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1 Introduction

Understanding the origin of the baryon asymmetry of the Universe is one of the key issues

of modern physics. Sakharov showed that such an asymmetry can arise if three conditions

are fulfilled [1], one of which is the requirement that both charge (C) and charge-parity

(CP ) symmetries are broken. The latter phenomenon arises in the Standard Model (SM)

of particle physics through the complex phase of the Cabibbo-Kobayashi-Maskawa (CKM)

quark mixing matrix [2, 3], although the effect in the SM is not large enough to account

for the observed baryon asymmetry in the Universe [4]. Violation of CP symmetry can be

studied by measuring the angles of the CKM unitarity triangle [5–7]. The least precisely

known of these angles, γ � arg[�VudV
�
ub/VcdV

�
cb], can be measured using only tree-level pro-

cesses [8–11]; a method that, assuming new physics is not present in tree-level decays [12],

has negligible theoretical uncertainty [13]. Disagreement between such direct measure-

ments of γ and the value inferred from global CKM fits, assuming the validity of the SM,

would indicate new physics beyond the SM.

The value of γ can be determined by exploiting the interference between favoured

b ! cW (Vcb) and suppressed b ! uW (Vub) transition amplitudes using decay channels

such as B+ ! Dh+, B0! DK�0, B0! DK+π�, B+ ! Dh+π�π+ and B0
s ! D�s K

� [8–

11, 14–21], where h is a kaon or pion and D refers to a neutral charm meson that is a mixture

of the D0 and D0 flavour eigenstates. The inclusion of charge conjugate processes is implied

throughout, unless otherwise stated. The most precise way to determine γ is through a

combination of measurements from analyses of many decay modes. Hadronic parameters

such as those that describe the ratio (rXB ) or strong phase difference (δXB ) between the Vcb
and Vub transition amplitudes and where X is a specific final state of a B meson decay,

are also simultaneously determined. The ratio of the suppressed to favoured B decay

amplitudes is related to γ and the hadronic parameters by Asup/Afav = rXB e
i(�X

B�
), where

the + (�) sign refers to the decay of a meson containing a b (b). The statistical uncertainty

with which γ can be measured is approximately inversely proportional to the value of rXB ,

which is around 0.1 for B+ ! DK+ decays [22].1 In the B+ ! Dπ+ channel, rD�B is

expected to be of order 0.005 [23] because the favoured amplitude is enhanced by jVudj/jVusj
while the suppressed amplitude is further reduced by jVcdj/jVcsj with respect to B+ ! DK+

decays. Consequently, the expected sensitivity to γ in B+ ! Dπ+ decays is considerably

lower than for B+ ! DK+ decays, although the signal yields are higher. For B0! DK�0

(and also B0
s ! D�s K

�) decays a higher value is expected [24], rDK
�0

B � rDsK
B � 0.3,

which compensates for the lower branching fraction [25],2 whilst the expected value for

rDK��B is similar to rDKB . The current world average, using only direct measurements of

B ! DK-like decays, is γ = (73.2 +6:3
�7:0)� [26]3 (or, using different inputs with an alternative

statistical approach, γ = (68.3 � 7.5)� [27]4). The previous LHCb combination found

γ = (73 +9
�10)� [28].

1Updated results and plots available at http://www.slac.stanford.edu/xorg/hfag/.
2See also 2015 update.
3Updated results and plots available at: http://ckm�tter.in2p3.fr.
4Updated results and plots available at: http://www.ut�t.org/UT�t/.
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This paper presents the latest combination of LHCb measurements of tree-level decays

that are sensitive to γ. The results supersede those previously reported in refs. [28–31],

including more decay channels and updating selected channels to the full Run 1 dataset of

pp collisions at
p
s = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb�1. Two

combinations are performed, one including all inputs from B ! DK-like modes (referred

to as DK) and one additionally including inputs from B+ ! Dπ+ and B+ ! Dπ+π�π+

decays (referred to as Dh). The DK combination includes 71 observables depending on 32

parameters, whilst the Dh combination has 89 observables and 38 parameters.

The analyses included in the combinations use a variety of methods to measure γ, which

are reviewed in ref. [32]. The observables are briefly summarised below; their dependence

on γ and various hadronic parameters is given in appendix A. The Gronau-London-Wyler

(GLW) method [8, 9] considers the decays of D mesons to CP eigenstates, for example

the CP -even decays D ! K+K� and D ! π+π�. The Atwood-Dunietz-Soni (ADS)

approach [10, 11] extends this to include final states that are not CP eigenstates, for

example D0 ! π�K+, where the interference between the Cabibbo-allowed and doubly

Cabibbo-suppressed decay modes in both the B and D decays gives rise to large charge

asymmetries. This introduces an additional dependence on the D decay dynamics through

the ratio of suppressed and favoured D decay amplitudes, rD, and their phase difference, δD.

The GLW/ADS formalism is easily extended to multibody D decays [10, 11, 33] although

the multiple interfering amplitudes dilute the sensitivity to γ. For multibody ADS modes

this dilution is parameterised in terms of a coherence factor, κD, and for the GLW modes

it is parametrised by F+, which describes the fraction of CP -even content in a multibody

decay. For multibody D decays these parameters are measured independently and used

as external constraints in the combination as discussed in section 3. The GLW/ADS

observables are constructed from decay-rate ratios, double ratios and charge asymmetries

as outlined in the following.

For GLW analyses the observables are the charge-averaged rate and the partial-rate

asymmetry. The former is defined as

RCP = 2
Γ(B� ! DCPK

�) + Γ(B+ ! DCPK
+)

Γ(B� ! D0K�) + Γ(B+ ! D0K+)
, (1.1)

where DCP refers to the final state of a D meson decay into a CP eigenstate. Experimentally

it is convenient to measure RCP , for a given final state f , by forming a double ratio that

is normalised using the rate for a Cabibbo-favoured decay (e.g. D0 ! K�π+), and the

equivalent quantities from the relevant B+ ! Dπ� decay mode. Defining the ratio of the

favoured B+ ! D0K+ and B+ ! D0π+ partial widths, for a given final state f , as

RfK=� =
Γ(B� ! D[! f ]K�) + Γ(B+ ! D[! f̄ ]K+)

Γ(B� ! D[! f ]π�) + Γ(B+ ! D[! f̄ ]π+)
, (1.2)

the double ratios are constructed as

RKKCP �
RKKK=�

RK�K=�
, R��CP �

R��K=�

RK�K=�
, RKK�

0

CP �
RKK�

0

K=�

RK��
0

K=�
, R���

0

CP �
R���

0

K=�

RK��
0

K=�
, etc. (1.3)
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These relations are exact when the suppressed B+ ! Dπ+ decay amplitude (b ! u)

vanishes and the flavour specific rates, given in the denominator of eq. (1.1), are measured

using the appropriate flavour-specific D decay channel. The GLW partial-rate asymmetry,

for a given D meson decay into a CP eigenstate f , is defined as

ADh;fCP =
Γ(B� ! DCPh

�)� Γ(B+ ! DCPh
+)

Γ(B� ! DCPh�) + Γ(B+ ! DCPh+)
. (1.4)

Similarly, observables associated to the ADS modes, for a suppressed D ! f decay, are

the charge-averaged rate and the partial-rate asymmetry. For the charge-averaged rate, it

is adequate to use a single ratio (normalised to the favoured D ! f̄ decay) because the

detection asymmetries cancel out. The charge-averaged rate is defined as

RDh;
�f

ADS =
Γ(B� ! D[! f̄ ]h�) + Γ(B+ ! D[! f ]h+)

Γ(B� ! D[! f ]h�) + Γ(B+ ! D[! f̄ ]h+)
, (1.5)

whilst the partial-rate asymmetry is defined as

ADh;
�f

ADS =
Γ(B� ! D[! f̄ ]h�)� Γ(B+ ! D[! f ]h+)

Γ(B� ! D[! f̄ ]h�) + Γ(B+ ! D[! f ]h+)
. (1.6)

The equivalent charge asymmetry for favoured ADS modes is defined as

ADh;ffav =
Γ(B� ! D[! f ]h�)� Γ(B+ ! D[! f̄ ]h+)

Γ(B� ! D[! f ]h�) + Γ(B+ ! D[! f̄ ]h+)
. (1.7)

Some of the input analyses determined two statistically independent observables instead

of those in eqs. (1.5) and (1.6), namely the ratio of partial widths for the suppressed and

favoured decays of each initial B flavour,

RDh;
�f

+ =
Γ(B+ ! D[! f ]h+)

Γ(B+ ! D[! f̄ ]h+)
, (1.8)

RDh;
�f

� =
Γ(B� ! D[! f̄ ]h�)

Γ(B� ! D[! f ]h�)
. (1.9)

It should be noted that eqs. (1.5) and (1.6) are related to eqs. (1.8) and (1.9) by

RADS =
R+ +R�

2
, AADS =

R� �R+

R� +R+
, (1.10)

if the rates of the Cabibbo-favoured decays for B� and B+ are identical.

Similar to the ADS approach is the Grossman-Ligeti-Soffer (GLS) method [16] that

exploits singly Cabibbo-suppressed decays such as D ! K0
SK
�π+. The GLS observables

are defined in analogy to eqs. (1.5)–(1.7). Note that in the GLS method the favoured decay

has sensitivity to γ because the ratio between the suppressed and favoured amplitudes is

much larger than in the ADS approach. It is therefore worthwhile to include the favoured

GLS decays in the combinations, which is not the case for the favoured ADS channels alone.

The Giri-Grossman-Soffer-Zupan (GGSZ) method [14, 15] uses self-conjugate multi-

body D meson decay modes like K0
Sπ

+π�. Sensitivity to γ is obtained by comparing the

– 4 –
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distributions of decays in the D ! f Dalitz plot for opposite-flavour initial-state B and B

mesons. The population of candidates in the Dalitz plot depends on four variables, referred

to as Cartesian variables which, for a given B decay final state X, are defined as

xX� = rXB cos(δXB � γ), (1.11)

yX� = rXB sin(δXB � γ). (1.12)

These are the preferred observables for GGSZ analyses. The GLW/ADS and GGSZ for-

malisms can also be extended to multibody B decays by including a coherence factor, κB,

that accounts for dilution from interference between competing amplitudes. This inclusive

approach is used for all multibody and quasi-two-body B decays, with the exception of the

GLW-Dalitz analysis of B0! DK+π� decays where an amplitude analysis is performed to

determine xX� and yX� . Here the term quasi-two-body decays refer to a two body resonant

decay that contributes to a three body final state (e.g. B0 ! DK�(892)0 decays in the

B0! DK+π� final state).

Time-dependent (TD) analyses of B0
s ! D�s K

� are also sensitive to γ [17–19]. Due to

the interference between the mixing and decay amplitudes, the CP -sensitive observables,

which are the coefficients of the time evolution of B0
s ! D�s K

� decays, have a dependence

on (γ � 2βs), where βs � arg(�VtsV �tb/VcsV
�
cb). In the SM, to a good approximation, �2βs

is equal to the phase φs determined from B0
s ! J/ψφ and similar decays, and therefore an

external constraint on the value of φs provides sensitivity to γ. The time-dependent decay

rates for the initially pure B0
s and B0

s flavour eigenstates are given by

dΓB0
s!f (t)

dt
=

1

2
jAf j2(1 + jλf j2)e��st

�
cosh

�
∆Γst

2

�
+A��

f sinh

�
∆Γst

2

�

+ Cf cos (∆mst)� Sf sin (∆mst)

�
, (1.13)

dΓB0
s!f

(t)

dt
=

1

2
jAf j2

����
p

q

����
2

(1 + jλf j2)e��st
�
cosh

�
∆Γst

2

�
+A��

f sinh

�
∆Γst

2

�

� Cf cos (∆mst) + Sf sin (∆mst)

�
, (1.14)

where λf � (q/p) � (Āf/Af ) and Af (Āf ) is the decay amplitude of a B0
s (B0

s) to a final

state f . In the convention used, f (f̄) is the D�s K
+ (D+

s K
�) final state. The parameter

∆ms is the oscillation frequency for B0
s mesons, Γs is the average B0

s decay width, and

∆Γs is the decay-width difference between the heavy and light mass eigenstates in the

B0
s system, which is known to be positive [34] as expected in the SM. The observables

sensitive to γ are A��
f , Cf and Sf . The complex coefficients p and q relate the B0

s meson

mass eigenstates, jBL;Hi, to the flavour eigenstates, jB0
s i and jB0

si, as jBLi = pjB0
s i+qjB0

si
and jBHi = pjB0

s i � qjB0
si with jpj2 + jqj2 = 1. Similar equations can be written for the

CP -conjugate decays replacing Sf by S �f , and A��
f by A��

�f , and, assuming no CP violation

in either the decay or mixing amplitudes, C �f = �Cf . The relationships between the

observables, γ and the hadronic parameters are given in appendix A.

– 5 –
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The combinations are potentially sensitive to subleading effects from D0–D0 mix-

ing [35–37]. These are corrected for where necessary, by taking into account the D0 decay-

time acceptances of the individual measurements. The size of the correction is inversely

proportional to rXB and so is particularly important for the B+ ! Dπ+(π+π�) modes.

For consistency, the correction is also applied in the corresponding B+ ! DK+(π+π�)

modes. The correction for other decay modes would be small and is not applied. There

can also be an effect from CP violation in D ! h+h� decays [38–41], which is included

in the relevant B+ ! D0h+(π+π�) analyses using the world average values [22], although

the latest measurements indicate that the effect is negligible [42]. Final states that include

a K0
S meson are potentially affected by corrections due to CP violation and mixing in

the neutral kaon system, parametrised by the non-zero parameter εK [43]. The effect is

expected to be O(εK/r
h
B), which is negligible for B+ ! DK+ decays since jεK j � 0.002

and rDKB � 0.1 [22]. For B+ ! Dπ+ decays this ratio is expected to be O(1) since rD�B
is expected to be around 0.5% [23]. Consequently, the B+ ! Dπ+ decay modes affected,

such as those with D ! K0
SK
�π�, are not included in the Dh combination.

To determine γ with the best possible precision, auxiliary information on some of

the hadronic parameters is used in conjunction with observables measured in other LHCb

analyses. More information on these quantities can be found in sections 2 and 3, with

a summary provided in tables 1 and 2. Frequentist and Bayesian treatments are both

studied. Section 4 describes the frequentist treatment with results and coverage studies

reported in section 5. Section 6 describes the results of a Bayesian analysis.

2 Inputs from LHCb analyses sensitive to γ

The LHCb measurements used as inputs in the combinations are summarised in table 1

and described briefly below. The values and uncertainties of the observables are provided

in appendix B and the correlations are given in appendix C. The relationships between the

observables and the physics parameters are listed in appendix A. All analyses use a data

sample corresponding to an integrated luminosity of 3 fb�1, unless otherwise stated.

� B+ ! Dh+, D ! h+h�. The GLW/ADS measurement using B+ ! Dh+,

D0 ! h+h� decays [44] is an update of a previous analysis [53]. The observables are

defined in analogy to eqs. (1.3)–(1.7).

� B+ ! Dh+, D ! h+π�π+π�. The ADS measurement using the B+ ! Dh+,

D ! K�π�π+π� decay mode [44] is an update of a previous measurement [54].

The quasi-GLW measurement with B+ ! Dh+, D ! π+π�π+π� decays is included

in the combination for the first time. The label “quasi” is used because the D !
π+π�π+π� decay is not completely CP -even; the fraction of CP -even content is given

by F���� as described in section 3. The method for constraining γ using these decays

is described in ref. [33], with observables defined in analogy to eqs. (1.3)–(1.7).

� B+ ! Dh+, D ! h+h�π0. Inputs from the quasi-GLW/ADS analysis of

B+ ! Dh+, D ! h+h�π0 decays [45] are new to this combination. The CP -even

– 6 –



JH
E
P
12(2016)087

B decay D decay Method Ref. Status since last

combination [28]

B+ ! Dh+ D ! h+h� GLW/ADS [44] Updated to 3 fb�1

B+ ! Dh+ D ! h+π�π+π� GLW/ADS [44] Updated to 3 fb�1

B+ ! Dh+ D ! h+h�π0 GLW/ADS [45] New

B+ ! DK+ D ! K0
Sh

+h� GGSZ [46] As before

B+ ! DK+ D ! K0
SK
�π+ GLS [47] As before

B+ ! Dh+π�π+ D ! h+h� GLW/ADS [48] New

B0 ! DK�0 D ! K+π� ADS [49] As before

B0! DK+π� D ! h+h� GLW-Dalitz [50] New

B0 ! DK�0 D ! K0
Sπ

+π� GGSZ [51] New

B0
s ! D�s K

� D+
s ! h+h�π+ TD [52] As before

Table 1. List of the LHCb measurements used in the combinations.

content of the D ! K+K�π0 (D ! π+π�π0) decay mode is given by the parameter

FKK�0 (F���0), as described in section 3. The observables are defined in analogy to

eqs. (1.3)–(1.7).

� B+ ! DK+, D ! K0
Sh

+h�. The inputs from the model-independent GGSZ

analysis of B+ ! DK+, D ! K0
Sh

+h� decays [46] are the same as those used

in the previous combination [28]. The variables, defined in analogy to eqs. (1.11)–

(1.12), are obtained from a simultaneous fit to the Dalitz plots of D ! K0
Sπ

+π� and

D ! K0
SK

+K� decays. Inputs from a model-dependent GGSZ analysis of the same

decay [55] using data corresponding to 1 fb�1 are not included due to the overlap of

the datasets.

� B+ ! DK+, D ! K0
SK

�π+. The inputs from the GLS analysis of B+ ! DK+,

D ! K0
SK
�π+ decays [47] are the same as those included in the last combination [28].

The observables are defined in analogy to eqs. (1.5)–(1.7). The negligible statistical

and systematic correlations are not taken into account.

� B+ ! Dh+π�π+, D ! h+h�. The inputs from the LHCb GLW/ADS analysis

of B+ ! Dh+π�π+, D0 ! h+h� decays [48] are included in the combination for

the first time. The observables are defined in analogy to eqs. (1.3)–(1.4), (1.7)–(1.9).

The only non-negligible correlations are statistical, ρ(ADK��;KKCP , ADK��; ��CP ) = 0.20

and ρ(AD���;KKCP , AD���; ��CP ) = 0.08.

� B0 ! DK�0, D ! K+π�. The inputs from the ADS analysis of B0 !
D0K�(892)0, D0 ! K�π� decays [49] are included as they were in the previous

combination [28]. However, the GLW part of this analysis (with D0 ! K+K� and

– 7 –
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D0 ! π+π�) has been superseded by the Dalitz plot analysis. The ADS observables

are defined in analogy to eqs. (1.7)–(1.9).

� B0 ! DK+π�, D ! h+h�. Information from the GLW-Dalitz analysis of

B0 ! DK+π�, D0 ! h+h� decays [50] is added to the combination for the first

time. The “Dalitz” label indicates the method used to determine information about

CP violation in this mode. The variables, defined in analogy to eqs. (1.11)–(1.12), are

determined from a simultaneous Dalitz plot fit to B0! DK+π� with D0 ! K�π+,

D ! K+K� and D ! π+π� samples, as described in refs. [20, 21]. Note that the

observables are those associated with the DK�(892)0 amplitudes. Constraints on

hadronic parameters are also obtained in this analysis, as described in section 3.

� B0 ! DK�0, D ! K0
Sπ

+π�. Inputs from the model-dependent GGSZ analysis

of B0 ! DK�0(892), D ! K0
Sπ

+π� decays [51] are included in the combination

for the first time. The observables, defined in analogy to eqs. (1.11)–(1.12), are

measured by fitting the D ! K0
Sπ

+π� Dalitz plot using a model developed by the

BaBar collaboration [56].

A model-independent GGSZ analysis [57] is also performed by LHCb on the same

data sample. Currently, the model-dependent analysis has the best sensitivity to

the parameters x� and y�. Therefore the model-dependent results are used in the

combination. The numerical results of the combination change insignificantly if the

model-independent results are used instead.

� B0
s ! D�

s K
�. The inputs used from the time-dependent analysis of B0

s ! D�s K
�

decays using data corresponding to 1 fb�1 [52] are identical to those used in ref. [28].

Note however that a different sign convention is used here, as defined in eqs. (1.13)–

(1.14) and appendix A.

3 Auxiliary inputs

The external inputs are briefly described below and summarised in table 2. These mea-

surements provide constraints on unknown parameters and result in better precision on

γ. The values and uncertainties of the observables are provided in appendix D and the

correlations are given in appendix E.

� Input from global fit to charm data. The GLW/ADS measurements need input

to constrain the charm system in three areas: the ratio and strong phase difference

for D0 ! K�π+ and D0 ! π�K+ decays (rK�D , δK�D ), charm mixing (xD, yD) and

direct CP violation in D0 ! h+h� decays (Adir
KK , Adir

��), taken from a recent HFAG

charm fit [22]. These do not include the latest results on ∆ACP from LHCb [42]

but their impact has been checked and found to be negligible. The value of δK�D is

shifted by 180� compared to the HFAG result in order to match the phase convention

adopted in this paper. The parameter RK�D is related to the amplitude ratio rK�D
through RK�D � (rK�D )2.

– 8 –
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Decay Parameters Source Ref.

D0–D0-mixing xD, yD HFAG [22]

D ! K+π� rK�D , δK�D HFAG [22]

D ! h+h� Adir
KK , Adir

�� HFAG [22]

D ! K�π�π+π� δK3�
D , κK3�

D , rK3�
D CLEO+LHCb [58]

D ! π+π�π+π� F���� CLEO [59]

D ! K�π�π0 δK2�
D , κK2�

D , rK2�
D CLEO+LHCb [58]

D ! h+h�π0 F���0 , FKK�0 CLEO [59]

D ! K0
SK
�π+ δKSK�

D , κKSK�
D , rKSK�

D CLEO [60]

D ! K0
SK
�π+ rKSK�

D LHCb [61]

B0 ! DK�0 κDK
�0

B , R̄DK
�0

B , ∆δ̄DK
�0

B LHCb [50]

B0
s ! D�s K

� φs LHCb [62]

Table 2. List of the auxiliary inputs used in the combinations.

� Input for D0 ! K�π�π0 and D0 ! K�π�π+π� decays. The ADS mea-

surements with D0 ! K�π�π0 and D0 ! K�π�π+π� decays require knowledge of

the hadronic parameters describing the D decays. These are the ratio, strong phase

difference and coherence factors of the two decays: rK2�
D , δK2�

D , κK2�
D , rK3�

D , δK3�
D

and κK3�
D . Recently an analysis of D0 ! K�π�π+π� decays has been performed

by LHCb [63] that is sensitive to rK3�
D , δK3�

D and κK3�
D . Furthermore, an updated

measurement has been performed using CLEO-c data, and the results have been

combined with those from LHCb [58] to yield constraints and correlations of the six

parameters. These are included as Gaussian constraints in this combination, in line

with the treatment of the other auxiliary inputs.

� CP content of D ! h+h�π0 and D ! π+π�π+π� decays. For both the

three-body D ! h+h�π0 and four-body D ! π+π�π+π� quasi-GLW measurements

the fractional CP -even content of the decays, FKK�0 , F���0 and F����, are used as

inputs. These parameters were measured by the CLEO collaboration [59]. The uncer-

tainty for the CP -even content of D ! π+π�π+π� decays is increased from �0.028

to �0.032 to account for the non-uniform acceptance of the LHCb detector following

the recommendation in ref. [44]. For the D ! h+h�π0 decay the LHCb efficiency is

sufficiently uniform to avoid the need to increase the F+ uncertainty for these modes.

� Input for D ! K0
SK

�π+ parameters. The B+ ! DK+, D ! K0
SK
�π+

GLS measurement needs inputs for the charm system parameters rKSK�
D , δKSK�

D ,

and κKSK�
D . Constraints from ref. [60] on all three are included, along with an ad-

ditional constraint on the branching fraction ratio RKSK�
D from ref. [61]. The results
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corresponding to a limited region of the Dalitz plot, dominated by the K�(892)+

resonance, are used here. The quantity RKSK�
D is related to rKSK�

D through

RKSK�
D =

(rKSK�
D )2 � κKSK�

D rKSK�
D (yD cos δKSK�

D � xD sin δKSK�
D )

1� rKSK�
D κKSK�

D (yD cos δKSK�
D + xD sin δKSK�

D )
. (3.1)

The linear correlation coefficient between δKSK�
D and κKSK�

D is extracted from the

experimental likelihood as ρ(δKSK�
D , κKSK�

D ) = �0.60.

� Constraints on the B0 ! DK�0 hadronic parameters. The quasi-two-body

B0 ! DK�0 ADS and model-dependent GGSZ measurements need input on the

coherence factor κDK
�0

B and the parameters R̄DK
�0

B = r̄DK
�0

B /rDK
�0

B and ∆δ̄DK
�0

B =

δ̄DK
�0

B � δDK�0B , which relate the hadronic parameters of the quasi-two-body B0!
DK�0 ADS and GGSZ measurements (barred symbols) to those of the B0! DK+π�

amplitude analysis (unbarred symbols). The resulting values are taken from the

LHCb GLW-Dalitz analysis described in ref. [50]. These are taken to be uncorrelated

with each other and with the xDK
�0

� , yDK
�0

� parameters that are determined from the

same analysis.

� Constraint on φs. The time-dependent measurement of B0
s ! D�s K

� determines

the quantity γ � 2βs. In order to interpret this as a measurement of γ, the weak

phase �2βs � φs is constrained to the value measured by LHCb in B0
s ! J/ψhh

decays [62]. It has been checked that using the world average instead has a negligible

impact on the results.

4 Statistical treatment

The baseline results of the combinations are presented using a frequentist treatment, start-

ing from a likelihood function built from the product of the probability density functions

(PDFs), fi, of experimental observables ~Ai,

L(~α) =
Y

i

fi( ~A
obs
i j~α) , (4.1)

where ~Aobs
i are the measured values of the observables from an input analysis i, and ~α is

the set of parameters. For each of the inputs it is assumed that the observables follow a

Gaussian distribution

fi( ~A
obs
i j~α) / exp

�
�

1

2
( ~Ai(~α)� ~Aobs

i )T V �1
i ( ~Ai(~α)� ~Aobs

i )

�
, (4.2)

where Vi is the experimental covariance matrix, which includes statistical and systematic

uncertainties and their correlations. Correlations in the systematic uncertainties between

the statistically independent input measurements are assumed to be zero.

A χ2-function is defined as χ2(~α) = �2 lnL(~α). The best-fit point is given by the global

minimum of the χ2-function, χ2(~αmin). To evaluate the confidence level (CL) for a given
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value of a parameter, e.g. γ = γ0 in the following, the value of the χ2-function at the new

minimum is considered, χ2(~α0min(γ0)). The associated profile likelihood function for the

parameters is L(~α0min(γ0)). Then a test statistic is defined as ∆χ2 = χ2(~α0min)� χ2(~αmin).

The p-value, or 1 � CL, is calculated by means of a Monte Carlo procedure, described

in ref. [64] and briefly recapitulated here. For each value of γ0 the test statistic ∆χ2 is

calculated, and a set of pseudoexperiments, ~Aj , is generated according to eq. (4.2) with

parameters ~α set to the values at ~α0min. A new value of the test statistic, ∆χ20, is calculated

for each pseudoexperiment by replacing ~Aobs ! ~Aj and minimising with respect to ~α, once

with γ as a free parameter, and once with γ fixed to γ0. The value of 1�CL is then defined

as the fraction of pseudoexperiments for which ∆χ2 < ∆χ20. This method is sometimes

referred to as the “µ̂”, or the Plugin method. Its coverage cannot be guaranteed [64]

for the full parameter space, but can be verified for the best-fit point. The reason is

that for each value of γ0, the nuisance parameters, i.e. the components of ~α other than the

parameter of interest, are set to their best-fit values for this point, as opposed to computing

an n-dimensional confidence region, which is computationally impractical. The coverage

of the frequentist combinations is discussed in section 5.3.

5 Results

Results for the DK combination are presented in section 5.1 and for the Dh combination

in section 5.2. The coverage of the frequentist method is discussed in section 5.3 whilst

an interpretation of the results is provided in section 5.4. The rate equations from which

the observables are determined are invariant under the simultaneous transformation γ !
γ + 180�, δXB ! δXB + 180�, where δXB is the strong phase for each B ! DX decay

considered. Only the solution most consistent with the determination of γ from the global

CKM fit [26, 27] is shown.

5.1 DK combination

The DK combination consists of 71 observables and 32 parameters. The goodness of fit

computed from the χ2 value at the best fit point given the number of degrees of freedom

is p = 91.5%. The equivalent value calculated from the fraction of pseudoexperiments,

generated from the best fit point, which have a χ2 larger than that found in the data is

p = (90.5� 0.2)%.

Table 3 summarises the resulting central values and confidence intervals that are ob-

tained from five separate one-dimensional Plugin scans for the parameters: γ, rDKB , δDKB ,

rDK
�0

B and δDK
�0

B . These are shown in figure 1. Due to computational constraints the

two-dimensional contours, shown in figure 2, are obtained via the profile likelihood method

in which the value of the test statistic itself (∆χ2) is used. Except for the coverage, as

described in section 5.3, this is verified to be a good approximation of the Plugin method.

The parameter correlations obtained from the profile likelihood method are given in ap-

pendix F.
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Observable Central value 68.3% Interval 95.5% Interval 99.7% Interval

γ (�) 72.2 [64.9, 79.0] [55.9, 85.2] [43.7, 90.9]

rDKB 0.1019 [0.0963, 0.1075] [0.0907, 0.1128] [0.0849, 0.1182]

δDKB (�) 142.6 [136.0, 148.3] [127.8, 153.6] [116.2, 158.7]

rDK
�0

B 0.218 [0.171, 0.263] [0.118, 0.305] [0.000, 0.348]

δDK
�0

B (�) 189 [169, 212] [148, 241] [123, 283]

Table 3. Confidence intervals and central values for the parameters of interest in the frequentist

DK combination.

5.2 Dh combination

The Dh combination includes observables measured from B+ ! Dπ+ and

B+ ! Dπ+π�π+ decays, in addition to those measured in the DK combination,

for a total of 89 observables and 38 parameters. The goodness of fit calculated from the

χ2 is p = 72.9% and calculated from the pseudoexperiments is p = (71.4� 0.3)%.

Table 4 gives the results of the one-dimensional Plugin scans for γ, rD�B , δD�B , rDKB ,

δDKB , rDK
�0

B and δDK
�0

B . The scans are shown in figure 3. Two solutions are found, cor-

responding to rD�B values of 0.027 and 0.0045 for the favoured and secondary solutions,

respectively. Figure 3 shows that the secondary solution is suppressed by slightly more

than 1σ. Consequently, the 1σ interval for γ is very narrow because the uncertainty scales

inversely with the central value of rD�B . As with the DK combination, the two-dimensional

scans are performed using the profile likelihood method and are shown in figure 4. The two

solutions and the non-Gaussian contours are clearly visible. The parameter correlations

obtained from the profile likelihood method for both solutions are given in appendix F.

The coverage for the Dh analysis is examined in section 5.3, where it is found that the

coverage is slightly low and then starts to degrade when the true value of rD�B is less than

0.01, reaching a minimum around 0.006, before the behaviour of the DK combination is

recovered at very low values.

Recently, attempts have been made to estimate the value of rD�B using the known

branching fractions of B0 ! D0K0 and B0 ! D0π0 decays and SU(3) symmetry [23],

predicting a value of rD�B = 0.0053�0.0007, consistent with the secondary solution observed

in the data. Using this as an additional external input in the Dh combination gives γ =

(71.8+7:2
�8:6)�, which shows that when rD�B is small the uncertainties on γ are dominated by the

B ! DK inputs. This behaviour is similarly reflected by the 95.5% and 99.7% confidence

intervals for the Dh combination when no external constraint on rD�B is used. The goodness

of fit calculated from the χ2 is p = 70.5% and calculated from pseudoexperiments is

p = (69.7� 0.6)%.

Given the poor expected additional sensitivity from the B ! Dπ-like modes, coupled

with the highly non-Gaussian p-value distribution of the Dh combination, and the fact

that the coverage of the Dh combination is low near the expected value of rD�B (see sec-

tion 5.3), we choose to quote as the nominal result that of the DK combination, namely

γ = (72.2 +6:8
�7:3)�.
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Figure 1. 1�CL curves for the DK combination obtained with the Plugin method. The 1σ and

2σ levels are indicated by the horizontal dotted lines.

5.3 Coverage of the frequentist method

The coverage of the Plugin (and the profile likelihood) method is tested by generating

pseudoexperiments and evaluating the fraction for which the p-value is less than that

obtained for the data. In general, the coverage depends on the point in parameter space.

Following the procedure described in ref. [30], the coverage of the profile likelihood and

one-dimensional Plugin method intervals are tested. The coverage is determined for each

method using the same pseudoexperiments; consequently their uncertainties are correlated.

The results for the best fit points are shown in table 5. Figure 5 shows the coverage of
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Figure 2. Profile likelihood contours from the DK combination. The contours show the two-

dimensional 1σ and 2σ boundaries, corresponding to 68.3% and 95.5% CL, respectively.

the 1σ intervals as determined from pseudoexperiments for the DK (Dh) combination as a

function of the value of rDKB (rD�B ) used to generate the pseudoexperiments. It can be seen

that the coverage for the DK combination degrades as the true value of rDKB gets smaller.

This behaviour has previously been observed by the CKMfitter group [26]. The fitted value

found in this combination, rDKB � 0.1, is well within the regime of accurate coverage. The

dependence of the coverage for the Dh combination on rD�B shows similar behaviour, where

the coverage begins to degrade when the true value reaches rD�B < 0.01, worsening until

the true value of rD�B becomes so small that the Dπ modes offer no sensitivity and the

behaviour seen in the DK combination is recovered. The fitted value of rD�B in the Dh
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Figure 3. 1�CL curves for the Dh combination obtained with the Plugin method. The 1σ and

2σ levels are indicated by the horizontal dotted lines.
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Figure 4. Profile likelihood contours from the Dh combination. The contours show the two-

dimensional 1σ and 2σ boundaries, corresponding to 68.3% and 95.5% CL, respectively.
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Observable Central value 68.3% Interval 95.5% Interval 99.7% Interval

γ (�) 73.5 [70.5, 76.8] [56.7, 83.4] [40.1, 90.8]

rDKB 0.1017 [0.0970, 0.1064] [0.0914, 0.1110] [0.0844, 0.1163]

δDKB (�) 141.6 [136.6, 146.3] [127.2, 151.1] [114.6, 155.7]

rDK
�0

B 0.220 [0.173, 0.264] [0.121, 0.307] [0.000, 0.355]

δDK
�0

B (�) 188 [168, 211] [148, 239] [120, 280]

rD�B 0.027 [0.0207, 0.0318] [0.0020, 0.0365] [0.0008, 0.0425]

δD�B (�) 348.3 [343.2, 352.9] [220.5, 356.4] [192.9, 359.8]

Table 4. Confidence intervals and central values for the parameters of interest in the frequentist

Dh combination.
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Figure 5. Dependence of the coverage for the one-dimensional Plugin method (blue circles) and

the profile likelihood method (red squares) on rDKB for the DK combination (left) and on rD�B for

the Dh combination (right). The solid horizontal line shows the nominal coverage at 1σ of 68.3%.

combination (� 0.03) falls in the regime with good coverage, whilst the expected value, and

indeed the value of the second minimum (� 0.005), is in the regime in which the coverage

starts to deteriorate. No correction for under-coverage is applied to the confidence intervals

quoted in tables 3 and 4.

5.4 Interpretation

Using the nominal DK combination and the simple profile likelihood method some further

interpretation of the results is presented in this section. Performing the DK combination

with statistical uncertainties only suggests that the systematic contribution to the uncer-

tainty on γ is approximately 3�. Performing the combination without use of the external

constraints (described in section 3) roughly doubles the uncertainty on γ, demonstrating

the value of including this information.

The origin of the sensitivity to γ of the various decay modes and analysis methods in

the DK combination is demonstrated in figure 6. It can be seen that B+ ! DK+ decays

offer the best sensitivity (see figure 6 left) and that the GLW/ADS methods offer multiple
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η [%] α (profile likelihood) [%] α (Plugin) [%]

DK

68.3 65.1� 0.7 67.1� 0.7

95.5 93.5� 0.4 94.3� 0.3

99.7 98.7� 0.2 98.8� 0.2

Dh

68.3 63.0� 0.7 64.3� 0.7

95.5 90.9� 0.4 91.7� 0.4

99.7 95.3� 0.3 95.6� 0.3

Table 5. Measured coverage α of the confidence intervals for γ, determined at the best fit points,

for both the one-dimensional Plugin and profile likelihood methods. The nominal coverage is

denoted as η.
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Figure 6. 1�CL plots, using the profile likelihood method, for DK combinations split by the initial

B meson flavour (left) and split by analysis method (right). Left: (orange) B0
s initial state, (yellow)

B0 initial states, (blue) B+ initial states and (green) the full combination. Right: (yellow) GGSZ

methods, (orange) GLW/ADS methods, (blue) other methods and (green) the full combination.

narrow solutions compared to the single broader solution of the GGSZ method (see figure 6

right). Figures 7 and 8 further demonstrate the complementarity of the input methods in

the (γ vs. δXB ) and (γ vs. rXB ) planes, for the B+ and B0 systems respectively.

6 Bayesian analysis

The combinations are also performed using a Bayesian procedure. Probability (or credible)

intervals (or regions) are obtained according to a highest posterior density approach. A

highest posterior density interval (region) is defined by the property that the minimum

density of any point within the interval (region) is equal to, or larger than, the density of

any point outside that interval (region).
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containing 68.3% and 95.5% respectively.
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Observable Central value 68.3% Interval 95.5% Interval 99.7% Interval

γ (�) 70.3 [62.4, 77.4] [52.6, 83.5] [42.1, 88.4]

rDKB 0.1012 [0.0954, 0.1064] [0.0900, 0.1120] [0.0846, 0.1171]

δDKB (�) 142.2 [134.7, 148.1] [125.3, 153.7] [113.2, 157.9]

rDK
�0

B 0.204 [0.149, 0.253] [0.073, 0.299] [0.000, 0.322]

δDK
�0

B (�) 190.3 [165.8, 218.4] [139.5, 263.4] [117.8, 292.4]

Table 6. Credible intervals and most probable values for the hadronic parameters determined from

the DK Bayesian combination.

6.1 DK combination

Uniform prior probability distributions (hereafter referred to as priors) are used for γ and

the B-meson hadronic parameters in the DK combination, allowing them to vary inside

the following ranges: γ 2 [0�, 180�], δDKB 2 [�180�, 180�], rDKB 2 [0.06, 0.14]. The priors

for δDK��B and δDsK
B are identical to that for δDKB ; the range for δDK

�0

B is [0�, 360�]. The

allowed ranges for rDK
�0

B , rDK��B and rDsK
B are [0, 0.45], [0, 0.16] and [0, 0.2]. The remain-

ing auxiliary parameters are constrained with Gaussian priors according to the externally

measured values and their uncertainties. A range of alternative prior distributions have

been found to have negligible impact on the results for γ. The results are shown in table 6

and in figures 9 and 10. The Bayesian credible intervals are found to be in good agreement

with the frequentist confidence intervals.

6.2 Dh combination

For the Dh combination additional uniform priors are introduced: rD�B 2 [0, 0.06], δD�B 2
[180�, 360�], rD���B 2 [0, 0.13] and δD���B 2 [0�, 360�]. All other priors are as described

above for the DK combination.

The results are given in table 7 and shown in figures 11 and 12. Comparison with

the frequentist treatment (section 5.2) shows that the 1σ intervals and regions differ be-

tween the two treatments, but satisfactory agreement is recovered at 2σ. Such differences

are not uncommon when comparing confidence and credible intervals or regions with low

enough confidence level and probability, in the presence of a highly non-Gaussian likelihood

function.

7 Conclusion

Observables measured by LHCb that have sensitivity to the CKM angle γ, along with

auxiliary information from other experiments, are combined to determine an improved

constraint on γ. Combination of all B ! DK-like modes results in a best fit value of
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Figure 9. Posterior probability density from the Bayesian interpretation for the DK combination.

γ = 72.2� and the confidence intervals

γ 2 [64.9, 79.0]� at 68.3% CL ,

γ 2 [55.9, 85.2]� at 95.5% CL .

A second combination is investigated with additional inputs from B ! Dπ-like modes.

The frequentist and Bayesian approaches are in agreement at the 2σ level, giving intervals

of γ 2 [56.7, 83.4]� and γ 2 [52.1, 84.6]� at 95.5% CL, respectively.

Taking the best fit value and the 68.3% CL interval of the DK combination γ is found

to be

γ = (72.2 +6:8
�7:3)� ,
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Figure 10. Two-dimensional posterior probability regions from the Bayesian interpretation for the

DK combination. Light and dark regions show the 68.3% and 95.5% credible intervals respectively.

where the uncertainty includes both statistical and systematic effects. A Bayesian inter-

pretation yields similar results, with credible intervals found to be consistent with the

corresponding confidence intervals of the frequentist treatment. The result for γ is com-

patible with the world averages [26, 27] and the previous LHCb average, γ = (73+9
�10)� [28].

This combination has a significantly smaller uncertainty than the previous one and replaces

it as the most precise determination of γ from a single experiment to date.

Additional inputs to the combinations in the future will add extra sensitivity, this

includes use of new decay modes (such as B+ ! DK�+), updates of current measurements

to the full Run I data sample (such as B0
s ! D�s K

�) and inclusion of the Run II data

sample. Exploiting the full LHCb Run II data sample over the coming years is expected

to reduce the uncertainty on γ to approximately 4�.
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Figure 11. Posterior probability density from the Bayesian interpretation for the Dh combination.

The inset for rD�B shows the same distribution on a logarithmic scale.
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Figure 12. Two-dimensional posterior probability regions from the Bayesian interpretation for the

Dh combination. Light and dark regions show the 68.3% and 95.5% credible intervals respectively.

– 24 –



JH
E
P
12(2016)087

Observable Central value 68.3% Interval 95.5% Interval 99.7% Interval

γ (�) 72.4 [63.9, 79.0] [52.1, 84.6] [40.1, 89.5]

rDKB 0.1003 [0.0948, 0.1057] [0.0893, 0.1109] [0.0838, 0.1159]

δDKB (�) 141.0 [133.3, 147.5] [122.1, 153.1] [108.6, 157.5]

rDK
�0

B 0.2072 [0.1514, 0.2555] [0.0788, 0.3007] [0.0031, 0.3291]

δDK
�0

B (�) 189.8 [166.3, 216.5] [143.9, 255.2] [120.2, 286.0]

rD�B 0.0043 [0.0027, 0.0063] [0.0011, 0.0281] [0.0008, 0.0329]

δD�B (�) 303.7 [264.7, 332.7] [231.5, 355.2] [202.7, 359.0]

Table 7. Credible intervals and most probable values for the hadronic parameters determined from

the Dh Bayesian combination.
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Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France),

RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith

Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme

Trust (United Kingdom).

A Relationships between parameters and observables

The equations given in this section reflect the relationship between the experimental ob-

servables and the parameters of interest. For simplicity, the equations are given in the

absence of D0–D0 mixing. In order to include the small (< 0.5�) effects from D0–D0 mix-

ing, the equations should be modified following the recommendation in ref. [37], making

use of the D0 decay time acceptance coefficients, Mxy, given in table 8.

Analysis Mxy

D ! h+h� GLW/ADS 0.594

D ! h+h�π0 GLW/ADS 0.592

D ! h+π�π+π� GLW/ADS 0.570

B+ ! Dh+π�π+ GLW/ADS 0.6

D ! K0
SK
�π+ GLS 0.6

B0 ! DK�0 ADS 0.6

Table 8. D0 decay time acceptance coefficients (see ref. [37]) for each analysis.
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B+ ! Dh+, D ! h+h� observables.

ADK;�KADS =
2rDKB rK�D sin

�
δDKB + δK�D

�
sin γ

�
rDKB

�2
+
�
rK�D

�2
+ 2rDKB rK�D cos

�
δDKB + δK�D

�
cos γ

AD�;�KADS =
2rD�B rK�D sin

�
δD�B + δK�D

�
sin γ

�
rD�B

�2
+
�
rK�D

�2
+ 2rD�B rK�D cos

�
δD�B + δK�D

�
cos γ

ADK;KKCP =
2rDKB sin δDKB sin γ

1 +
�
rDKB

�2
+ 2rDKB cos δDKB cos γ

+Adir
KK

ADK;��CP =
2rDKB sin δDKB sin γ

1 +
�
rDKB

�2
+ 2rDKB cos δDKB cos γ

+Adir
��

AD�;KKCP =
2rD�B sin δD�B sin γ

1 +
�
rD�B

�2
+ 2rD�B cos δD�B cos γ

+Adir
KK

AD�;��CP =
2rD�B sin δD�B sin γ

1 +
�
rD�B

�2
+ 2rD�B cos δD�B cos γ

+Adir
��

ADK;K�fav =
2rDKB rK�D sin

�
δDKB � δK�D

�
sin γ

1 +
�
rDKB rK�D

�2
+ 2rDKB rK�D cos

�
δDKB � δK�D

�
cos γ

RDK;�KADS =

�
rDKB

�2
+
�
rK�D

�2
+ 2rDKB rK�D cos

�
δDKB + δK�D

�
cos γ

1 +
�
rDKB rK�D

�2
+ 2rDKB rK�D cos

�
δDKB � δK�D

�
cos γ

RD�;�KADS =

�
rD�B

�2
+
�
rK�D

�2
+ 2rD�B rK�D cos

�
δD�B + δK�D

�
cos γ

1 +
�
rD�B rK�D

�2
+ 2rD�B rK�D cos

�
δD�B � δK�D

�
cos γ

RK�K=� = R
1 +

�
rDKB rK�D

�2
+ 2rDKB rK�D cos

�
δDKB � δK�D

�
cos γ

1 +
�
rD�B rK�D

�2
+ 2rD�B rK�D cos

�
δD�B � δK�D

�
cos γ

RKKCP =
RKKK=�

RK�K=�
= R

1 + (rDKB )2 + 2rDKB cos(δDKB ) cos(γ)

1 + (rD�B )2 + 2rD�B cos(δD�B ) cos(γ)

R��CP =
R��K=�

RK�K=�
= R

1 + (rDKB )2 + 2rDKB cos(δDKB ) cos(γ)

1 + (rD�B )2 + 2rD�B cos(δD�B ) cos(γ)

– 27 –



JH
E
P
12(2016)087

B+ ! Dh+, D ! h+π�π+π� observables.
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B+ ! Dh+, D ! h+h�π0 observables.
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