Fig. 10 that when
the integral or derivative actions are neglected (purely
proportional diffusive coupling) the network exhibits a
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FIG. 10. Rescaled average disagreement with c = 0.5459 of
an all-to-all network of four chaotic Lorenz coupled via (a) PI
and (b) PD coupling.

smooth transition towards synchronization and for val-
ues of α > 10 the normalized synchronization index d̃ is
grater than 0.6. If instead an integral/derivative action is
considered, the synchronization index can be notably en-
hanced. Interestingly, by increasing the strength of the
dynamic I or D couplings, the transition exhibited by
the static case becomes faster; therefore, lower synchro-
nization errors are expected even for low values of the
proportional gain α < 10, despite the presence of het-
erogeneities in the nodes. This extra degree of freedom
provided by the derivative or integral gain can be prop-
erly used to optimize the network performance, since low
values of the coupling strengths may decrease the amount
of energy on the links required to achieve bounded syn-
chronization.

B. Case study II: nonidentical mechanical oscillators

Following the example presented above we consider
again an All-to-All network of four chaotic mechanical
oscillators (34)-(35). For the sake of completeness we
first show the case when all the oscillators are identi-
cal; so that, the results of the PD-MSF in Fig. 9(a) are
validated. In Fig. 11(a), the rescaled average disagree-

ments d̃ are shown for the All-to-All mechanical network
with null control input, using three different values of the
derivative gain γ = 0 (static coupling), γ = 0.0125 and
γ = 0.025 and α ∈ [0, 1.25]. These values correspond to
γ̃ = 0, γ̃ = 0.05 and γ̃ = 0.1 respectively, while α̃ ∈ [0, 5]
(λ2 = 4 for an all-to-all network). As expected synchro-
nization is lost for those gain values where the PD-MSF
was predicted to be positive. Moreover, increasing the
derivative coupling gain enhances synchronization by in-
creasing the range of values of the proportional gain α
where synchronization is attained (i.e. d̃ = 1). Finally,
we choose the amplitude of the forcing signal δ(t) to be
a parameter undergoing mismatches, i.e. µi = qi for
i = {1, 2, 3, 4}. Specifically we consider µi = 1.8667 for
nodes 1 and 3, while µi = 1.9667 for nodes 2 and 4 and
we calculate the rescaled average disagreement d̃ with
c = 6.1301 as can be seen in Fig. 11(b). Once again the
addition of a derivative term in the coupling among oscil-
lators is shown to improve the network synchronization
performance when heterogenities are present.

VI. CONCLUSIONS

Inspired by a theoretical control approach, we stud-
ied two different types of dynamic coupling strategies
to achieve synchronization in a network of nonlinear dy-
namical systems. In both cases the coupling consists of
a static diffusive term complemented by either an inte-
gral or derivative term depending on the mismatch of
the states between neighboring nodes. We shown that
the presence of dynamic coupling can notably expand
the region where synchronization is attained.The numer-
ical observations were confirmed analytically by extend-
ing the well known MSF approach to the case where the
couplings are dynamic of PI/PD type. Synchronization
regions are shown to be non trivial functions of the cou-
pling parameters and network structure exhibiting com-
plex geometries. Moreover, we have shown that dynamic
couplings are of particular importance when some param-
eter mismatches are presents at nodes, since the coupling
gains can be properly tuned for decreasing the residual er-
ror. Analytical estimations of such errors are the subject
of ongoing work where the aim is to adapt the Extended
MSF approach43 to the case of dynamic couplings. We
wish to emphasize that the presence of both static and
dynamic contributions for each existing link in the net-
work can be relaxed by considering a multiplex approach9

where the proportional and the integral/derivative cou-
plings are deployed independently from each other. Pre-



12

0 1 2 3 4 5

λ2α

0

0.2

0.4

0.6

0.8

1

d̃
γ = 0 γ = 0.0125 γ = 0.025

(a)

0 1 2 3 4 5

λ2α

0

0.2

0.4

0.6

0.8

1

d̃

γ = 0 γ = 0.075 γ = 0.15

(b)

FIG. 11. Rescaled average disagreement for an all-to-all net-
work of four chaotic Duffing oscillators: (a) with identical
node dynamics, (b) with heterogeneous node dynamics.

liminary numerical results show that this extra-degree
of freedom can also be exploited for enhancing synchro-
nization. This is currently under investigation and will
be presented elsewhere.
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