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The paper deals with the problem of existence of a convergent “strong” normal form
in the neighbourhood of an equilibrium, for a finite dimensional system of differ-
ential equations with analytic and time-dependent non-linear terms. The problem
can be solved either under some non-resonance hypotheses on the spectrum of the
linear part or if the non-linear term is assumed to be (slowly) decaying in time.
This paper “completes” a pioneering work of Pustyl’nikov in which, despite under
weaker non-resonance hypotheses, the nonlinearity is required to be asymptotically
autonomous. The result is obtained as a consequence of the existence of a strong
normal form for a suitable class of real-analytic Hamiltonians with non-autonomous
perturbations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962802]

I. PRELIMINARIES AND MAIN RESULT

A. Introduction

The study of the dynamics of a system of ordinary differential equations (ODEs) in a neigh-
bourhood of an equilibrium boasts nowadays a rich and well established theory. Its foundation
goes even back to the late XIX century to the contribution of Poincaré14 and Lyapunov12. Given an
analytic vector field, the possibility to write the motions of the associated system in the vicinity of
an equilibrium as a convergent power series is deeply related to some non-resonance conditions on
the eigenvalues of the linear part.

The results have been afterwards extended in the studies of Siegel started in Ref. 16. The
problem of the reducibility of a given system to a linear form via an analytic transformation, it is
shown to be solvable in Ref. 17 for a full measure set of eigenvalues.

In the case of Hamiltonian structure, investigated later in Ref. 18, the problem can be naturally
interpreted in terms of the existence of a (convergent) canonical transformation of variables, casting
a Hamiltonian of the form “quadratic” + “perturbation” into a suitable normal form (i.e., such
that the corresponding canonical equations are integrable), in some neighbourhood of the exam-
ined equilibrium. Based on this approach, the paper10 provides a generalisation of the results by
Lyapunov, removing the hypothesis of purely imaginary eigenvalues.

In any case, we remark that, as a common feature of this class of problems, without any
assumption on the eigenvalues, the program of casting the Hamiltonian at hand into a normal form,
at least in general, fails. In fact, it is immediate to recognize how the linear combinations of eigen-
values occurring in the normalization scheme could produce some “small divisor effects.” Know-
ingly, this phenomenon can either obstruct the formal resolvability of the homological equations
produced during the normalization or jeopardize the convergence of the series.

We recall that, for instance, the described problem of well-posedness of the homological
equation is overcome by Moser in Ref. 13, in the case of “one and a half” degrees of freedom
Hamiltonian H(p,q, t) (with periodic time dependence) close to a hyperbolic equilibrium located
at p = q = 0. The strategy consists of keeping terms of the form (pq)k, k ≥ 2, in the normal form.
In this way the canonical equations are still integrable (x B pq is a prime integral) but this allows
to avoid the division by zero in the homological equation which would have been carried by those
terms. This analysis plays a fundamental role in the context of instability phenomena in Hamilto-
nian systems with several degrees of freedom (Arnold’s diffusion), in order to describe the flow in
the neighbourhood of partially hyperbolic tori of a priori unstable systems, see Ref. 3.
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The pioneering work by Pustyl’nikov15 aims to extend the results of the paper17 by introducing
a time dependence in the non-linear part of the vector field (not necessarily Hamiltonian). As it is
natural, the choice of a suitable class of time-dependent perturbations and its treatment is a further
difficulty to the phenomenon of the “resonances.” In Ref. 15, under the non-resonance condition
already assumed in Ref. 17 for the autonomous case, it is required that the perturbation is asymp-
totic to a time-independent, analytic function. However, no restrictions are imposed on the “type” of
the time dependence, more specifically, it has to be neither periodic nor quasi-periodic. This case is
also known as aperiodic time dependence.

After Ref. 15, the interest in a general dependence on time has been renewed in Ref. 11 then
followed by Refs. 2 and 5, and subsequent papers. Basically, all of them deal with the Hamiltonian
case (see Ref. 6 for the case of Poisson systems). The paper7 extends the above described result by
Moser to the case of a perturbation aperiodically dependent on time.

As a matter of fact, the Hamiltonian structure is not a real obstruction for the use of the tools
apt to treat the Hamiltonian case. In fact, given a system of ODEs, it can be always interpreted as (“a
half” of the) canonical equations of a suitable Hamiltonian system, of larger dimension, see, e.g.,
Ref. 1. The strategy of this paper is to derive the integrability of the system of ODEs at hand, see
(7), as a particular case of the existence of a normal form for a real-analytic Hamiltonian with aperi-
odic perturbation, see (1), by using the tools introduced in Ref. 7 for the one degree of freedom case.

The possibility to cast the Hamiltonian (1) into a normal form is shown to be possible in the
two cases described in Theorem 1.1. In the second case, we deal with perturbations linear in the
y variables, in the presence of some non-resonance assumption on the eigenvalues. This case is
directly related to the Hamiltonian formulation of a system of ODEs (due to the linearity in y). It
is immediate to notice that, with respect to [Ref. 15, (0.3)], the condition (4) on the eigenvalues
is clearly more restrictive. Nevertheless, the hypothesis of asymptotic time-independence assumed
in Ref. 15 is weakened to the simple boundedness.

On the other hand, the first case has a more general character: if the perturbation decays in time,
either the described assumption on the form of f or on the eigenvalues turn out to be unnecessary.
Basically, the presence of resonance phenomena is no longer an obstruction for the existence of the
normal form, see also Ref. 8. We recall that in the latter paper, the exponential decay, see (3), is
chosen for simplicity of discussion: the only necessary assumption is the summability in t of the
perturbing function over the non-negative real semi-axis.

This paper, based on the Lie series formalism developed by A. Giorgilli et al., can be regarded,
at the same time, as a non-autonomous version of Ref. 10.

B. Setting

Let us consider the following Hamiltonian

H(x, y,η, t) = h(x, y,η) + f (x, y, t), h(x, y,η) B η +

n
l=1

λlxl yl, (1)

where (x, y,η) ∈ D B [−r,r]n × [−r,r]n × R, with n ≥ 1 and r > 0, λl ∈ C and t ∈ R+ B [0,+∞).
The assumptions on f will be discussed below. The system (1) is nothing but the “autonomous
equivalent” of H (x, y, t) = n

l=1 λlxl yl + f (y, x, t), once η has been defined as the conjugate vari-
able to t.

The standard use of the analytic tools requires the complexification of the domainD as follows.
Given R ∈ (0,1/2] setDR B QR × SR, where

QR B {(x, y) ∈ C2n : |x |, |y | ≤ R}, SR B {η ∈ C : |ℑη | ≤ R}.
It will be required that, for all t ∈ R+, f belongs to the space of real-analytic functions on

◦
QR and

continuous on the boundary, which we denote with C(QR). As a consequence H ∈ C(DR).
In particular, the space of all the G ∈ C(QR) is endowed with the Taylor norm

∥G(x, y, t)∥R B


α,β∈Nn
|gα,β(t)|R|α+β |, (2)
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where G(x, y, t) C α,β∈Nn gα,β(t)xαyβ and |α| B n
l=1 αl (it is understood that xαyβ B xα1

1 · · · · ·
xαn
n · y

β1
1 · · · · · y

βn
n ). We recall the standard result for which, if G ∈ C(QR) for all t ∈ R+, then

|gα,β(t)| ≤ |G(·, ·, t)|RR−|α+β |, where |G(·, ·, t)|R B sup(x, y)∈QR
|G|. In particular, ∥G∥R′ < +∞ for all

R′ < R.
Throughout this paper we shall deal with perturbations satisfying the following conditions:

1. f is “at least” quadratic in x and “at least” linear in y: a property that we will denote with
(QxL y), i.e., fα,β(t) = 0 for all t ∈ R+ and for all (α, β) ∈ N2n \ Γ, where Γ B {(α, β) ∈ N2n :
|α| ≥ 2, |β | ≥ 1};

2. there exist Mf ∈ [1,+∞) and a ∈ [0,1) such that, for all (x, y, t) ∈ QR × R+,

∥ f (x, y, t)∥R ≤ Mf e−at . (3)

Note that the interval a ∈ [0,1) is a compact way to denote either the time decay a ∈ (0,1) or the
boundedness a = 0. As in our previous papers, we recall that we are interested in the case of small a
(slow decay) and the upper bound a = 1 is set for simplicity. On the other hand, it is easy to realise
that the case a ≥ 1 is straightforward.

C. Main result

In the described setting, the main result can be stated as follows.

Theorem 1.1. Suppose that one of the following conditions are satisfied:

I. Time decay: a > 0.
II. Linearity in y+ non-resonance: a = 0 and the perturbation is linear in y , denoted by (L y),

i.e., of the form f (x, y, t) = y · g(x, t). In addition, the vector Λ B (λ1, . . . , λn) satisfies the
non-resonance condition

max
l=1, ...,n

�|ℜU (α,el,Λ)|−1� ≤ γ |α|τ, ∀α ∈ Nn : |α| ≥ 2, (4)

whereU (α, β,Λ) B (α − β) · Λ, for some γ > 0 and τ ≥ n. el stands for the lth vector of the
canonical basis of Rn.

Then it is possible to determine R∗,R0 with 0 < R∗ < R0 ≤ R16 and a family of canonical transfor-
mations (x, y,η) =M(x(∞), y (∞), η(∞)), M : DR∗ → DR0, analytic on DR∗ for all t ∈ R+, casting
the Hamiltonian (1) into the strong normal form

H (∞)(x(∞), y (∞), η(∞)) = h(x(∞), y (∞), η(∞)). (5)

Remark 1.2. It is immediate to recognize the similarity between (4) and the standard Diophan-
tine condition. Clearly, all the vectors Λ whose real part is a Diophantine vector satisfy condition
(4), no matter what the imaginary part is. Hence the set of vectors satisfying (4) is, a fortiori, a
full-measure set.

As anticipated in the Introduction, we stress that condition (4) is stronger than the non-
resonance condition imposed in Ref. 15 and it is not satisfied in the case of purely imaginary Λ.

Remark 1.3. As usually done in the Lie series method, see, e.g., Ref. 9, the transformationM
will be constructed as the limit (defined, at the moment, only at a formal level),

M B lim
j→∞
M( j) ◦M( j−1) ◦ . . . ◦M(1), (6)

where M( j) B exp(Lχ( j)) ≡ Id +


s≥1(s!)−1Ls

χ( j) and Lχ( j) B {·, χ( j)}. The generating sequence

{ χ( j)} j ∈N, where χ( j) = χ( j)(x, y, t), see Ref. 11, is meant to be determined.
We will show (see the proof of Lemma 3.3) that in the case of a perturbation which is (L y), it is

possible to prove that χ( j+1)(x, y, t) is (L y) as well, for all j ∈ N. In such a case, it is easy to check
by induction that x( j) =M( j+1)x( j+1) (recall that the Lie series operator acts component-wise, i.e.,
M( j)x( j) = (M( j)x( j)1 , . . . ,M( j)x( j)n )) does not depend on the variable y ( j+1), for all j.
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This is easily checked. As stated above, if f ( j−1) is (L y), then χ( j) = y ( j) · C( j)(x( j), t) for all
j. Suppose by induction that Ls

χ( j)x
( j) does not depend on y ( j). This is true for s = 1 as Lχ( j)x

( j) =

{x( j), y ( j) ·C( j)(x( j), t)} = n
l=1 C( j)

l
(x( j), t). HenceLs+1

χ( j)x
( j)=Lχ( j)Ls

χ( j)x
( j)=
n

l=1 ∂x( j)
l

(Ls

χ( j)x
( j))C( j)

l

which does not depend on y ( j).
As a consequence, the composition x ≡ x(0) =Mx(∞) CMx(x(∞), t) does not depend on y (∞),

i.e., is an analytic mapMx : Q̃R∗ → Q̃R0 parametrised by t, where Q̃R B {x ∈ Cn : |x | ≤ R}. This
will play a key role in Sec. I D.

D. The corollary

Let us consider the following non-linear system:

v̇ = Av + g(v, t), (7)

where v ∈ Rn, A is a n × n matrix with real entries and the function g is such that ∂νv g(0, t) ≡ 0 for
all ν ∈ Nn such that |ν | ≤ 1, i.e., g is at least quadratic in v . We restrict ourselves to the class of
diagonalizable A with non-purely imaginary eigenvalues λl. In the obvious system of coordinates
denoted with x, the system (7) easily reads as

ẋl = λlxl + g̃l(x, t), l = 1, . . . ,n. (8)

In this framework one can state the next.

Corollary 1.4. Suppose that f (x, y, t) B y · g̃(x, t) and Λ is such that the conditions described
in II of Theorem 1.1 are satisfied. Then the system (8) is integrable in a suitable neighbourhood of
the origin.

The same result holds, in particular, without any non-resonance condition on Λ, provided that
g̃(x, t) is such that (3) is satisfied with a > 0.

Proof. The key remark, see, e.g., Ref. 1, is that (8) can be interpreted as a set of canonical
equations of the Hamiltonian system with Hamiltonian K B η +

n
l=1 yl(Λlxl + g̃l(x, t)), i.e., (1)

with f (x, y, t) defined in the statement. Hence, by Theorem 1.1, there exists a suitable neighbour-
hood of the origin endowed with a set of coordinates (x(∞), y (∞), η(∞)), such that K is cast into
the (integrable) strong form K (∞) = η(∞) +

n
l=1 λl yl

(∞)xl(∞). Furthermore, as noticed in Remark
1.3, Mx is an analytic map between x and x(∞). Hence x(t) =Mx(exp(At)x(∞)(0), t), with A B
diag(λ1, . . . , λn), gives the explicit solution of (8). �

II. SOME PRELIMINARY RESULTS

A. Two elementary inequalities
Proposition 2.1. For all R ≤ e−4 and all δ ≤ 1/2 the following inequalities hold:

ν∈Nm|ν |≥N

R |ν | ≤ 2me3m−3R
3N

4 ,


ν∈Nm
|ν |µ(1 − δ)|ν | ≤ C(m, µ)δ−m−µ−1, (9)

where m ≥ 2, µ ≥ 0 and C(m, µ) B e4m+µ−1(m + µ)(m+µ)/(m − 1)!.
Proof. See Appendix. �

B. A result on the homological equation
Proposition 2.2. Consider the following equation:

Lχh + f = 0, (10)

where h has been defined in (1) and f = f (x, y, t) = (α,β)∈Γ fα,β(t)xαyβ satisfies ∥ f ∥ R̃ ≤
M exp(−at) for some a ∈ [0,1), M, R̃ > 0. The following statements hold for all δ ∈ (0,1/2]:
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1. If a > 0, there exists C1 = C1(n,Λ) > 0 such that

∥ χ∥(1−δ)R̃, ∥∂t χ∥(1−δ)R̃ ≤ C1Ma−1δ−2(n+1). (11)

2. If a = 0, f is of the form f = y · g(x, t) and Λ satisfies (4), there exists C2 = C2(n,Λ, τ,γ) > 0
such that

∥ χ∥(1−δ)R̃, ∥∂t χ∥(1−δ)R̃ ≤ C2Mδ−(n+τ+2). (12)

Proof. First of all note that Lχh = ∂t χ +
n

l=1 λl(xl∂xl − yl∂yl)χ. By expanding the generat-
ing function as χ(x, y, t) = (α,β)∈N2n cα,β(t)xαyβ, Equation (10) reads, in terms of Taylor coeffi-
cients, as

ċα,β(t) +U (α, β,Λ)cα,β = fα,β(t). (13)

The solution of (13) is easily written, for all (α, β) ∈ Γ, as

cα,β(t) = e−U (α,β,Λ)t

cα,β(0) +

 t

0
eU (α,β,Λ)s fα,β(s)ds


, (14)

while trivially cα,β(t) ≡ 0 for all (α, β) ∈ N2n \ Γ.
Now denote UR + iUI B U (α, β,Λ) with UI,R ∈ R and recall that, by hypothesis, | fα,β(t)| ≤

M R̃−|α+β |e−at.
Case a > 0. For all (α, β) ∈ Γ such thatUR ≥ 0 we choose cα,β(0) = 0 then we have

|cα,β | ≤ e−URt

 t

0
eURs | fα,β(s)|ds ≤ M R̃−|α+β |

 t

0
e−asds ≤ M R̃−|α+β |a−1.

Otherwise, for those α and β such that UR < 0, redefine UR B −UR with UR > 0 and choose
cα,β(0) B −


R+ exp(U (α, β,Λ)s) fα,β(s)ds. Note that |cα,β(0)| < +∞. In this case we have |cα,β | ≤

exp(URt)  ∞t exp(−URs)| fα,β(s)|ds ≤ M R̃−|α+β |a−1. Hence |cα,β | ≤ M R̃−|α+β |a−1 for all (α, β) ∈
Γ. By recalling (2) one gets ∥ χ∥(1−δ)R̃ ≤ Ma−1(α,β)∈N2n(1 − δ)|α+β |. The use of the second of (9)
with ν B (α, β) yields the first part of (11) with C1 set for the moment to Ĉ1 B C(2n,0).

Directly from (13) we get |ċα,β | ≤ |α + β∥Λ∥cα,β | + | fα,β | ≤ a−1M(1 + |Λ|)|α + β |R̃−|α+β |. By
(9) with µ = 1 we get the second of part of (11). The constant is chosen as C1 B (1 + |Λ|)C(2n,1) >
Ĉ1.
Case a = 0. In such case, the homological equation reads as

ċα,l(t) +U (α,el,Λ)cα,l = fα,l(t), (15)

where fα,l B fα,β |β=el (the same notation for cα,l), for all α ∈ Nn such that |α| ≥ 2 and for all
l = 1, . . . ,n. By hypothesis (4), UR , 0. Similarly to the case a > 0, if UR > 0 we set cα,l(0) = 0,
otherwise, cα,l(0) B −


R+ exp(U (α,el,Λ)s) fα,l(s)ds. Proceeding as before, one obtains, by using

(4),

|cα,l(t)| ≤ MU−1
R R̃−|α |−1 ≤ γMj |α|τ R̃−|α |−1.

This implies ∥ χ∥(1−δ)R̃ ≤ nγM


α∈Nn |α|τ(1 − δ)|α | which is, by (9), the first part of (12) with
Ĉ2 = nγC(n, τ). On the other hand, from the homological equation, we get |ċα,l(t)| ≤ M |α|τ+1(1 +
γ |Λ|)R̃−|α |−1. Similarly, the latter yields the second part of (12) with C2 B max{n(1 + γ |Λ|)C(n, τ +
1),Ĉ2}. �

C. A bound on the Lie operator

Proposition 2.3. Let F,G be two functions such that ∥F∥(1−d̃)R̃, ∥G∥(1−d̃)R̃ < +∞ for some d̃ ∈
(0,1/4] and R̃ > 0. Then for all s ∈ N the following bound holds:

�
Ls

GF
�
(1−2d̃)R̃ ≤ e−2s![e2(R̃d̃)−2∥G∥(1−d̃)R̃]s∥F∥(1−d̃)R̃. (16)

Proof. Straightforward from [Ref. 10, Sec. 3.2] and [Ref. 9, Lemma 4.2]. �
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III. PROOF OF THE MAIN RESULT: CONVERGENCE OF THE NORMAL FORM

A. Preparation of the domains

Taking into account the domain restriction imposed by Proposition 2.3, the canonical trans-
formations will be constructed of the form M j+1 : DR j+1 → DR j

∋ (x( j), y ( j), η( j)) (understood
(x(0), y (0), η(0)) ≡ (x, y,η)), where {DR j

} j ∈N is a suitable sequence of nested domains. The sequence
{Rj} defined in this section will provide, in Lemma 3.3, the appropriate domain restrictions for the
convergence of the scheme. Another sequence {ϵ j}, constructed here, will be used to control the
size of the remainder.

Lemma 3.1. Suppose that ϵ0,R0,a,K,σ > 0 are given real numbers and that the following
condition holds:

ϵ0 ≤ ϵa B a(2π)−σK−1. (17)

Then it is possible to construct a sequence {d j} j ∈N, with d j ∈ (0,1/4] such that following sequences

ϵ j+1 = Ka−1d−σj ϵ2
j, Rj+1 B (1 − 2d j)Rj (18)

satisfy ϵ j < 1, 1 > Rj ≥ R∗ B R0/2 and ϵ j → 0 monotonically as j → ∞.

Remark 3.2. The property R∗ > 0 is crucial, as R∗ is the lower bound for the analyticity radius
of the normalised Hamiltonian.

Proof. Straightforward from [Ref. 8, Lemma 4.4]. We recall that a suitable choice is ϵ j =
ϵ0( j + 1)−σ, then, by (18), d j = (ϵ0Ka−1)(1/σ)( j + 2)2/( j + 1)4. From the latter, one has

j≥0

d j ≤ 1/6, (19)

provided that condition (17) is satisfied. �

B. Iterative lemma

Let us define for all j ≥ 1, H ( j+1) BM( j+1)H ( j) with H (0) B H .

Lemma 3.3. Under the same hypotheses of Theorem 1.1 and under the condition (17) it is
possible to find R0 and a sequence { χ( j)} j ∈N such that H ( j)(x, y,η, t) = h(x, y,η) + f ( j)(x, y, t) with
f ( j) (QxL y) and such that

�
f ( j)

�
R j
≤ ϵ je−at for all j, where ϵ j,Rj are given by (18).

The stated result exploits the possibility to remove the perturbation with the normalization
algorithm obtaining, in this way, the desired normal form (5). We will construct M( j+1) as the
Lie series generated by χ( j+1) (see definition after (6)), then showing the convergence of the
composition (6).

The interpretation of ϵ j as a bound for the remainder is clearly related to the well-known
feature of the quadratic method.

Proof. By induction. If j = 0, the statement is clearly true by hypothesis, by setting f (0) B f ,
either in the case I or in the case I I. We are supposing here that ϵ0 is small enough in order to satisfy
(17). This will be achieved later by a suitable choice of R0.

Let us suppose the statement to be valid for j. In this way we get

H ( j+1) ≡ exp(Lχ( j+1))H ( j) = h + f ( j) + Lχ( j+1)h +

s≥1

(s!)−1Ls

χ( j+1) f
( j) +

s≥2

(s!)−1Ls

χ( j+1)h.

We shall determine χ( j+1) in such a way (10) is satisfied so that, by setting

f ( j+1) B

s≥1

1
s!
Ls

χ( j+1) f
( j) +

s≥2

1
s!
Ls

χ( j+1)h
(10)
=

s≥1

s
(s + 1)!L

s

χ( j+1) f
( j), (20)

one has H ( j+1) = h + f ( j+1).
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It is immediate from (13) that χ( j+1) has the same null Taylor coefficients as f ( j). Hence if f ( j)
is (QxL y), then χ( j+1) is (QxL y) as well. It is easy to check by induction that this implies that
Ls

χ( j+1) f
( j) is (QxL y) for all s, then f ( j+1) is (QxL y). Similarly, Equation (15) implies that if f ( j)

is (L y) then χ( j+1) is (QxL y) as well. This implies that Ls

χ( j+1) f
( j) is (L y) for all s, hence f ( j+1) is

(L y).
In order to show this, suppose by induction that Ls

χ( j+1) f
( j) is (L y). Note that this is true

for s = 1, as Lχ( j+1) f ( j) = {y · g( j), y · C( j)} = y ·n
l=1(Cl

( j)∂xlg
( j) − gl

( j)∂xlC
( j)) is (L y). Hence,

recalling that Ls+1
χ( j+1) = Lχ( j+1)Ls

χ( j+1), write Ls

χ( j+1) f
( j) C y · F( j)(x, t) and proceed similarly with

F( j) in place of g( j).
This completes the formal part. In particular, by induction, f ( j) is (L y) for all j, then also is

χ( j+1), as claimed in Remark 1.3.
Let us now discuss the quantitative estimate on f ( j+1) in the case a > 0. By Propositions 2.2 (set

f ← f ( j) and χ ← χ( j+1)), 2.3 and the inductive hypothesis, one gets

L
s

χ( j+1) f
( j)(1−2d j)R j

≤ s!Θsϵ je−at, Θ B
e2C1

aR2
∗d2n+4

j

ϵ j . (21)

Setting K B 2ne2C1R−2
∗ and σ B 2n + 5, we have that

2nΘ = (Kϵ ja−1d−σj )d j ≤ d j, (22)

as ϵ j+1/ϵ j < 1 by Lemma 3.1. Hence, Θ < 1/2 and the series defined in (20) is convergent,
furthermore

eat f ( j+1)R j+1
≤ ϵ j

s≥1

Θ
s ≤ 2nΘϵ j

(22)
≤ Ka−1d−σj ϵ2

j

(18)
= ϵ j+1, (23)

which completes the inductive step. The condition (17) in this case reads as

ϵ0 ≤ aR2
0(2π)−σ(8ne2C1)−1. (24)

On the other hand, from the analyticity of f , we get | fα,β(t)| ≤ Mf R−|α+β | ≤ Mf R−|α+β |/16
0 , as

R0 ≤ R16 by hypothesis. By using the first of (9) we get ∥ f ∥R0
≤ Mf


(α,β)∈N2n R(15/16)|α+β |

0 ≤
2ne(2n−1)Mf R135/64

0 C ϵ0. Replacing the latter in (24), the condition on R0 described in the statement
of Theorem 1.1 is meant to be completed with the following one

R0 ≤ [a/(16(2π)σe2n+1n2C1Mf )]64/7. (25)

The case a = 0 is analogous: it is sufficient to replace C1 with C2, remove the term e±at from the
statements, (21) and (23), then replace a with 1 from (21) to (24), where now σ = n + τ + 5. The
only substantial difference consists in the sum obtained from (9), which is slightly improved, since
f linear in y . We have in this case ∥ f ∥R0

≤ n2en−1Mf R75/32
0 C ϵ0 leading to

R0 ≤ [8(2π)σen+1n3C2Mf ]−32/11. (26)

�

C. Bounds on the coordinate transformation

Lemma 3.4. The transformation of coordinates defined by the limit (6) satisfies

|x(∞) − x |, |y (∞) − y |, |η(∞) − η | ≤ R0/6, (27)

in particular, it defines an analytic mapM : DR∗ → DR0 and H (∞) BMH is an analytic function
onDR∗.

Proof. We will discuss the case a > 0. The case a = 0 is straightforward simply replacing C1
with C2, a with 1 and changing the value of σ, where necessary.
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Let us start from the variable x. Note that, by Proposition 2.3, one has
L

s

χ( j+1)x
( j+1)
l

(1−2d j)R j

≤

s!ΘsR0 for all l = 1, . . . ,n. Hence we have, by (22),

|x( j+1) − x( j)| ≤ n max
l=1, ...,n


s≥1

1
s!
L

s

χ( j+1)x
( j+1)
l

(1−2d j)R j

≤ 2nR0Θ ≤ R0d j .

In this way |x(∞) − x | ≤  j≥0 |x( j+1) − x( j)| converges by (19). The procedure for y is analogous.
As for the third of (27), it is necessary to observe that Lχ( j+1)η = −∂t χ( j+1). Hence, by (16) and

the second of (11), one has
L

s

χ( j+1)η
(1−2R j)

≤ e−2s!Θs−1(R2
∗e
−2Θ) ≤ s!ΘsR0, hence |η( j+1) − η( j)| ≤

2nR0Θ ≤ R0d j.
The bounds (27) ensure that points in DR∗ are mapped within DR0 where R∗ = R0/2. Further-

more, the absolute convergence of the above described series, ensured by (19), guarantees the
uniform convergence in every compact subset of DR∗ and the analyticity of M, and then of H (∞),
follows from the theorem of Weierstraß, see, e.g., Ref. 4. �
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APPENDIX: PROOF OF PROPOSITION 2.1

First of all, recall


|ν |≥N |ν |µR |ν | =


l≥N
(
l+m−1
m−1

)
lµR l . Now note that log

m−1
j=1 (l + j) ≤ m

1 log(l + x)dx = 1 − m + log[(m + l)(m+l)(1 + l)−(1+l)], hence (m − 1)! ( l+m−1
m−1

)
=
m−1

j=1 (l + j) ≤
em−1(m + l)(m+l)(1 + l)−(1+l) ≤ e2m−2(m + l)(m+µ). This yields

|ν |≥N
|ν |µR |ν | ≤ [e2m−2/(m − 1)!]


l≥N

(m + l)(m+µ)R l . (A1)

On the other hand, the function h(x) B (m + x)κR x/4 has a maximum in x = 0 (in the non-negative
semi-axis) if R ≤ exp(−4κ/m) and in x∗ B −m − 4κ/ logR otherwise. Hence, from (A1) with
µ = 0 we have


|ν |≥N R |ν | ≤ [(m − 1)!]−1mme2m−2

l≥N R(3/4)l which gives the first of (9) by using
the inequality mm ≤ em−1m! and recalling R ≤ e−4.

Now set R = 1 − δ. By hypothesis R > e−4, hence (m + l)(m+µ)(1 − δ)l/4 ≤ (1 − δ)−m/2(−2(m +
µ)/ log(1 − δ))(m+µ). By substituting the latter in (A1) with N = 0, then using the inequalities
− log(1 − δ) ≥ δ and [1 − (1 − δ)3/4] ≥ δ/2 as δ ≤ 1/2, the second of (9) easily follows.
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