
Peer reviewed version

Link to published version (if available):
10.1109/TCYB.2017.2671456

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) will be available online via IEEE. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Detailed Analysis for Remark 5.1 in the Manuscript

The solution of the optimal control algorithm in each time interval \([t_k, t_{k+1}]\) can be transformed into a boundary value problem by applying Pontryagin’s minimum principle [1]. We start by constructing the Hamiltonian as follows

\[
H(X, u, \lambda) = \frac{1}{2} \theta \sigma (\dot{x} - r_\sigma)^2 + \frac{1}{2} \eta_m u^2 + \lambda^T \begin{pmatrix}
y \\
-(\alpha x^2 + \beta y^2 - \gamma)y - \omega^2 x + u
\end{pmatrix}
\]

where \(X = [x, \dot{x}]^T = [x, y]^T\) and \(\lambda = [\lambda_1, \lambda_2]^T\). Using the minimum principle gives optimal open loop control

\[
u^* = \arg \min_{u \in \mathbb{R}} H(X^*, u, \lambda) = -\eta_m^{-1} \lambda^T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\eta_m^{-1} \lambda_2
\]

and optimal state equation

\[
\dot{X}^* = \nabla_\lambda H = \begin{pmatrix}
\dot{y}^* \\
-(\alpha x^* y^2 + \beta y^* - \gamma) y^* - \omega^2 x^* - \eta_m^{-1} \lambda_2
\end{pmatrix}
\]

with initial condition \(X(t_k) = [x(t_k), \dot{x}(t_k)]^T\) and optimal costate equation

\[
\dot{\lambda} = -\nabla_X H = \begin{pmatrix}
\lambda_2 (2\alpha x^* y^* + \omega^2) \\
\lambda_2 (\alpha x^2 + 3\beta y^* - \gamma) - \lambda_1 - \theta \sigma (y^* - r_\sigma)
\end{pmatrix}
\]

with the terminal condition

\[
\lambda(t_{k+1}) = \begin{pmatrix}
\theta_p (x^* (t_{k+1}) - \hat{r}_p(t_{k+1})) \\
0
\end{pmatrix}
\]

Let \(\hat{x}\) denote the approximation of the optimal solution \(x^*\), then it is feasible to estimate the position error between the VP and the HP based on the collocation method as.

\[
|x^* - \hat{r}_p| = |x^* - \hat{x} + \hat{x} - \hat{r}_p| \leq |x^* - \hat{x}| + |\hat{x} - \hat{r}_p|
\]

Notice that \(|x^* - \hat{x}|\) is negligible due to the high approximation accuracy of numerical methods [2]. In particular, considering that normally the optimal solution \(x^*\) is not available, the approximate
solution \(\tilde{x} \) exactly corresponds to the position of the VP in the simulation. Thus, we mainly focus on the estimation of \(|\tilde{x} - \hat{r}_p|\). For simplicity, we define \(\tilde{x}(t) = a_0 + a_1(t - t_k) + a_2(t - t_k)^2 \), \(\lambda_1(t) = b_0 + b_1(t - t_k) + b_2(t - t_k)^2 \) and \(\lambda_2(t) = c_0 + c_1(t - t_k) + c_2(t - t_k)^2 \), where \(a_i, b_i \) and \(c_i, i \in \{0, 1, 2\} \) are unknown constants and \(t \in [t_k, t_{k+1}] \). Substituting \(\tilde{x}(t), \lambda_1(t) \) and \(\lambda_2(t) \) into the above optimal state equation and costate equation at the boundary points yields the linear matrix equation

\[
A_k X_k = B_k
\]

where

\[
A_k = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\theta_p & \theta_p T & \theta_p T^2 & -1 & -T & -T^2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & T & T^2 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & \eta_m^{-1} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -(2\alpha x(t_k)y(t_k) + \omega^2) & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -(\alpha x(t_k)^2 + 3\beta y(t_k)^2 - \gamma) & 1 & 0 \\
\theta_p & T \theta_p + \theta_\sigma & T (T \theta_p + 2 \theta_\sigma) & 0 & 0 & 0 & 0 & 1 & 2T \\
0 & 0 & 0 & 0 & 1 & 2T & 0 & 0 & 0 \\
\end{pmatrix}
\]

and

\[
B_k = \begin{pmatrix}
x(t_k) \\
y(t_k) \\
\theta_p \hat{r}_p \\
0 \\
-(\alpha x(t_k)^2 + \beta y(t_k)^2 - \gamma) y(t_k) - \omega^2 x(t_k) \\
0 \\
-\theta_\sigma (y(t_k) - r_\sigma(t_k)) \\
\theta_p \hat{r}_p + \theta_\sigma r_\sigma(t_{k+1}) \\
0 \\
\end{pmatrix}, \quad X_k = \begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
b_0 \\
b_1 \\
b_2 \\
c_0 \\
c_1 \\
c_2 \\
\end{pmatrix}
\]

Solving equation (1) determines the vector of unknown constants

\[
X_k = A_k^{-1} B_k
\]

Thus, we obtain the approximate solution

\[
\tilde{x}(t) = x(t_k) + y(t_k)(t - t_k) + \frac{N}{D}(t - t_k)^2, \quad t \in [t_k, t_{k+1}]
\]
where
\[
\mathcal{N} = 2T \left[\frac{r_\sigma(t_k) + r_\sigma(t_{k+1})}{2} - y(t_k) \theta_\sigma + (\dot{r}_p - x(t_k) - Ty(t_k)) \theta_p \right]
- \eta_m \left(\frac{\omega^2}{2} + \alpha T^2 x(t_k) y(t_k) + \alpha T x(t_k)^2 + 3 \beta T y(t_k)^2 - \gamma T + 2 \right) [\alpha x(t_k)^2 + \beta y(t_k)^2 - \gamma y(t_k) + \omega^2 x(t_k)]
\]
and
\[
\mathcal{D} = 2T^2 (\theta_p T + \theta_\sigma) + 2 \eta_m \left(\frac{\omega^2}{2} + \alpha T^2 x(t_k) y(t_k) + \alpha T x(t_k)^2 + 3 \beta T y(t_k)^2 - \gamma T + 2 \right).
\]

Then we can compute
\[
|\tilde{x}(t_{k+1}) - \dot{r}_p(t_{k+1})| = \lim_{t \to t_{k+1}} |\tilde{x}(t) - \dot{r}_p(t_{k+1})|
= |x(t_k) + Ty(t_k) + \frac{\mathcal{N}}{\mathcal{D}} T^2 - \dot{r}_p(t_{k+1})|
\leq T^2 (1 - \theta_p) \left[\frac{2(x(t_k) - \dot{r}_p(t_{k+1})) + T(r_\sigma(t_k) + r_\sigma(t_{k+1}))}{|\mathcal{D}|} \right] + \eta_m \frac{\mathcal{L} \cdot \mathcal{M}}{|\mathcal{D}|}
\]
where
\[
\mathcal{L} = \frac{T^2 \omega^2}{2} + \alpha T^2 x(t_k) y(t_k) + \alpha T x(t_k)^2 + 3 \beta T y(t_k)^2 - \gamma T + 2
\]
and
\[
\mathcal{M} = 2(x(t_k) + Ty(t_k) - \dot{r}_p(t_{k+1})) - T^2 (y(t_k)(\alpha x(t_k)^2 + \beta y(t_k)^2 - \gamma) + \omega^2 x(t_k))
\]

Since \(\hat{r}_p, r_\sigma, \mathcal{D}, \mathcal{L} \) and \(\mathcal{M} \) are all bounded, it follows from inequality (2) that the bound on the tracking error \(|\tilde{x}(t_{k+1}) - \dot{r}_p(t_{k+1})|\) converges to 0 as \(\theta_p \to 1 \) and \(\eta_m \to 0 \). Similarly, we can estimate the velocity error between the VP and the reference signal encoding the desired signature as follows
\[
|\dot{x}(t_{k+1}) - r_\sigma(t_{k+1})| = \lim_{t \to t_{k+1}} |\dot{x}(t) - r_\sigma(t)|
= |y(t_k) + \frac{2\mathcal{N}}{\mathcal{D}} T - r_\sigma(t_{k+1})|
\leq (1 - \theta_\sigma) \left[\frac{2T^2 |T(y(t_k) - r_\sigma(t_{k+1})) + 2(\dot{r}_p(t_{k+1}) - x(t_k) - Ty(t_k))|}{|\mathcal{D}|} \right] + \theta_\sigma \frac{2T^2 |r_\sigma(t_k) - y(t_k)|}{|\mathcal{D}|} + 2 \eta_m \frac{\mathcal{L} \cdot \mathcal{P}}{|\mathcal{D}|}
\]
where
\[
\mathcal{P} = y(t_k) - r_\sigma(t_{k+1}) - T[(\alpha x(t_k)^2 + \beta y(t_k)^2 - \gamma)y(t_k) + \omega^2 x(t_k)]
\]

According to inequality (3), the bound of the velocity error goes to 0 if \(\theta_\sigma \to 1 \), \(\eta_m \to 0 \) and \(r_\sigma(t_k) = y(t_k) \).
References
