
Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to publication record in Explore Bristol Research
PDF-document

This is the final presented version of the poster.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Aims
- Review the properties and assumptions of methods for population-adjusted treatment comparisons, including Matching-Adjusted Indirect Comparisons (MAIC) and Simulated Treatment Comparisons (STC).
- Provide guidance on their use in health technology appraisal (HTA).

Background
In HTA submissions, a company wishes to compare their treatment B with that of a competitor C. Standard indirect comparison methods cannot be used, but meta-analysis assumes that there are no differences in effect modifiers between the populations, and require a common comparator or network effect model—which is often not the case. Effect modification is present on a given scale, relative effects \(\exp(t AB_{i}) = \frac{Y_{A}g_{YCA} - Y_{B}g_{YCA}}{Y_{A}g_{YAB} - Y_{B}g_{YAB}} \) between treatments that are specific to a given population. P, where \(w_{i} = \frac{1}{N_{i}} \), are the mean of the relative effect estimates.

In an ideal scenario, individual patient data (IPD) would be available on trials, and an IPD Network Meta-Analysis could be performed. However, it is more likely that only one company has access to the IPD and neither company has access to the other company’s IPD. Population-adjustment methods seek to use available IPD to adjust for between-trial differences, or even use unmatched network methods, under certain assumptions (assumptions 1a and 1b).

In a network model with an ADM, any treatment model can be used to underpin the choice of a common comparator in Figure 4b. Figure 4b. The network model when there is no in-study adjustment or there are single-study ADMs, an unanchored comparison is the only option (Figure 4d).

Methods for population adjustment
Population adjustment methods are broadly of two types:
1. Propensity score matching, such as Matching-Adjusted Indirect Comparisons (MAIC), Simulated Treatment Comparisons (STC) and turns, where individual patient data (IPD) were available on trials, and an IPD Network Meta-Analysis could be performed. Network Meta-Analysis was preferred, including a common comparator or network effect model—which is often not the case. Effect modification is present on a given scale, relative effects \(\exp(t AB_{i}) = \frac{Y_{A}g_{YCA} - Y_{B}g_{YCA}}{Y_{A}g_{YAB} - Y_{B}g_{YAB}} \) between treatments that are specific to a given population. P, where \(w_{i} = \frac{1}{N_{i}} \), are the mean of the relative effect estimates.

In an ideal scenario, individual patient data (IPD) would be available on trials, and an IPD Network Meta-Analysis could be performed. However, it is more likely that only one company has access to the IPD and neither company has access to the other company’s IPD. Population-adjustment methods seek to use available IPD to adjust for between-trial differences, or even use unmatched network methods, under certain assumptions (assumptions 1a and 1b).

In a network model with an ADM, any treatment model can be used to underpin the choice of a common comparator in Figure 4b. Figure 4b. The network model when there is no in-study adjustment or there are single-study ADMs, an unanchored comparison is the only option (Figure 4d).

Recommendations
The focus of the following recommendations is statistical and clinical validity, transparency, and consistency in the use of population-adjustment methods for health technology appraisal. The results of population-adjusted analyses are incomplete if they cannot be obtained for the correct target population. The shared effect modifier assumption holds for active treatments A and C if:
- Assumption 2b. If effect modification is present on a given scale, relative effects \(\exp(t AB_{i}) = \frac{Y_{A}g_{YCA} - Y_{B}g_{YCA}}{Y_{A}g_{YAB} - Y_{B}g_{YAB}} \) between treatments that are specific to a given population. P, where \(w_{i} = \frac{1}{N_{i}} \), are the mean of the relative effect estimates.

In an ideal scenario, individual patient data (IPD) would be available on trials, and an IPD Network Meta-Analysis could be performed. However, it is more likely that only one company has access to the IPD and neither company has access to the other company’s IPD. Population-adjustment methods seek to use available IPD to adjust for between-trial differences, or even use unmatched network methods, under certain assumptions (assumptions 1a and 1b).

In a network model with an ADM, any treatment model can be used to underpin the choice of a common comparator in Figure 4b. Figure 4b. The network model when there is no in-study adjustment or there are single-study ADMs, an unanchored comparison is the only option (Figure 4d).

Recommendations
The focus of the following recommendations is statistical and clinical validity, transparency, and consistency in the use of population-adjustation methods for health technology appraisal. The results of population-adjusted analyses are incomplete if they cannot be obtained for the correct target population. The shared effect modifier assumption holds for active treatments A and C if:
- Assumption 2b. If effect modification is present on a given scale, relative effects \(\exp(t AB_{i}) = \frac{Y_{A}g_{YCA} - Y_{B}g_{YCA}}{Y_{A}g_{YAB} - Y_{B}g_{YAB}} \) between treatments that are specific to a given population. P, where \(w_{i} = \frac{1}{N_{i}} \), are the mean of the relative effect estimates.

In an ideal scenario, individual patient data (IPD) would be available on trials, and an IPD Network Meta-Analysis could be performed. However, it is more likely that only one company has access to the IPD and neither company has access to the other company’s IPD. Population-adjustment methods seek to use available IPD to adjust for between-trial differences, or even use unmatched network methods, under certain assumptions (assumptions 1a and 1b).

In a network model with an ADM, any treatment model can be used to underpin the choice of a common comparator in Figure 4b. Figure 4b. The network model when there is no in-study adjustment or there are single-study ADMs, an unanchored comparison is the only option (Figure 4d).