https://doi.org/10.1038/ncomms11373

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1038/ncomms11373

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Nature at http://www.nature.com/articles/ncomms11373. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Supplementary Fig. 1. scrib\(^{KD}\) cells grow more slowly than wild-type cells and are compacted and eliminated when surrounded by wild-type cells.

a, b, Time-course of cell competition assays between unlabelled wild-type (WT) and GFP labelled scrib\(^{KD}\) cells (a) and mock competition between unlabelled scrib\(^{KD}\) and GFP labelled scrib\(^{KD}\) cells (b), see corresponding Supplementary Movie 1. Inset below (a) shows the GFP channel from corresponding stills. **c,** Schematic representation of the experimental set-ups for experiments with competition-conditioned or mock-conditioned medium (as in Fig. 1b) and with transwells (as in Fig. 1c). **d,** Quantification of the growth rate of scrib\(^{KD}\) cells with or without the addition of tetracycline (TET). Each dot represents the average of 4 fields of cells (n). **e,** Average cell density of pure confluent scrib\(^{KD}\) cells and of subconfluent competing scrib\(^{KD}\) cells that are either entirely surrounded by WT cells (surrounded clones) or merely contacting WT clones (peripheral clones). Despite being subconfluent, scrib\(^{KD}\) cells in competing cultures have a higher density than in confluent pure cultures; n = cell number, mean ± sem. Scale bars: movie sequences = 100μm and immunofluorescence images = 50μm here and throughout all Supplementary Figures. **p** < 0.005, ***p** < 0.0005 by T-test.
Supplementary Fig. 2. E-cadherin is upregulated in scribKD cells and E-cadherin upregulation is not sufficient to induce directional migration.

a-d, Individual cell trajectories of wild-type (WT) (a) or scribKD (c) cells before or after contact as indicated, and corresponding average directionalities. (b, d). Error bars = SD; quantifications from pooled data from 3 biological replicates; **p<0.0005 by T-test.**

e, Anti-E-cadherin staining of co-cultures of WT and GFP labelled scribKD cells shows accumulation of E-cadherin in scribKD cells compared to WT cells (sum intensity projection).

f, Western blot against E-cadherin in WT and scribKD cells +/- doxycycline (DOX). β-tubulin was used as loading control.

g, Cell surface E-cadherin staining of RFP labelled WT and unlabelled scribKD co-cultures shows surface accumulation of E-cadherin in scribKD cells compared to WT cells.

h, Quantification of single cell E-cadherin intensities from one representative set of confocal images as in Fig. 2q, rightmost panel; black bars = median; * p<0.05 by KS test.

j, Stills from time-lapse movie of RFP labelled WT and unlabelled scribKD E-cadKD co-cultures showing that the latter are still eliminated by WT cells despite lack of contact-induced migration. Asterisks mark individual scribKD E-cadKD cells; black arrows = cell death events.

k, Immunofluorescence staining comparing E-cadherin levels between WT cells (within white dashed line), scribKD cells with nuclear GFP, and cells overexpressing GFP labelled E-cadherin (E-cad OE; within yellow dashed
line). Co-culture of RFP labelled WT cells and *E-cad* OE cells shows no directional migration upon contact (white dashed line = initial point of contact; black dashed line = final point of contact). n = number of cells.
Supplementary Fig. 3. Characterisation of scrib^{RES} cells and analysis of p21 and p53 expression in scrib^{KD} cells.

a, Western blot against Scribble for scrib^{KD} and scrib^{RES} cells +/- TET. **b,** Surface E-cadherin staining of GFP labelled scrib^{RES} cells mixed with unlabelled scrib^{KD} cells. **c,** d, Stills from time-lapse movies of wild-type (WT) and GFP labelled scrib^{RES} cells to assess directional migration (c) and competition (d), see corresponding Supplementary Movie 10. White dashed line = initial point of contact; black dashed line = final point of contact. **e,** p21 staining of pure WT cells and pure scrib^{KD} cells. Note widespread p21 elevation in scrib^{KD} cells. **f,** Loss of Scribble leads to an overall
increase in nuclear p53 staining. n = cell number; ** p<0.005 by Wilcoxon rank sum test.
Supplementary Fig. 4. Loss of p53 activity blocks elimination of *scrib*^{KD} cells, but does not prevent up-regulation of E-cadherin or contact-induced migration.

a, Anti-p53 staining of GFP labelled *scrib*^{KD} or GFP labelled *scrib*^{KD} *p53^{+/−}* cells in competition with wild-type (WT) cells. Two fields of similar cell densities are shown for comparison.

b, Western blot against p53 and p21 in *scrib*^{KD} and *scrib*^{KD} *p53^{+/−}* cells +/- UV-C irradiation; β-tubulin as loading control.

c, Anti-p21 staining of *scrib*^{KD} *p53^{+/−}* cells when cultured next to *scrib*^{KD} or WT cells (all images are taken from the same coverslip using the fence system).

d, Single cell nuclear p21 intensity from confocal images as in (c); *** p<0.0005 by KS test.

e, Western blot against p21 in *scrib*^{KD} and *scrib*^{KD} *p53^{+/−}* cells +/- TET; β-tubulin as loading control.

f, Stills from time-lapse movies of WT and GFP labelled *scrib*^{KD} competition assays in the presence of Pifithrin-α (10μM).

g, Anti-E-cadherin staining of GFP labelled *scrib*^{KD} or GFP labelled *scrib*^{KD} *p53^{+/−}* cells co-cultured with WT cells.

h, Stills from time-lapse movies with WT and GFP labelled *scrib*^{KD} *p53^{+/−}* cells. n = cell number. 2 independent repeats per experiment for (a, b, d).
Supplementary Fig. 5. *scrib*Δ/Δ clones are eliminated in a p53-independent manner in *Drosophila* wing discs.

a, Scribble immunostaining of *Drosophila* wing disc with GFP labelled clones expressing Scribble RNAi; 1 experimental repeat; n = 6 wing discs. The same result was obtained with several independent drivers.

b, XY and XZ views of DE-cadherin staining of *Drosophila* wing disc with GFP labelled Scribble RNAi clones. XY view shows average projection of multiple z-sections acquired at the plane of the adherens junctions; 1 experimental repeat; n = 4 wing discs. The same result was obtained with several independent drivers.

c, Representative images of 48 hour old GFP labelled *scrib*Δ/Δ clones (control) or *scrib*Δ/Δ clones overexpressing p53ΔN; 2 experimental repeats; n > 3 wing discs per condition/experiment. The same result was obtained with a validated p53RNAi line.
Supplementary Fig. 6. ROCK is required for P-myosin increase.

(a, b) Active P-myosin II (phospho S20) immunofluorescence staining of GFP labelled scribKD and unlabelled wild-type (WT) co-cultures without (a) or with (b) addition of ROCK inhibitor (Y27632).
Supplementary Fig. 7 Neither S1P2 nor Piezo are required for scrib^{KD} cell elimination.

a, b. Stills from time-lapse movies of WT and scrib^{KD} co-cultures in the presence of a S1P2 inhibitor (JTE013) (a) or Piezo inhibitor (gadolinium III chloride) (b).
Supplementary Fig. 8. p53 activation is sufficient to cause flattening of wild-type MDCK cells.

a, Stills from time-lapse movies of co-cultures of GFP labelled wild-type (WT) and unlabelled p53⁻/⁻ MDCK cells. b, Stills from time-lapse movies of pure WT MDCK cells with Nutlin-3 (8μM, see Supplementary Movie 13 right).
Supplementary Fig. 9. Un-cropped original Western blots.

a, Western blots showing p21 and loading control actin from Fig. 3b. b, Western blots showing E-cadherin and loading control β-tubulin from Supplementary Fig. 2f. c, Western blots showing Scribble and loading control actin from Supplementary Fig. 3a. d, Western blots showing p53, p21 and loading control β-tubulin from Supplementary Fig. 4b. e, Western blots showing p21 and loading control β-tubulin from Supplementary Fig. 4e. Black box represents the area of each blot used in each Figure.