
Peer reviewed version

Link to published version (if available):
10.1111/jch.12972

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Wiley at DOI: 10.1111/jch.12972. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Author Response to LTE JCH-16-0356

Title
Cardiac magnetic resonance imaging provides a new insight in hypertensive heart disease – a reply

Authors
Jonathan C L Rodrigues BSc(Hons), MBChB(Hons), MRCP, FRCR¹-², Stephen Rohan BSc(Hons)³, Amardeep Ghosh Dastidar MBBS, MRCP¹, Adam Trickey MSc⁴, Gergely Szantho MD, MRCP¹, Laura E K Ratcliffe BSc(Hons), MBBS, MRCP⁵, Amy E Burchell MA, BM BCh, MRCP⁵, Emma C Hart BSc, PhD²,⁵, Chiara Bucciarelli-Ducci MD, PhD, FESC, FRCP¹, Mark C K Hamilton MBChB, MRCP, FRCR¹, Angus K Nightingale MA, MB BChir, FRCP, MD⁵, Julian F R Paton BSc(Hons), PhD²,⁵, Nathan E Manghat MBChB, MRCP, FRCR, MD, FSCCT¹, David H Maciver MBBS, MD, FRCP, FESC³,⁶,⁷

Affiliations
¹ NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW
² School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD
³ Medical School, Faculty of Medicine and Dentistry, University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
Corresponding author

Professor David H MacIver, Consultant Cardiologist Department of Cardiology, Musgrove Park Hospital, Taunton, TA1 5DA, UK

Tel: 0044 1823 342130. Fax: 0044 1823 342709. Email: david.maciver@tst.nhs.uk

Conflict of interest

Dr. Chiara Bucciarelli-Ducci is a Consultant for Circle Cardiovascular Imaging Inc., Calgary, Canada

Word count: 404

Reference number: 5

Running head: Magnetic resonance and hypertension
Letter to Editor

We thank the readers for their interest in our article(1).

With regards to the request for correlation with office and ambulatory blood pressure readings, these data are provided in the manuscript; end-diastolic wall thickness (EDWT) correlated with office SBP ($R=0.43$, $P<.001$) and office DBP ($R=0.32$, $P<.005$) but did not correlate with ABPM SBP ($R=0.24$, $P=.12$), ABPM DBP ($R=0.18$, $P=.27$), or ABPM mean arterial pressure ($R=0.18$, $P=.27$).

We agree that echocardiography is currently the imaging modality most frequently used to investigate subjects with arterial hypertension, but cardiovascular magnetic resonance imaging (CMR) has the potential to offer a ‘one-stop’ comprehensive assessment of subjects with hypertension, both to screen for secondary causes and identify end-target organ damage(2).

We elected to perform CMR rather than echocardiography because of 1) its increased spatial resolution and tissue contrast and 2) the suboptimal imaging due to the relatively high prevalence of concomitant obesity in our cohort. We have not performed a direct comparison of echocardiographic and CMR findings but agree it would be interesting to perform such an analysis.

We agree that left ventricular (LV) geometry is an interesting parameter. We provide data on absolute wall thickening relative to the LV end-diastolic diameter to correct for changes in LV cavity size. Absolute wall thickening is determined by both end-
diastolic wall thickness and radial strain. The proportional decrease in cavity size during systole is more closely determined by end-diastolic dimension than volume. Correction of 1-dimensional measurement (absolute wall thickening) by another 1-dimensional measurement (diameter) intuitively makes more sense than by a 3-dimensional measurement (volume).

We provided information on longitudinal shortening, which is mathematically equivalent to longitudinal engineering strain (but with an opposite sign). We chose to calculate mid wall myocardial shortening instead of mean circumferential strain as there is a large strain gradient between the epicardium and endocardium.

We agree the interaction between diffuse myocardial interstitial fibrosis and myocardial mechanics in hypertensive heart disease is an interesting area. Further to the study by Kuruvilla et al.(3), our group has shown that the prevalence and degree of LV fibrosis and central aortic distensibility vary amongst different hypertensive heart disease LV phenotypes(4,5). We agree that such new insights are important in furthering our understanding of the pathophysiology of hypertensive heart disease and our appreciation of different potential aetiologies and drivers of the hypertensive state. Such insights should help us to tailor existing anti-hypertensive treatments more effectively and highlight potential substrate for new anti-hypertensive strategies.

References

