
This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Nature at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2920.html. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Microbially-driven export of labile organic carbon from the Greenland Ice Sheet

Michaela Musilova1*, Martyn Tranter1, Jemma Wadham1, Jon Telling1, Andrew Tedstone2** and Alexandre M. Anesio1

1 Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK
2 School of Geoscience, University of Edinburgh, Edinburgh, UK

* Present address:
Slovak Organisation for Space Activities (SOSA), Bratislava, Slovakia
& Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology, Bratislava, Slovakia

** Present address:
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK
Abstract

Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically-driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present data comprising of simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland Ice Sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater (Pearson correlation p<0.001). Further, we determined that freely-available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities were the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces (up to 1.12 ± 0.14 mg C L$^{-1}$ d$^{-1}$ carbon production), and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.
The Greenland Ice Sheet (GrIS) is the second largest body of ice on Earth, after the Antarctic Ice Sheet, covering ~1.71x10^6 km^2. The GrIS has ~350 ocean-terminating outlets and an annual meltwater runoff of ~400 km^3, comparable to the average annual discharge from a large Arctic river, such as the Ob. Recent studies have found glacial runoff to be a significant source of highly bioavailable nutrients to downstream ecosystems. In particular, glacial meltwater exports labile dissolved organic carbon (DOC), which is rich in protein-like low molecular weight compounds (LMWC) and distinct from non-glacially derived riverine DOC, which has a high proportion of aromatic and higher molecular weight compounds. High glacial meltwater fluxes, therefore, have an important impact on downstream marine heterotrophic and primary productivity on local and regional scales.

The origin and nature of the glacial dissolved organic matter (DOM) is still a subject of debate. In the Gulf of Alaska, labile DOM exported by glacier runoff from 11 coastal watersheds has an ancient (~4x10^3 year) 14C age signature. Stubbins et al. (2012) have suggested that anthropogenic combustion products are the source of the ancient organic carbon to glacier surfaces, which account for the 14C-depletion observed by Hood et al. (2009). On the other hand, Singer et al. (2012) found that combustion products only marginally contribute to the DOM from Alpine glaciers and that the DOM is more likely derived from in situ microbial activity. So far, there have been very few studies on the origin of the GrIS DOC, even though the GrIS runoff has been substantially increasing since 1992 at a rate of 16.9 ± 1.8 km^3 yr^-1. The climatically driven changes in GrIS meltwater fluxes could thus dramatically increase the quantity of reactive glacial DOC exported to the coastal waters surrounding Greenland.

Previous work has concentrated on the discharge of DOC from glacial termini, with only limited complementary water sampling and studies of supraglacial (glacier surface) microbial processes on the GrIS. The supraglacial DOC measured to date had a terrestrial δ^{13}C...
signature and was rich in nitrogen. Conversely, the subglacial DOC contained allochthonous-derived carbon both from soils and vegetation, as well as carbon derived from microbial processes. The limited data suggested that autochthonous microbial activity accounted for the majority of the supraglacial DOC. Lawson et al. (2014) also studied DOC concentrations in glacial runoff from an outlet glacier at the southwestern margin of the GrIS, with a focus on the quality, quantity and temporal variation of DOC fluxes over two contrasting melt seasons. They postulated that the physicochemical and microbiological cycling of carbon at the glacier surface is a major source of the bioavailable DOC, complemented by biogeochemical processes at the ice sheet bed.

Autotrophic microbial communities at the glacier surface are believed to fix atmospheric carbon and thereby generate bioavailable autochthonous DOC (including LMWC) through photosynthesis, while heterotrophic processes consume and recycle this labile DOC. The balance between net production and consumption varies between sampling sites on the GrIS. The highest microbial activity is commonly concentrated in glacier surface debris (cryoconite). Enhanced melting of the ice surface around the dark-coloured cryoconite leads to the formation of small (0.01-1 m in diameter and 0.01-0.5 m deep) water-filled, debris-based depressions, called ‘cryoconite holes’. Cryoconite and cryoconite hole waters host abundant viruses, prokaryotes and eukaryotes responsible for the biogeochemical cycling of carbon and other nutrients. Bare ice and snow also contains a wide variety of microorganisms, including algae, which may fix substantially more CO2 than cryoconite holes because of the greater spatial extent of this habitat.

However, the link between supraglacial autochthonous microbial DOC production and GrIS DOC export has only been postulated until now. To date, no study has analysed the inputs and transformations of the DOC in parallel with the microbial net ecosystem production (NEP) on the GrIS surface, throughout a complete ablation season. NEP is defined as the
difference between gross photosynthetic (GP) organic carbon (C) production and consumption through respiration (R) in an ecosystem, where NEP = GP - R\(^3\). Furthermore, previous studies have not assessed the evolution of the microbial activity over an entire summer melt season and how it impacts on the characteristics of exported DOC. Here, for the first time, the changes in DOC species and concentrations were analysed in different GrIS supraglacial habitats (snow, clean ice, cryoconite debris and cryoconite holes) in association with measurements of GP and R. We determined the: 1) external sources of C added to supraglacial ecosystems; 2) consumption and production of new C by local microbial communities; and 3) the nature of the DOC that was exported from the glacier through supraglacial streams to downstream environments, during an entire melt season.

Sampling was conducted on Leverett Glacier (∼67.10°N, 50.20°W) in the southwest of the GrIS. The sampling site was a delimited circular area 8 m in diameter, chosen randomly ∼2 km from the terminus of the glacier. Dispersed cryoconite debris on the glacier surface (‘dirty ice’), clean ice, stream water, cryoconite hole water (‘cryowater’) and cryoconite hole sediment were sampled once every 10-14 days, during the 2012 ablation season, between 15\(^{th}\) May and 1\(^{st}\) August. Ice cores were collected during the first two sampling time points in order to analyse the contents of the ice frozen over winter, which was released as meltwater later in the season. Waters were collected from supraglacial streams flowing away from the sampling site into a nearby moulin, which supplies the drainage system beneath the glacier and the river emerging from Leverett Glacier\(^3\). Snow samples were collected on May 13\(^{th}\), before snowmelt had occurred and thus the snowpack had minimal to no meltwaters disturbing it. The surface snow turned to slush by 15\(^{th}\) May, before melting away by 20\(^{th}\) May. The collected samples were divided into three different sample types: principal sources of meltwater (snow and ice – studied through the ice cores), supraglacial habitats (dirty ice,
clean ice, cryowerter and cryoconite hole sediment) and exported meltwater (stream). GP and R was determined for all of the supraglacial habitats throughout the melt season. Fluorescence spectroscopy and measurements of the concentration of DOC and LMWC (free carbohydrates, amino acids and volatile fatty acids (VFA)) were performed on all samples (see Methods).

Highly active and net autotrophic ecosystems

All four habitat types studied were active and net autotrophic ecosystems, producing significantly more organic C through GP than that being consumed by R. These data are presented as GP = NEP + R in Figure 1a and R in Figure 1b for all the incubations. There were significant differences in C production between the habitat types throughout the season (2-way ANOVA, p<0.001). The highest photosynthetic activity in all sample types was at the beginning of the ablation season (0.35-1.12 mg C L$^{-1}$d$^{-1}$ of C production), equal to 0.28-0.82 mg C L$^{-1}$d$^{-1}$ of NEP (GP - R). This was followed by a sharp decrease in GP rates until the rates stabilised around 0.06-0.27 mg C L$^{-1}$d$^{-1}$ of C production (0.03-0.18 mg C L$^{-1}$d$^{-1}$ of NEP) in June and July, before increasing slightly at the end of the summer. NEP, GP and R rates measured at this site ~2 km from the GrIS margin were comparable to the rates measured over the same summer 35 km from the GrIS margin24. Previous NEP measurements on the GrIS have been of short duration only, providing ‘snap-shots’ of the microbial activities at a certain time, and therefore missed the varying trends in NEP over the ablation season.

All averaged synchronous fluorescence spectra of the supraglacial samples (where λ emission = λ excitation + 18 nm) exhibited the same dominant fluorescence emission peaks (~337,
409-420, 465-479 and ~523 nm), but with varying intensities (Figure 2). The averaged fluorescence spectra for all of the samples were normalised to the fluorescence peak spectral maximum, by dividing the intensity of the emissions measured by the maximum emission intensity that was measured in the entire dataset, to qualitatively assess the proportions of the proteinaceous-like and humic-like fluorophores in the DOC\(^8,37,38\). Fluorescence emission peaks at ~337 nm are indicative of protein-like fluorophores (e.g. tryptophan)\(^39\), and peaks in the range of 409-420, 465-479 and ~523 nm are likely associated with humic and fulvic acid compounds\(^39,40,41\). The snow samples exhibited the lowest normalised spectral fluorescence, together with the ice cores (i.e., apart from the large peak at 337 nm). By contrast, cryowater had an extremely strong peak at 409-420 nm, which was significantly greater than the normalised fluorescence intensity of the other samples at that wavelength. The similarity between the dirty ice and stream spectra is noteworthy, while the average normalized clean ice fluorescence intensity was in between the stream and snow spectra. Additionally, the clean ice, dirty ice and stream samples had a peak at 575 nm, unlike the other samples. This peak is often associated with the algal photosynthetic pigment phycoerithrin\(^8,42\). Similar compounds have been detected previously in supraglacial meltwaters, snow and cryowater\(^8,16\). The presence of fulvic and humic acids, protein-like fluorophores and an algal pigment substantiate our hypothesis that the DOC in all sample types is mostly microbially-derived from photosynthetic algae and bacterial communities\(^16,43,44\). Microbial modification of the autochthonous-derived supraglacial DOC and allochthonous OC into additional bioavailable compounds, through bacterial decomposition, is potentially the source of the significant amounts of humic acids in the cryoconite holes\(^28,45\). It is also possible that the fulvic and humic acids in cryoconites holes could be derived from allochthonous inputs of higher plant material\(^16,43,44\).
There were also significant differences in DOC concentrations between the sample types over the whole season (2-way ANOVA, p<0.001) (Figure 3). The dirty and clean ice had the highest concentrations of DOC at the start of the season (up to 0.32±0.02 mg C L\(^{-1}\)), before decreasing to 0.18±0.02 mg C L\(^{-1}\) by the end of the melt season. Cryowater DOC remained at a fairly constant concentration of 0.15±0.01 mg C L\(^{-1}\), which was mirrored in the cryowater GP rates remaining steady throughout the ablation season as well. Stream DOC concentrations started off very low in mid-May (0.09±0.01 mg C L\(^{-1}\)). They then peaked in mid-July 2012 (0.23±0.04 mg C L\(^{-1}\)), before decreasing again at the end of the summer. The decline in surface ice DOC concentrations was most likely a result of the decreasing GP activity over the melt season (Figure 1) and continuous heterotrophic consumption. Conversely, the ice cores collected at the beginning of the season had much lower DOC concentrations (0.14±0.02 mg C L\(^{-1}\)) than the dirty/clean ice samples, and the snow samples had the lowest DOC concentrations (0.06±0.01 mg C L\(^{-1}\)). This is in agreement with the hypothesis that NEP throughout the melt season produces the DOC. Moreover, continuous ice melt over the ablation season also led to fresh glacier surfaces being uncovered (not colonised by microbes), thereby diluting the exported DOC. The drop in dirty/clean ice productivity could also be indicative of a limitation in vital nutrients for microbial activity, such as nitrogen and phosphorous in the surface ice, although some recycling potentially stimulated new microbial production towards the end of the season.

The total LMWC concentrations for all of the supraglacial habitats, over the whole ablation season, accounted for ~59% of the average DOC concentrations for these habitats (Table 1). In contrast, only ~41% of the average DOC in snow and ice core samples was made up of
LMWC. Overall, ~62% of the DOC exported from the glacier surface, via the studied stream, contained bioavailable LMWC. The variations in LMWC concentrations for all sample types, throughout the 2012 ablation season, are displayed in Figure 4. Carbohydrates had the highest LMWC concentrations (up to 190.9±24.0 µg C L⁻¹), while the amino acids and VFA concentrations only peaked at 67.5±8.4 and 20.6±2.5 µg C L⁻¹, respectively. There were significant differences between the carbohydrate concentrations of the snow and ice core samples, and those of the supraglacial habitats (2-way ANOVA, p<0.01). Amino acid concentrations for all sample types peaked in June 2012. The averaged seasonal individual free amino acid, carbohydrate and VFA concentrations, for all sample types, are shown in Supplementary Information Tables 1-3. These concentrations are consistent with previously reported DOC and LMWC in supraglacial samples. The high concentrations of bioavailable LMWC observed here (e.g. glucose, galactose and tyrosine) could be associated with recent microbial photosynthetic activity and biosynthesis.

Both the DOC and LMWC concentrations in dirty/clean ice samples were higher than those in the principal sources of meltwater (one-way ANOVA; p<0.001 and p<0.01, respectively) at the beginning of the season. For example, DOC in ice cores and snow only contributed to approximately one third of the surface DOC concentrations (Figure 3). There were significant correlations between the total LMWC and DOC concentrations (Pearson correlation’s R² = 0.48, p<0.001) and the total free carbohydrate and DOC concentrations (Pearson correlation’s R² = 0.46, p<0.001), for the clean/dirty ice, ice core and snow samples (Figure 5). Our results therefore show that supraglacial DOC is made up of significant amounts of labile LMWC, which vary in concentrations and individual compound content over the summer season. However, there was no positive correlation between the LMWC and DOC for the cryowater samples. The cryowater DOC thus likely contains greater amounts of higher molecular
weight compounds, such as humic and fulvic acids. This is in agreement with spectrofluorescence data (Figure 2), indicating great amounts of humic and fulvic type compounds in cryowater than in the other samples. Consequently, microbial processes in clean/dirty ice appear to be primarily responsible for the net production of labile DOC, particularly at the start of the season, while microbial communities in cryoconite holes have a greater importance in modifying and decomposing organic matter from both autochthonous and allochthonous origin. It is highly likely that the DOC and LMWC, remaining in the supraglacial environments at the end of the ablation season (Figure 3-4), freeze into the surface ice over winter and are then released the following ablation season through ice melt. We hypothesize, therefore, that even the DOC and LMWC measured in the ice cores likely originated from the microbial DOC produced during previous seasons. Hence, the supraglacial C source was primarily autochthonous and not derived from external allochthonous sources, such as recent snowfall.

232 Microbially-driven supraglacial DOC export

Microbial GP C production in all of the supraglacial habitats was significantly correlated with labile LMWC and free carbohydrate concentrations (Pearson correlation’s $R^2 = 0.49$, $p<0.001$; and $R^2 = 0.59$, $p<0.001$, respectively), throughout the 2012 ablation season (Figure 5). There were also significant correlations, for dirty and clean ice samples, between the LMWC concentrations and GP C production ($R^2 = 0.30$, $p<0.05$ and $R^2 = 0.69$, $p<0.001$, respectively) and carbohydrate concentrations and GP C production ($R^2 = 0.48$, $p<0.001$ and $R^2 = 0.64$, $p<0.001$, respectively). In cryowater, there was a significant correlation between the carbohydrate concentrations and GP C production ($R^2 = 0.23$, $p<0.05$), but not between LMWC concentrations and GP C. It is thus likely that the non-carbohydrate fraction of
LMWC (e.g. amino acids and VFA) are due to the microbial modification and decomposition of organic matter in cryoconite holes, with potentially some additional allochthonous inputs, as hypothesized above.

Our results suggest that most of the bioavailable supraglacial DOC is a result of in situ microbial GP activity. All of the supraglacial habitats on the margin of the GrIS were net autotrophic ecosystems, producing substantially more C through GP than what was consumed by R throughout the whole melt season (Figure 1). They were thus the most important source of supraglacial DOC, based on the significant correlations between the GP C production, DOC, LMWC and free carbohydrate concentrations examined previously. We also infer that heterotrophic microbial communities were actively modifying the DOC by consuming and decomposing both autochthonous and allochthonous C, particularly in cryoconite holes. Therefore, the high and continuous levels of microbial DOC production and recycling, on the GrIS surface in 2012, demonstrate that glacier surfaces are not just passive receivers and exporters of ancient labile carbon to downstream ecosystems. Furthermore, these ecosystems were very active and dynamic over the course of one the ablation season, leading to varying amounts and types of DOC exported from the GrIS surface to downstream environments (Figures 3-4). The export of DOC to the moulin peaked in mid-July 2012, before decreasing again at the end of the summer. On average, the DOC exported by the supraglacial stream contained a concentration of microbially-derived fluorophores most similar to that of dirty ice habitats (Figure 2) and ~62% bioavailable LMWC (Table 1). The substantial microbial contribution to DOC production and transformation must, therefore, be included in future estimates of climate change driven DOC export from the GrIS and its effects on the downstream ecosystems.

6. Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. *Nat Geosci* 2013, **6**: 274-278.

430
431 44. Barker JD, Sharp MJ, Fitzsimons SJ, Turner RJ. Abundance and dynamics of

432
433 45. Barker JD, Sharp MJ, Turner RJ. Using synchronous fluorescence spectroscopy and
principal components analysis to monitor dissolved organic matter dynamics in a
glacier system. *Hydrol Process* 2009, **23**: 1487-1500.

434
435 46. Biersmith A, Benner R. Carbohydrates in phytoplankton and freshly produced

436
437
438 47. Kirchman DL, Meon B, Ducklow HW, Carlson CA, Hansell DA, Steward GF.
Glucose fluxes and concentrations of dissolved combined neutral sugars
(polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. *Deep-Sea Res Pt*
II 2001, **48**: 4179-4197.

439
440
441
442
443
444
445
446

Acknowledgements

447 This study was funded by grants from the UK National Environment Research Council
448 (NERC) NE/J02399X/1 to Anesio, NERC Doctoral Training Program Grant to Musilova,
449 NERC grant NE/H023879/1 to Wadham and NERC studentships NE/152830X/1 and
450 NE/J500021/1 to Tedstone. We would like to thank all members of the Greenland 2012
451 Leverett field team for their assistance during field work.

452
Author Contributions:

M.M., A.M.A and J.T. designed the overall study. M.T. and J.W. were involved in advising the detail of the study design. M.M. and A.T. collected the field data. M.M. performed the experiment and processed the data. M.M., A.M.A. and M.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author:

Dr. Michaela Musilova

e-mail: michaela.musilova@community.isunet.edu

Competing financial interests

The authors declare that they have no competing financial interests.

Figure legends:

Figure 1. Gross photosynthesis [GP; net ecosystem production (NEP) + respiration (R)] and R variability over one ablation season is shown in panels a and b, respectively, in the different supraglacial habitats. GP and R rates are expressed in mg C L⁻¹ d⁻¹ as C produced through photosynthesis and C consumed through R, respectively. All of the habitats sampled were net autotrophic ecosystems, producing more C from CO₂ through photosynthesis than what was being consumed through respiration. Standard errors were calculated as 1σ with n = 3.
Figure 2. Averaged synchronous fluorescence spectra collected over the entire summer 2012 for the studied glacier surface sample types (where $\lambda_{\text{emission}} = \lambda_{\text{excitation}} + 18$ nm). All averaged spectra have been normalised to the fluorescence peak spectral maximum, by dividing the intensity of the emissions measured by the maximum emission intensity that was measured in the entire dataset, to assess the proportions of fluorophores in dissolved organic carbon. The same dominant fluorescence emission peaks (at ~337, 409-420, 465-479 and ~523 nm excitation) were present in all sample types.

Figure 3. Variations in 2012 ablation season DOC concentrations in supraglacial samples (in mg C L$^{-1}$). There were significant differences in DOC concentrations between the sample types over the season (2-way ANOVA, $p<0.001$). All sample types exhibited a decline in DOC at the end of the season, except for cryowater. Cryowater DOC remained fairly constantly at 0.15±0.01 mg C L$^{-1}$ throughout the ablation season. Snow and ice core samples were collected at the beginning of the ablation season to estimate the addition of DOC from external sources to the supraglacial environments. Standard errors were calculated as 1σ ($n = 6$).

Figure 4. Variations in supraglacial low molecular weight compound concentrations (LMWC) of total free: a) amino acids, b) carbohydrates and c) volatile fatty acids (VFA) for all sample types, per sampling time point, throughout the 2012 ablation season. Standard errors were calculated as 1σ with $n = 84$, $n = 54$ and $n = 30$, respectively.

Figure 5. Total LMWC (a) and free carbohydrates (b) were compared vs. DOC, throughout the 2012 ablation season, for: all supraglacial habitat samples $n = 21$ (7 averaged samples...
each of cryowater, dirty ice and clean ice (where n=3 per sample type, per time point), n = 2
for the ice cores and n = 1 for the snow). Total LMWC (c) and free carbohydrates (d) were
compared vs. GP C production, throughout the 2012 ablation season, for: cryowater, dirty ice,
and clean ice (n = 63, where there are 21 samples of cryowater, dirty ice and clean ice each).

Table 1. Total LMWC concentrations for all of the different sample types, averaged over the
whole 2012 ablation season. The LMWC component of the average DOC is indicated for the
supraglacial habitats (dirty ice, clean ice and cryowater), principal sources of meltwater
(snow and ice – studied through ice cores) and for the DOC exported through the studied
stream. Detailed data for each individual LMWC is provided in the Supplementary
Information Tables 1-3. Standard errors were calculated as 1σ with n = 3528, n = 2268 and n
= 1260, for amino acids, carbohydrates and VFA, respectively.

<table>
<thead>
<tr>
<th>LMWC</th>
<th>Total LMWC concentration for all sample types (µgCL⁻¹)</th>
<th>Total LMWC component of supraglacial habitat DOC (%)</th>
<th>Total LMWC component of meltwater DOC (%)</th>
<th>Total LMWC component of exported DOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>amino acids</td>
<td>37.81 ± 4.25</td>
<td>19.03 ± 0.02</td>
<td>21.06 ± 0.05</td>
<td>21.87 ± 0.03</td>
</tr>
<tr>
<td>carbohydrates</td>
<td>61.58 ± 10.14</td>
<td>33.16 ± 0.45</td>
<td>12.37 ± 1.04</td>
<td>32.40 ± 0.59</td>
</tr>
<tr>
<td>VFA</td>
<td>13.54 ± 1.77</td>
<td>6.81 ± 0.01</td>
<td>7.90 ± 0.02</td>
<td>7.78 ± 0.02</td>
</tr>
<tr>
<td>Sum of all LMWC</td>
<td>112.93 ± 11.14</td>
<td>59.00 ± 0.45</td>
<td>41.33 ± 1.03</td>
<td>62.05 ± 0.59</td>
</tr>
</tbody>
</table>

Methods
Field sampling strategy

All sample types were collected aseptically into sterile Whirl-Pak bags (Nasco) during the 2012 ablation season (15th May, 28th May, 11th June, 25th June, 9th July, 23rd July and 1st August). Cryoconite hole, snow and clean/dirty ice sampling, within the delimited sampling site, is described in detail in Musilova et al. (2015). The dirty ice had sediment particle sizes <1 mm and was present in patches within the sampling area, while the clean ice did not have any visible sediment particles on nor within the ice. Seventy cm deep ice cores were drilled using a Kovacs ice corer (cleaned by drilling three non-sample cores, since sterilisation for molecular level studies was not necessary) and collected in sterile 5 L Whirl-Pak bags (Nasco). They were drilled in the same location over both the first and consecutive second sampling time points, in order to analyse the meltwater released through surface ice melting down to ~140 cm. Cryowater and stream water was collected using sterile 50 mL syringes (Fisher) into pre-cleaned (rinsed 6x with sterile Milli-Q water (18.2 MΩ cm⁻¹ deionized water, filtered through 0.22 µm membranes)) and pre-furnaced (550ºC for 4 hours) borosilicate glass bottles, prior to transport. All samples were transported to the field camp laboratory for processing <2 hrs after collection. Snow and ice samples were melted at ambient temperature (~10ºC) upon transportation to the field camp laboratory. All samples were filtered immediately through a pre-cleaned and pre-furnaced glass filtration apparatus into pre-furnaced borosilicate amber glass bottles. Pre-furnaced 0.70 µm GF/F (Millipore) filters were used for DOC analyses and inline (0.45 µm; Millipore) filters were used for LMWC analyses. Filtrates for DOC analyses were acidified to pH 2-3 with concentrated HCl and stored at ≤4ºC in the field laboratory, during transport and storage at the University of Bristol. The other samples were frozen at ≤-20ºC in the field freezer, during transport (in insulated containers) and storage at the University of Bristol prior to laboratory analyses, as
had been performed successfully previously Lawson et al. (2014)\(^8\). Triplicate procedural
blanks were carried out by collecting autoclaved Milli-Q water into the same
containers/Whirl-Pak bags as the samples, filtering it and storing it using the same procedure
as applied for the samples.

NEP measurements

NEP is defined as the difference between gross photosynthetic (GP) organic carbon (C)
production and consumption through respiration (R) in an ecosystem, where NEP = GP - R\(^3\). It was determined by incubating six glass bottles per sample, filled with the different
supraglacial sample types (cryowater, cryoconite hole sediment, dirty and clean ice) for 24±1
h within cryoconite holes in *in situ* conditions, following previously described methods\(^24,49\). Three out of the six bottles were wrapped in foil to prevent light from entering the bottles (in
order to only measure respiration), while the other three remained unwrapped to allow for
photosynthesis, as well as respiration (to measure NEP)\(^23\). For the cryoconite hole samples,
the debris thickness in the bottles was representative of that in the holes (~1-4 mm thick) and
bottles were filled with water collected from the same holes as the debris\(^24,49\). The ice
samples were melted before pouring into the bottles, as per Chandler et al. (2014)\(^24\). Changes
between the start and end dissolved O\(_2\) concentrations and temperatures in the incubation
bottles were measured immediately, after the incubations had finished on the surface of the
glacier, using a PreSens Fibox3 fibreoptic O\(_2\) meter with a type PSt1 TS sensor
(manufacturer’s stated accuracy: ±1%). These measurements were normalized for the
different dry weights of the sediment in the bottles, determined by drying and weighing the
sediment, then converted to mg C L\(^{-1}\) d\(^{-1}\) using a programme for temperature-compensated
oxygen calculation for PreSens oxygen microsensors (Huber, C., 6.2.2003 – personal
communication) and following previously described methods24,49. Altogether, seven different incubation experiments were performed at regular intervals throughout the 2012 GrIS ablation season.

DOC analyses

DOC concentrations were measured in all sample types as non-purgeable organic carbon by high temperature combustion (680°C), using a Shimadzu TOC-VCSN/TNM-1 Analyser equipped with a high sensitivity catalyst, following the methods described by Lawson \textit{et al.} (2014)8. The precision, accuracy and limit of detection of the method were <7%, <8% and 30 μg C L-1, determined as per Lawson \textit{et al.} (2014)8.

LMWC concentrations

Free carbohydrate, amino acid and VFA determinations were performed by an ICS-3000 dual-analysis Reagent-Free Ion Chromatography system (Dionex, Sunnyvale, USA), equipped with Chromleon 6.8 software. Nine carbohydrate fractions (fucose, rhamnose, arabinose, galactose, glucose, xylose/mannose, fructose/sucrose, ribose and lactose) were separated isocratically on a CarboPac PA20 column (3×150 mm), after passing through a CarboPac PA20 guard column (3×30 mm), following previously described methods8,50. Fructose/sucrose and xylose/mannose were reported together, due to the carbohydrates co-eluting8. Fourteen different free amino acids (lysine, alanine, threonine, glycine, valine, serine, proline, isoleucine, leucine, methionine, phenylalanine, cysteine, aspartic acid, glutamic acid and tyrosine) were separated on an AminoPac PA10 column (2×250 mm), after
passing through an AminoPac PA10 guard column (2x50 mm). Five VFA (acetate, propionate, formate, butyrate and oxalate) were separated isocratically on an IonPac AS11-HC capillary IC column (2×250 mm), after passing through an IonPac AG11-HC guard column (2x50 mm). Precision was ≤10% and accuracy was < ±9% for all analytes, determined as per Lawson et al. (2014).

Fluorescence Spectroscopy

Synchronous fluorescence spectroscopy was performed on a HORIBA Jobin Yvon Fluorolog-3 spectrofluorometer to qualitatively assess the proportions of proteinaceous-like and humic-like fluorophores in the fulvic acid fraction of DOC. The parameters for scanning and post-scanning corrections (Ramen and Rayleigh scattering, and inner-filter effects) were based on previously described protocols, where λ emission = λ excitation + 18 nm. The fluorescence spectra for all of the samples were normalised to the fluorescence peak spectral maximum (i.e. the maximum fluorescent intensity in all of the samples), by dividing the intensity of the emissions measured by the maximum emission intensity that was measured in the entire dataset, following previously described methods.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files. Further datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
Methods References

Normalised averaged fluorescence intensity

Excitation (nm)

Cryowater
Dirty ice
Clean ice
Stream
Ice cores
Snow