E% University of
OPEN (2" ACCESS BRISTOL

Durham, M. G., Hagen, M. F., & Sisto, A. (2017). Boundaries and
automorphisms of hierarchically hyperbolic spaces. Geometry and
Topology, 21(6), 3659-3758. https://doi.org/10.2140/gt.2017.21.3659

Peer reviewed version

Link to published version (if available):
10.2140/gt.2017.21.3659

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via MSP at https://msp.org/gt/2017/21-6/p10.xhtml. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the

published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/


https://doi.org/10.2140/gt.2017.21.3659
https://doi.org/10.2140/gt.2017.21.3659
https://research-information.bris.ac.uk/en/publications/21cbed15-2850-442d-b8c8-907bd65eed07
https://research-information.bris.ac.uk/en/publications/21cbed15-2850-442d-b8c8-907bd65eed07

1604.01061v3 [math.GT] 8 Feb 2017

arXiv

BOUNDARIES AND AUTOMORPHISMS OF HIERARCHICALLY
HYPERBOLIC SPACES

MATTHEW G. DURHAM, MARK F. HAGEN, AND ALESSANDRO SISTO

ABsTRrRACT. Hierarchically hyperbolic spaces provide a common framework for studying
mapping class groups of finite type surfaces, Teichmiiller space, right-angled Artin groups,
and many other cubical groups. Given such a space X, we build a bordification of X com-
patible with its hierarchically hyperbolic structure. If X is proper, e.g. a hierarchically
hyperbolic group such as the mapping class group, we get a compactification of X’; we also
prove that our construction generalizes the Gromov boundary of a hyperbolic space. In
our first main set of applications, we introduce a notion of geometrical finiteness for hier-
archically hyperbolic subgroups of hierarchically hyperbolic groups in terms of boundary
embeddings. As primary examples of geometrical finiteness, we prove that the natural in-
clusions of finitely generated Veech groups and the Leininger-Reid combination subgroups
extend to continuous embeddings of their Gromov boundaries into the boundary of the
mapping class group, both of which fail to happen with the Thurston compactification of
Teichmiiller space. Our second main set of applications are dynamical and structural, built
upon our classification of automorphisms of hierarchically hyperbolic spaces and analysis
of how the various types of automorphisms act on the boundary. We prove a generalization
of the Handel-Mosher “omnibus subgroup theorem” for mapping class groups to all hierar-
chically hyperbolic groups, obtain a new proof of the Caprace-Sageev rank-rigidity theorem
for many CAT(0) cube complexes, and identify the boundary of a hierarchically hyperbolic
group as its Poisson boundary; these results rely on a theorem detecting irreducible azial
elements of a group acting on a hierarchically hyperbolic space (which generalize pseudo-
Anosov elements of the mapping class group and rank-one isometries of a cube complex
not virtually stabilizing a hyperplane).
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INTRODUCTION

The class of hierarchically hyperbolic spaces (HHS) was introduced in [BHS14], and given
a streamlined definition in [BHS15Db], to provide a common framework for studying cubical
groups and mapping class groups of surfaces. The definition was motivated by the observa-
tion that, under natural hypotheses, a CAT(0) cube complex is equipped with a collection
of projections to hyperbolic spaces obeying rules reminiscent of the hierarchical structure
of mapping class groups and projections to curve graphs introduced by Masur and Minsky
in [MM99, MMO0OQ]. The class of HHS includes the aforementioned spaces (mapping class
groups and many CAT(0) cube complexes, including all universal covers of compact special
cube complexes), along with Gromov-hyperbolic spaces, Teichmiiller space with any of the
usual metrics, and many others; see [BHS14, BHS15b, BHST5a] for an account of the current
scope of the theory.

Much of the utility of HHS comes from the fact that many features of Gromov-hyperbolic
spaces have natural generalizations in the HHS world. Since one of the most useful objects
associated to a hyperbolic space is its Gromov boundary, we provide here a generalization of
the Gromov boundary to hierarchically hyperbolic spaces. The boundary of a hierarchically
hyperbolic space is inspired by various boundaries associated to the salient examples of HHS,
e.g. the simplicial boundary of a CAT(0) cube complex and the Thurston compactification
of Teichmiiller space, projective measured lamination space PML(S).

Just as the Gromov boundary does for hyperbolic spaces and groups, the HHS boundary
provides considerable information about the geometry of an HHS and the dynamics of its
automorphisms; our aim in this paper is to explore some of these properties.

Introduction to HHS. We first briefly and softly recall the HHS theory. A hierarchically
hyperbolic space is a pair (X, &) equipped with some additional data: X is a quasigeodesic
metric space and & is an index set equipped with a partial order =, called nesting, with a
unique maximal element S. There is also an orthogonality relation on &; when & is the set
of essential subsurfaces of a surface S, up to isotopy, orthogonality is just disjointness. We
often call elements of & domains.

Each U € & is equipped with a uniformly hyperbolic space CU and a coarse map 7y :
X — CU. There are also relative projections pg, which are coarse maps CU — CV defined
unless U, V' are orthogonal. In the case where X is the marking complex of the surface .S and
G is the set of subsurfaces of S, then the associated hyperbolic spaces are the curve graphs
of these subsurfaces and the projections are subsurface projections. We impose other rules
reminiscent of the hierarchical structure of the mapping class group; see Definition [I11

The distance formula is crucial: for any z,y € X, the distance dy(z,y) differs, up to
bounded multiplicative and additive error, from the sum of the distances dey (7 (), 7 (v))
as U € G varies over those domains where that distance exceeds some predefined thresh-
old [BHSI5h].

Just as quasiconvexity is vital to the study of hyperbolic spaces, hierarchical quasiconvex-
ity is central in the study of HHS. Roughly, ) € X is hierarchically quasiconvex if 7y ())
is uniformly quasiconvex for each U € &, and any point in X projecting under my; close to
7w (Y) for each U must lie close (in X') to ). The fundamental example of a hierarchically
quasiconvex subspaces is the standard product region Py associated to each U € G. Roughly,
the subspace Py consists of those points x € X where 7y (z) is close to pg for any V € &
that is not orthogonal to, or nested in, V. The factor of Py obtained by fixing, in addition,
the projections to domains orthogonal to U (and allowing movement in domains nested in
U) is denoted Fyr, and the other factor is Eyy. A familiar example here is the region of Te-
ichmiiller space with the Teichmiiller metric where the boundary curves of some subsurface



BOUNDARIES OF HHS 3

U are short: Minsky proved that these so-called thin parts are quasiisometric to
products of the Teichmiiller spaces of the complementary subsurfaces, one of which is U.

What’s needed from BHSI5b]. The paper is the main foundational paper
in the theory of HHS. In the current paper, we use most of the background material developed
in [BHSI5D], with the notable exception of the combination theorems. In particular, we use
the main definition of HHS (which is equivalent to, but much simpler than, the original
definition from [BHS15b]), the realization theorem, the distance formula, and the existence
of hierarchy paths. The fact that mapping class groups are HHG, which is crucial for
our applications to Veech and Leininger-Reid subgroups in Section [ could be deduced
from [MM99, Beh06], but is also given a streamlined proof in
Section 11].

From [BHS14|, we need the acylindricity result (Theorem 14.3) and, for the purposes of
Section [I0, the HHS structure on CAT(0) cube complexes. We note that the acylindricity
result from is independent of the other HHS results in that paper.

Finally, the recent paper [BHS15a] is completely independent of this onel]

The boundary. Consider an HHS (X', &). Since any two points of X" are joined by a hier-
archy path — a uniform quasigeodesic projecting to a uniform unparametrized quasigeodesic
in CU for each U € & (see [BHSI5D|) — a natural approach to constructing a boundary is
to imitate the construction of the Gromov boundary, or the visual boundary of a CAT(0)
space: boundary points would be asymptotic classes of “hierarchy rays” emanating from
a fixed basepoint, and one might imagine topologizing this set by defining two boundary
points to be close if the corresponding rays stay close “for a long time”.

The boundary construction is motivated by this intuition. Given a hierarchy ray v : N —
X, one first observes that the set of U € & for which 7 o v is unbounded is a pairwise-
orthogonal collection —  either spends a bounded amount of time in each standard product
region, or 7 wanders permanently into the (coarse) intersection of several standard product
regions. Accordingly, the underlying set of the boundary d(X', &) is the set of formal linear
combinations p = » ;o aupy, where 8 < & (the support of p) is a pairwise-orthogonal set,
each py is a point in the Gromov boundary of CU, each ay € (0,1], and > ;; ay = 1.

Regarding each 0CU as a discrete set, the above construction yields a (highly disconnected,
locally infinite) simplicial complex. The “rank-one hierarchy rays” — i.e. the points of dC.S —
correspond to isolated 0-simplices, while the standard product regions contribute boundary
subcomplexes isomorphic to simplicial joins. This complex is a kind of “Tits boundary”
for (X,&). The actual boundary we define is related to this complex in much the same
way that the visual boundary of a CAT(0) space is related to the Tits boundary; we define
the boundary 0(X, &) by imposing a coarser topology, described in Section 2l (When the
context is clear, we denote d(X, &) by dX, being mindful that this space depends, as far as
we know, on the particular HHS structure &.)

The resulting space X = X U 0X is Hausdorff and separable; X is a closed subset and
X is dense (Proposition 2I7). Moreover, the Gromov boundary 0CU embeds in (X, &), in
the obvious way, for each U € &, by Theorem Crucially:

Theorem [B.4] (Compactness) Let (X,8) be a hierarchically hyperbolic space with X
proper. Then X is compact.

The definition of d(X', &) is given strictly in terms of & and the accompanying hyperbolic
spaces and projections; the standing assumption that (X, &) is normalized — each 7y is
coarsely surjective — connects the boundary to the space X by ensuring that X is dense in

IThe picture at http://www.wescac.net/HHS_infographic.pdf| shows the current state of the theory,
indicating the main concepts and results and their interdependencies.
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X. Even so, it is not clear whether the homeomorphism type of d(X,&) depends on the
particular choice of HHS structure:

Question 1. Let (X,6) be a hierarchically hyperbolic space and let (X,&") be a different
hierarchically hyperbolic structure on the same space. Does the identity X — X extend to a
map X U (X, 8) - X U X, &) which restricts to a homeomorphism of boundaries?

A positive answer to Question [Il would stand in contrast to the situation for CAT(0)
spaces. For example, the right-angled Artin group A, presented by a path of length 3,
famously has the property that the universal cover X of the Salvetti complex can be endowed
with different CAT(0) metrics (obtained by perturbing angles in the 2-cells) with non-
homeomorphic visual boundaries [CK00]. On the other hand, X admits a hierarchically
hyperbolic structure ()Z' , &) coming from the cubical structure of X (with no dependence
on the CAT(0) metric). Perturbing the CAT(0) metric within its quasiisometry type does
not change the HHS structure (and hence the HHS boundary), so the HHS boundary is in a
sense more “canonical” than the visual boundary in this example (and indeed for all CAT(0)
cube complexes with factor systems, which we discuss in more detail below).

Automorphisms and their actions on the boundary. An automorphism of (X,&) is
a bijection g : & — & along with an isometry CU — Cg(U) for each U € & which satisfy
certain compatibility conditions. The distance formula ensures that automorphisms induce
uniform quasi-isometries of X, so the group Aut(&) of automorphisms uniformly quasi-acts
by (uniform) quasi-isometries on X. The (quasi-)action of Aut(&) on X extends to an action
on X restricting to an action by homeomorphisms on 64X (Corollary G.1)).

In one of the main cases of interest, X is a Cayley graph of a finitely-generated group G,
and the action of G on itself by left multiplication corresponds to an action on (G, &) by HHS
automorphisms. In this situation, if the action on & is cofinite, then (G, &) is a hierarchically
hyperbolic group structure; if a group G admits a hierarchically hyperbolic group structure,
then G is a hierarchically hyperbolic group. The archetypal hierarchically hyperbolic group is
the mapping class group of a connected, oriented surface of finite type [BHSI5D, Section 11].
Other examples include many cubical groups [BHS14], many graphs of hierarchically hyper-
bolic groups [BHSI5D], and certain quotients of hierarchically hyperbolic groups [BHST5a].
If (G, ©) is a hierarchically hyperbolic group, then the isometric action of G on itself by left
multiplication extends to an action by homeomorphisms on G (Corollary [6.2)). We describe
in detail below our results regarding the dynamics and structure of groups of automorphisms.

Embeddings of subspace boundaries and geometrical finiteness. A desirable prop-
erty of a boundary is that inclusions of subspaces that are “convex” in an appropriate sense
induce embeddings of boundaries with closed images. In Section Bl we show that hierarchi-
cally quasiconvex subspaces of X, which admit their own natural HHS structures [BHS15b],
have this property: if ) < X is hierarchically quasiconvex, then )’ has a limit set in 0X
which is homeomorphic to d) with the HHS structure inherited from X. In fact, Theo-
rem [B.6] provides more, by giving natural conditions on maps between HHS ensuring that
they extend continuously to the HHS boundary. This motivates the following definition:

Definition 2 (Geometrical finiteness). We say a hierarchically hyperbolic subgroup H of a
hierarchically hyperbolic group G is geometrically finite if the natural inclusion v : H — G
extends continuously to an H -equivariant embedding ov : 0H — 0G.

In what follows, we will be interested in developing this notion and establishing examples
in the context of the mapping class group of a finite type surface.
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Comparison of the mapping class group boundary with PM/L(S). The archetypal
hierarchically hyperbolic group is the mapping class group MCG(S) of a connected, ori-
ented surface S of finite type. The hierarchically hyperbolic structure is provided by results
of [MM99, MM00, BKMM12l [Aoul3, HPW13| Bow14} [PST5] [CRST5] Beh06), Man10, Web13]
and is discussed in detail in Section 11 of [BHSI5h]. Roughly, & is the set of essential sub-
surfaces of .S, up to isotopy, CU is the curve graph of U for each U € &, and projections are
usual subsurface projections.

Traditionally, MCG(S) has been studied via its action on Teichmiiller space 7 (S) with
its Thurston compactification by PML(S). This approach has been fruitful especially when
considering subgroups of MCG(S) defined via flat or hyperbolic geometry. Nonetheless, the
MCG(S) action on T (S) is not cocompact and the orbits of many subgroups (in fact, any
with Dehn twists) are distorted in 7 (.5), which make 7 (S) imperfect for studying the coarse
geometry of MCG(S) and its subgroups.

The situation is further complicated when one attempts to extend the MCG(S) action
on 7 (S) to its various boundaries. Teichmiiller geodesics are unique and thus geodesic rays
based at a point form a natural visual compactification of 7(S), but Kerckhoff [Ker80] proved
that it is basepoint dependent and thus the MCG(S) action fails to extend continuously.
While Thurston [T*88] defined a compactification via PML(S) to which the MCG(S) action
does extend continuously, Thurston’s compactification is defined via hyperbolic geometry
and the Teichmiiller metric is defined via flat geometry, which leads to an incoherence
between the internal geometry and its asymptotics in PML(S) [Mas82 [Len08, [LLR15]
CMW14, BLMRIG).

The boundary d(MCG(S), &) provides the first compactification of MCG(S) so that the
action of MCG(S) on itself by left multiplication extends to a continuous action on the
boundary with the dynamical properties we discuss below (see also Section [B). While many
of these dynamical properties were originally proven via the MCG(S)-action on T (S) with
its Thurston compactification, many of the pathologies described above vanish in our con-
struction, as we discuss presently.

On geometrically finite subgroups of MCG(S). Problem 5 of [Ham06] and Section
6 of [Mos06] in Farb’s book [Far06] regard the development of a notion of geometrical
finiteness for subgroups of MCG(S). Mosher suggests a definition that requires an external
proper hyperbolic space X on which the candidate subgroup acts with a collection of cusp
subgroups in some appropriate sense; geometric finiteness would then require that X and
0X embed quasiisometrically in 7(S) and continuously in PML(S), respectively. Masur’s
theorem makes it unreasonable to expect a simultaneous continuous embedding X U 0X —
T(S) U PML(S).

We will argue that replacing 7 (S) U PML(S) with MCG(S) u OMCG(S) as in Definition
generates a robust theory of geometrical finiteness. In particular, we prove:

Theorem 3. Suppose that H < MCG(S) is one of the following:

(1) The standard embedding of MCG(Y') for some proper subsurface Y < S;
(2) Convex cocompact in the sense of [FM02];

(3) A finitely generated Veech group;

(4) A Leininger-Reid combination subgroup [LRO6].

Then H is a geometrically finite subgroup of MCG(S).
Hence geometrical finiteness generalizes convex cocompactness for subgroups of MCG(S)

to a broader class of groups. Theorem Bl(a) is proven in Theorem [E11] and Theorem Bl(b) is
Theorem (.12 We discuss presently the Veech and Leininger-Reid examples in more detail.
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Veech and Leininger-Reid combinations subgroups. For Mosher (see Problem 6.1 of [Mos06]),
the main test cases for a definition of geometrical finiteness for subgroups of mapping class
groups are finitely generated Veech groups and the Leininger-Reid subgroups. It is worth
noting that while the former are explicitly defined via flat geometry and the latter somewhat
less so, the aforementioned coherence pathologies between the Teichmiiller geometry and
the Thurston compactification give an obstruction to considering embeddings of natural
boundaries associated to them into PML(S). We prove that this obstruction disappears
with IMCG(S). We now briefly give some background.

Given a holomorphic quadratic differential ¢ on S, there is an associated copy of H? called
a Teichmiiller disk, T'D(q), which is a convex subset of T(S). The stabilizer of T'D(q) in
MCG(S) is Aff(q), those elements with a representative which act by affine homemorphisms
with respect to the flat metric determined by g. A Veech group V is a subgroup of Aff(q)
which acts properly on T'D(q); we consider only finitely-generated Veech groups. The visual
boundary of T'D(q) is naturally identified by PML(q) which admits a natural embedding in
PML(S) that parametrizes the limit set of V in PML(S) [KLOT], but a theorem of Masur
[Mas82] implies that this embedding does not give an everywhere continuous extension
TD(q) v PML(q) — T(S) v PML(S).

In [LROG], Leininger-Reid construct subgroups of MCG(S) which are combinations of
Veech groups; some are surface groups in which all but one conjugacy class is pseudo-
Anosov. The boundary of such a surface subgroup is its limit set in dH?. Problem 3.3 of
[Rei06] asks if there is a continuous, equivariant embedding of this boundary into PML(.S).

While we do not answer this question directly, we do prove something strictly stronger

for OMCG(S):

Theorem Let H < MCG(S) be either a finitely generated Veech or Leininger-Reid
subgroup as above. Then the inclusion H — MCG(S) extends to a continuous H -equivariant
embedding 0H — OMCG(S) with closed image. In particular, H is a geometrically finite

subgroup of MCG(S).

Other candidates for geometrical finiteness. Perhaps the next best candidates for geometri-
cally finite subgroups of MCG(S) are the various right-angled Artin groups constructed by
Clay-Leininger-Mangahas [CLM12| and Koberda [Kob12|. These subgroups are HHGs and
the former are even known to be quasiisometrically embedded in MCG(S5).

Question 4. Are the Clay-Leininger-Mangahas and Koberda right-angled Artin subgroups
of MCG(S) geometrically finite? Hierarchically quasiconver?

The HHS boundary of Teichmiiller space and PMAL(S). Slight modifications of the above
hierarchical structures endow the Teichmiiller space 7(S), with either the Teichmiiller or

Weil-Petersson metrics, with an HHS structure, as explained in [BHS14! using
results of [EMR]; see also [Bow15al Bowl15b| for closely-related results.

Question 5. How is the HHS boundary 0T (S) of T(S), with the Teichmiiller metric and
the above HHS structure, related to the projective measured lamination space PML(S)?

In fact, there is a natural map PML(S) — 0T (S) which collapses certain simplices of
measures on given laminations to points, while being injective on the set of uniquely ergodic
laminations, whose image in 07 (S) can be identified with a subset of 0CS < 07 (S). A
promising strategy is to attempt to use this map, along with a result of Edwards [Edw77,
[Dav86|, to prove that 7 (S) is homeomorphic to PML(S), i.e. to S%()~1 The missing

ingredient is a positive answer to:

2Since we initially posted this paper, Mousley answered this question negatively in [Moul6].
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Question 6. Does 0T (S) have the disjoint discs property ¢

A metric space M has the disjoint disks property if any two maps D? — M admit
arbitrarily small perturbations with disjoint image; the above question makes sense since
it is not hard to see, using Proposition 2T7] that 07 (S) is metrizable. The difficulty here
involves nonuniquely ergodic laminations, which cause a similar problem to the extensions
discussed above related to the Leininger-Reid subgroups.

Another question, subject to much recent study, is about the limit sets of Teichmiiller
geodesics in Thurston’s compactification. The analogous question in our setting is:

Question 7. What are the limit sets of Teichmiiller geodesics in 0T (S)?

There are now several constructions of geodesics with limits sets that are bigger than a

point [Len08, [LLR15] BLMRI16], but these constructions fundamentally depend

on the fact that filling minimal laminations can admit simplices of measures, which collapse
in 0T (S). The geodesics constructed in [LLRI15] will have unique limits
0T (S) as their asymptotics with respect to 07 (S) are determined by their asymptotics in
the curve graph CS. On the other hand, the situation becomes more opaque for Teichmiiller
geodesics with vertical laminations with multiple components. Using work of Rafi [Rafl4],
one can determine that the coefficients ay of the components Y < S supporting the potential
limits in 07 (S) are determined by limits of ratios of the rates of divergence in the various
subsurface curve graphs CY. However, it seems unlikely that these limits of ratios always
exist, suggesting that such geodesics need not have unique limits in 07 (.5).

Dynamical and structural results. Our second main collection of applications of the
boundary are about the dynamics of the action on the boundary and the structure of sub-
groups. In Section [6] we study automorphisms of hierarchically hyperbolic spaces:

Classification of automorphisms. Given f € Aut(S), the set Big(f) of U € & for which
{f) - x (for some basepoint x € X) projects to an unbounded set in CU is a possibly empty
finite set of pairwise-orthogonal domains preserved by the action of {(f) on &. We classify f
according to the nature of Big(f). First, if Big(f) = &J, then f has bounded orbits in each
CU and hence has bounded orbits in X', by Proposition [6.4L in this case, f is elliptic. Second,
if (f) - x projects to a quasi-line in CU for some U € Big(f), then {f) -z is a quasi-line in
X, by Proposition 6.12] and f is azial. Otherwise, f is distorted.

If Big(f) = {S}, then f is irreducible, and f is reducible otherwise. Perhaps the most
important class of HHS automorphisms are irreducible axial automorphisms. In the map-
ping class group, these are the pseudo-Anosov elements; in a hierarchically hyperbolic cube
complex, these are the rank-one elements that do not virtually preserve hyperplanes [BHS14]
[HagI3]. In the case where (G, &) is a hierarchically hyperbolic group, each irreducible axial
element is Morse — this follows from Theorem — but the converse does not hold. The
question of when irreducible axial elements exist is of major interest later.

Dynamics and fized points. In Section [6.2] we study the dynamics of f € Aut(S) on 0X.
First, we show that irreducible axial automorphisms act as expected:

Proposition [6.18 (North-south dynamics) If g € Aut(S) is irreducible axial, then g has
exactly two fized points Ay, \_ € 0X. Moreover, for any boundary neighborhoods Ay € Uy
and A\_ € U_, there exists an N > 0 such that gV (0X —U_) < U,.

In Proposition and Proposition [6.20] we show that if f is irreducible distorted, then
f fixes a unique point p € 0X, which is an “attracting fixed point”. We also prove analogues
of these results for reducible automorphisms (Propositions and [6.20]).

We then study hierarchically hyperbolic groups. First, we rule out distortion:
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Theorem [T.7] (Coarse semisimplicity) If (G,S) is a hierarchically hyperbolic group, then
each g € G is either elliptic or azial; in fact g is undistorted in each element of Big(g).

In the event that G contains irreducible axial elements, we have:

Theorem [6.29] (Topological transitivity) Let (G, &) be hierarchically hyperbolic with an
irreducible azial element and let G be nonelementary. Then any G-orbit in 0G is dense.

Below, we will describe when (G, &) has an irreducible axial element.
Uses of the boundary. We use the boundary, and actions thereon, in numerous ways.

Finding and exploiting irreducible axials. In Section @ we study irreducible axial elements of
groups of automorphisms of hierarchically hyperbolic spaces. The setting is an HHS (X, &)
with X proper and & countable, and we consider a countable subgroup G < Aut(&). This
holds, for example, when X = GG is an HHG. The main technical statement is:

Propositions [9.49.2] (Finding irreducible axials) Suppose that either G acts properly
and coboundedly on X and cofinitely on &, or G acts with unbounded orbits in X and no
fized point in 6CS. Then either G contains an irreducible axial element, or there exists

Ue & —{U} which is fized by a finite-index subgroup of G.

These two propositions are proved in tandem. The strategy is to consider probability mea-
sures on GG and corresponding G—stationary measures on 0X’; the main lemma, Lemma
shows that, unless G has a finite orbit in dCS or & — {S}, such a measure must be supported
on 0CS < 0X. In particular, if CS is bounded, then there must be a finite orbit in & — {S}.
We emphasize that, for the above proposition and all of its applications, compactness of the
HHS boundary (i.e. Theorem B is absolutely vital.

Using the above propositions, we prove:

Theorem (HHG Tits alternative) Let (G,&) be an HHG and let H < G. Then
H either contains a nonabelian free group or is virtually abelian.

By analyzing supports of global fixed points in the boundary of an HHS, we then prove:

Theorem [9.20] (Omnibus Subgroup Theorem) Let (G, &) be a hierarchically hyperbolic
group and let H < G. Then there exists an element g € H with A(H) = Big(g). Moreover,
for any ¢’ € H and each U € Big(¢g'), there exists V € Big(g) with U = V.

Here, 21(H) is the set of domains U on which H has unbounded projection. The theorem
we actually prove is more general than the above, but the version stated here is suffi-
cient to imply the Omnibus Subgroup Theorem for mapping class groups, due to Handel-
Mosher [HM10], which they proved as an umbrella theorem for several subgroup structure
theorems, including the Tits alternative; see also [ManI3] for further discussion.

We also obtain a coarse/HHS version of the rank-rigidity conjecture for CAT(0) spaces:

Theorems [0.13l9.14] (Coarse rank-rigidity) Let (X, &) be an HHS with X unbounded
and proper and & countable. Let G < Aut(S) be a countable subgroup and suppose that one
of the following holds:

(1) G acts essentially on X with no fixed point in 0X;
(2) G acts properly and coboundedly on X and cofinitely on &.

Then either (X, &) is a product HHS with unbounded factors or there exists an azial element
g € G such that Big(g) consists of a single domain W such that CU is bounded if U L W.

Such an element g is a rank-one automorphism; all of its quasigeodesic axes of any fixed
quality lie in some neighborhood of one another (of radius depending on the quality). The
HHS is a product with unbounded factors if there exists U € & such that X coarsely coincides
with the standard product region Py, and each of Eyr, Fiy is unbounded.
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In particular, if X is any of the cube complexes shown in to be hierarchically
hyperbolic (i.e. those admitting “factor-systems”), then our methods allow us to recover the
Caprace-Sageev rank-rigidity theorem from [CS11] for A

Corollary (Rank-rigidity for many cube complexes) Let X be a CAT(0) cube
complex with a factor-system. Let G act on X and suppose that one of the following holds:

(1) X is unbounded and G acts on X properly and cocompactly;
(2) G acts on X with no fived point in X v 0, X.

Then X contains a G—invariant convex subcomplex Y such that either G contains a rank-one
isometry of Y or Y = A x B, where A and B are unbounded convex subcomplezes.

It is difficult to construct cube complexes without factor-systems that satisfy the remain-
ing hypotheses of this theorem. At least in the cocompact case, we believe that our proof
works without explicitly hypothesizing the existence of a factor system — see Question A
of [BHS15b], which asks whether the presence of a geometric group action on a cube complex
guarantees that a factor system exists (see Remark [0.25])

Other applications, examples, and questions.

The HHS boundary in the cubical case. If X is a CAT(0) cube complex with a factor-
system § (here § more properly denotes the set of parallelism classes of elements of the
factor system), then the resulting hierarchically hyperbolic structure (which is fundamentally
derived from the hyperplanes of X and how they interact) has a boundary which is, perhaps
unsurprisingly, closely related to the simplicial boundary 0, X introduced in [Hagl3| (which
is derived from how certain infinite families of hyperplanes interact). Specifically:

Theorem [0.7] (Simplicial and HHS boundaries) Let X be a CAT(0) cube complex
with a factor system §, and let (X,§F) be the associated hierarchically hyperbolic structure.
There is a topology T on the simplicial boundary 0, X so that:

(1) There is a homeomorphism b: (0, X,T) — (X, ),
(2) for each component C' of the simplicial complex 0, X, the inclusion C — (0, X,T)
is an embedding.

In particular, if §,§ are factor systems on X, then O(X,§) is homeomorphic to o(X,F').

This theorem highlights the relationship between the question of when factor systems
exist, and when X is wisible in the sense that every simplex of the simplicial boundary
corresponds to a geodesic ray in X’; this is discussed in Remark [10.9]

Detecting splittings and cubulations from the boundary. It is not difficult to show, from the
definitions and Stallings’ theorem on ends of groups [Sta72], that if (G, &) is a hierarchically
hyperbolic group, then 0(G, &) is disconnected if and only if G splits over a finite subgroup.

Question 8. Can the JSJ splitting of G over slender subgroups (see RS97])
be detected by examining separating spheres in 0(G,S), as is the case for hyperbolic groups
and splittings over two-ended subgroups [Bow98| ?

One can also consider producing actions of hierarchically hyperbolic groups on CAT(0)
cube complexes other than trees. As usual, this divides into two separate issues, namely
detecting a profusion of codimension—1 subgroups and then choosing a finite collection suffi-
cient to produce an action on a cube complex with good finiteness properties. It appears as
though 0(G, &) can be used to produce a proper action on a cube complex from a sufficiently
rich collection of hierarchically quasiconvex codimension—1 subgroups by a method exactly

3 After we initially posted this paper, Hagen and Susse showed that every CAT(0) cube complex with a
geometric group action admits a factor system and is thus hierarchically hyperbolic [HS16].
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analogous to that used to cubulate various hyperbolic groups in [BW13|. The main differ-
ence is that G does not act as a uniform convergence group on d(G,S); one must replace
the space of triples of distinct boundary points by the space of triples (p,q,7) € dG such
that any two of p, q,r are antipodal, i.e. joined by a bi-infinite hierarchy path.

Question 9. Let (G, S) be a hierarchically hyperbolic group. Give conditions on G ensuring
that for any antipodal p,q € 0G, there exists a hierarchically quasiconver codimension—1
subgroup H so that p,q are in distinct components of dgH for some g € G.

We have not included a detailed discussion of the above “boundary cubulation for HHG”
technique in the present paper since there are not yet any applications; these could be
provided by an answer to QQuestion

Poisson boundaries and C*-simplicity. In Section 0.81] we show that the boundary of an
HHG is a topological model for the Poisson boundary:

Theorem (Poisson boundary) Let (G,&) be an HHG with diamCS = o, u be
a nonelementary probability measure on G with finite entropy and finite first logarithmic
moment, and v the resulting u-stationary measure on 0G. Then (0G,v) is the Poisson
boundary for (G, ).

In fact, dCS is a model for the Poisson boundary [BHS14], but (G, &) has the advantage
of being compact, while in general dCS' is not compact. The space 0G is a G-boundary, i.e.
a compactum on which G acts minimally and proximally. Moreover:

Proposition 10. The action of G on 0G is topologically free, i.e. for each g € G — {1}, the
set of p e 0X with gp # p is dense in 0X.

Proof. Let g € G — {1}, let ¢ € 0G, and let U be a neighborhood of ¢q. Suppose for a
contradiction that ¢ fixes U pointwise. By Proposition [0.4] G contains an irreducible axial
element, so by Proposition [6.28] dCS is dense in G, whence, since G is non-elementary, g
fixes infinitely many distinct points of dCS. If g is reducible axial, then Lemma yields
a contradiction, since g cannot fix any point in dCS by the lemma. If g is irreducible axial,
then ¢ fixes exactly two points in 0C.S, again a contradiction. Otherwise, g is elliptic and
hence has finite order and we are done by hypothesis. O

By a result of Kalantar-Kennedy Theorem 1.5], the above proposition gives a new
proof that a nonelementary HHG G with 6CS unbounded is C*—simple (i.e. the reduced
C*-algebra of G is simple) provided finite-order elements have finite fixed point set in 0CS.
However, G is known to be C*—simple under these circumstances, since G is acylindrically
hyperbolic and has no finite normal subgroup [DGOT1].

In light of the HHG structure on cubulated groups discussed above, Theorem [0.26] should
be compared to the results of [NS13|, in which Nevo-Sageev construct the Poisson boundary
for a cubical group using the Roller boundary of the cube complex.

Outline of this paper. In Section [Il we review hierarchically hyperbolic spaces. In Sec-
tion[2] we define the HHS boundary. Section Blis devoted to the proof that proper HHS have
compact boundaries, and in Section @ we show that the HHS boundary of a hyperbolic HHS
is homeomorphic to the Gromov boundary. In Section Bl we discuss continuous extensions of
maps between HHS to the boundary, and consider this phenomenon in the context of Veech
and Leininger-Reid subgroups of the mapping class group. Automorphisms of hierarchically
hyperbolic structures induce homeomorphisms of the boundary; in Section [ we classify
automorphisms and study fixed sets and dynamics of the actions of automorphisms on the
boundary. In particular, in Section [l we show that cyclic subgroups of hierarchically hyper-
bolic groups are undistorted. Section [8lis a brief technical discussion of essential HHS and
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actions, supporting Section @ in which we prove the coarse rank rigidity theorem and some
of its consequences. In Section [I0, we consider CAT(0) cube complexes with HHS structures
coming from , relating the HHS boundary to the simplicial boundary from [Hagl3].
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comments and corrections.

1. BACKGROUND

1.1. Hierarchically hyperbolic spaces. We begin by recalling the definition of a hierar-
chically hyperbolic space, introduced in [BHS14] and axiomatized in a more efficient fashion
in [BHS15D] as follows. We begin by defining a hierarchically hyperbolic space. We will
work in the context of a quasigeodesic space, X, i.e., a metric space where any two points
can be connected by a uniform-quality quasigeodesic.

Definition 1.1 (Hierarchically hyperbolic space). The g—quasigeodesic space (X,dy) is a
hierarchically hyperbolic space if there exists § = 0, an index set &, whose elements we call
domains, and a set {CW : W € &} of d—hyperbolic spaces (CU,dy ), such that the following
conditions are satisfied:

(1) (Projections.) There is a set {my : X — 2V | W € &} of projections sending
points in X to sets of diameter bounded by some £ > 0 in the various CW € &.
Moreover, there exists K so that each 7wy is (K, K)—coarsely Lipschitz.

(2) (Nesting.) & is equipped with a partial order =, and either & = ¢J or & contains
a unique E—maximal element; when V = W, we say V is nested in W. We require
that W £ W for all W € &. For each W € &, we denote by Gy the set of V € &
such that V = W. Moreover, for all VW € & with V & W there is a specified subset
p‘v/v c CW with diamcw(p“fv) < &. There is also a projection p‘v/V: CW — 26V, (The
notation is justified by viewing pl‘//v as a coarsely constant map CV — 26V )

(3) (Orthogonality.) & has a symmetric and anti-reflexive relation called orthogo-
nality: we write V' L W when V, W are orthogonal. Also, whenever V & W and
W L U, we require that V' L U. We require that for each T' € & and each U € & for
which {V € &7 : V LU} # &, there exists W € & — {T'}, so that whenever V' 1L U
and V £ 7T, we have V £ W. Finally, if V' L W, then V., W are not E—comparable.

(4) (Transversality and consistency.) If V.1 € & are not orthogonal and neither is
nested in the other, then we say V,W are transverse, denoted VAW. There exists
ko = 0 such that if VAW, then there are sets pl;, € CW and p{¥ < CV each of
diameter at most £ and satisfying:

min {dw (mw (2), piy), dv (v (2), o1V ) } < o
forall z e X.
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For V, W € & satisfying V £ W and for all z € X

min {dw(ﬂw($),p1‘//y),diamcv(ﬂ'v(iﬂ) v p\v/—v(ﬂw(x)))} < Ko.

The preceding two inequalities are the consistency inequalities for points in X. Fi-
nally, if U £ V, then dw (oY, piy-) < ko whenever W € & satisfies either V & W or
VAW and W £ U.

(5) (Finite complexity.) There exists n = 0, the complezity of X (with respect to &),
so that any set of pairwise-=—comparable elements has cardinality at most n.

(6) (Large links.) There exist A > 1 and E > max{¢, ko} such that the following
holds. Let W e & and let z,2' € X. Let N = A\d,, (mw (), 7w (2’)) + A. Then there
exists {T;}i—1,.. v S ©w — {W} such that for all T'e &y — {W}, either T' € &,
for some 4, or dp(mp(z), 7p(2’)) < E. Also, dW(WW(:E),pJV;ﬁ) < N for each 1.

(7) (Bounded geodesic image.) For all W € &, all V € Gy — {IWW}, and all geodesics
7y of CW, either diamey (p}Y (7)) < E or v n Ng(ply) # .

(8) (Partial Realization.) There exists a constant a with the following property. Let
{Vj} be a family of pairwise orthogonal elements of &, and let p; € my,(X) < CV}.
Then there exists x € X so that:

e dy,(7,p;) < a for all j,
e for each j and each V € & with V; = V, we have dv(:E,p“;j) < a, and
o if WAV for some j, then dW(x,p%) < o.

(9) (Uniqueness.) For each k > 0, there exists 6, = 60,(x) such that if 2,y € X and

d(z,y) = 0,, then there exists V € & such that dy(x,y) > k.

We often refer to ©, together with the nesting and orthogonality relations, the projections,
and the hierarchy paths, as a hierarchically hyperbolic structure for the space X.

Notation 1.2. Given U € &, we often suppress the projection map my when writing
distances in CU: given z,y € X and p € CU we write dy(x,y) for dy(my(z), 7 (y)) and
dy(z,p) for dy(my(x),p). To measure distance between a pair of sets, we take the infimal
distance between the two sets. Given A ¢ X and U € & we let 7y (A) denote Ugeamy(a).

Remark 1.3 (Summary of constants). Each hierarchically hyperbolic space (X, &) is asso-
ciated with a collection of constants often, as above, denoted 9, &, n, kg, E, 0, K, where:
(1) CU is 6—hyperbolic for each U € &,
(2) each 7y has image of diameter at most £ and each 7y is (K, K)—coarsely Lipschitz,
and each p¥ has (image of) diameter at most &,
(3) for each x € X, the tuple (7 (z))yes is Ko—consistent,
(4) E is the constant from the bounded geodesic image axiom.

Whenever working in a fixed hierarchically hyperbolic space, we use the above notation
freely. We can, and shall, assume that £ > ¢, E > 0, F =2, E > kg, E > K, and E > a.

Lemma 1.4 (“Finite dimension”). Let (X, &) be a hierarchically hyperbolic space of com-
plezity n and let Uy, ..., U € & be pairwise-orthogonal. Then k < n.

Proof. Definition [T} [@]) provides W7 € &, not E—maximal, so that Us, ..., U & Wj. Using
Definition [I.1] inductively yields a sequence Wj_1 & Wi_o & ... = W; & S, with S &
maximal, so that U;_1,...,Ux & W, for 1 < i < k—1. Hence k < n by Definition [T ({E). O

The next lemma is a simple consequence of the axioms and also appears in :

Lemma 1.5. Let U V,W € & satisfy U L V, and U,V £W, and W = U,V. Then
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Proof. Our assumptions imply that U & W or UMW, and the same is true for V. Applying
partial realization yields a point z € X' so that dr(x, p¥.),d7(z, p¥) < E whenever T = U,V
and T' U, V. The claim follows from the triangle inequality. O

Definition 1.6. For D > 1, a path v in X is a D—hierarchy path if
(1) v is a (D, D)-quasi-geodesic,
(2) for each W € &, myy o7y is an unparametrized (D, D)—quasi-geodesic. An unbounded
hierarchy path [0,00) — X is a hierarchy ray.

The following theorems are proved in [BHSI5D]:

Theorem 1.7 (Realization theorem). Let (X, &) be hierarchically hyperbolic. Then for each

K there exists 0,60, such that the following holds. Let be [wes 2" have each coordinate
correspond to a subset of CW of diameter at most k; for each W, let by denote the CW —
coordinate of b. Suppose that whenever VAW we have

min {dyw (bw, ply), dv (by, p{} )} <
and whenever V.°T W we have

min {dw (bw, pyy), diamey (by U p! (b))} < k.

Then the set of all x € X so that dyw (bw, 7w (x)) < 0, for all CW € & is non-empty and has
diameter at most 0,,.

Theorem 1.8 (Existence of Hierarchy Paths). Let (X, &) be hierarchically hyperbolic. Then
there exists Do so that any x,y € X are joined by a Dg-hierarchy path.

Theorem 1.9 (Distance Formula). Let (X, &) be hierarchically hyperbolic. Then there exists
so = & such that for all s = sg there exist constants K, C such that for all z,y e X,

dx(z,y) =(K,C) Z {{dW<7TW(x)77TW(y))}}S
We6

The notation {{A}}  denotes the quantity which is A if A > B and 0 otherwise.

1.2. Hieromorphisms, automorphisms, and hierarchically hyperbolic groups. Mor-
phisms in the category of hierarchically hyperbolic spaces were defined in , along

with the related notion of a hierarchically hyperbolic group; we recall these definitions here.

Definition 1.10 (Hieromorphism). Let (X,&) and (X’,&’) be hierarchically hyperbolic
structures on the spaces X, X’ respectively. A hieromorphism (f,7(f),{p(f,U): U —
T(f)U)|Ue&}): (X,6) - (X',&) consists of amap f: X —> X', amap n(f) : & - &
preserving nesting, transversality, and orthogonality, and a set {p(f,U): U — = (f)(U) |
U € 6} of quasiisometric embeddings with uniform constants such that the following two

diagrams coarsely commute for all nonorthogonal U,V € G:

X%X/

|7 1=

and o)
fiU
cu —21 s en(f)(U)
Lov ) LeIh

vV ——— Cn(f)(V)
where pY: CU — CV is the map from Definition [l



BOUNDARIES OF HHS 14

Definition 1.11 (Automorphism of an HHS, automorphism group). A hieromorphism f :
(X,6) - (X,6) is an automorphism if 7(f) : & — & is a bijection and p(f,U) : CU —
Cm(f)(U) is an isometry for each U € &. When the context is clear, we will continue to use
f to denote f, w(f), and p(f,U).

Observe that if f, f’ are automorphisms of (X,&), then fo f/ : X — X is also an
automorphism: compose the maps & — &, and compose isometries of the hyperbolic spaces
in the obvious way. Declare automorphisms f, f' equivalent if w(f) = n(f’) and p(f,U) =
p(f",U) for all U € &. Note that f, f/: X — X uniformly coarsely coincide in this case.

Denote by Aut(&) the set of equivalence classes of automorphisms, so Aut(S) is a group
with the obvious multiplication. If [f] € Aut(&), then [f]~! is represented by the quasi-
inverse of f associated to (f)~! and {p(f,U)"1:U € &}.

Observe that Aut(&) quasi-acts on X’ by uniform quasi-isometries. We will sometimes
abuse language and refer to individual automorphisms as elements of Aut(&), and refer to
the “action” of Aut(&) on X. By an action of a group G on (X, &), we mean a homomor-
phism G — Aut(S). “Coarse” properties of an action, like properness and coboundedness,
make sense in this context.

Definition 1.12 (Equivariant). Let f : (X,8) — (X’,&’) be a hieromorphism, G,G" <
Aut(6), Aut(&'), and ¢ : G — G’ a homomorphism. Then f is ¢—equivariant if

A cu —L crw)
o] | lew  and | Jo0
CRct coU s colg) 1 (U)

(coarsely) commute for all g € G and U € &. This implies that ¢(g)f(z) = f(gx) for all
re X and g € G. If ¢ is an isomorphism and f is ¢—equivariant, then f is G—equivariant.

Definition 1.13 (Hierarchically hyperbolic group). A finitely generated group G is hi-
erarchically hyperbolic if there exists a hierarchically hyperbolic space (X, &) such that
G < Aut(6G), the action on X is proper and cobounded, and G acts on & with finitely many
orbits. In this case we can assume X = G (with any fixed word-metric) and that the action
G — Aut(6) sends each g € G to an automorphism whose underlying map G — G is left
multiplication by g. In this case, we say that (G, &) is hierarchically hyperbolic.

1.3. Standard product regions. The notion of a standard product region in a hierarchi-
cally hyperbolic space, introduced in [BHSI5b], plays an important role in several places, so
we recall the definition here. Let (X, &) be a hierarchically hyperbolic space and let U € &.
Let &y be the set of V € & with V & U (in particular, U € &y is the unique E—maximal
element). Let 6%} be the set of V € & such that V 1L U, together with some E-—minimal
A € & such that all such V = A.

Fix Kk = kg and let Fyy be the space of k—consistent tuples in HVEGU 2V whose co-
ordinates are diameter—< £ sets. Similarly, let Ey be the set of k—consistent tuples in
HVGG#%A} 2¢V whose coordinates are diameter—< ¢ sets. In fact, (Fy,&y) and (Ey, 6f)

are hierarchically hyperbolic spaces (the hyperbolic space associated to A is im4(Ey)), and
there are hieromorphisms (see or Definition [[LI0), inducing quasiisometric em-
beddings, Fy, Ey — X, extending to a coarsely-defined map Fyy x Ey — X whose image
is hierarchically quasiconvex in the sense of (or see below). Specifically, each tu-
ple b e Fyr is sent to the tuple that coincides with b on Gy, and has coordinate pg for
all V e & — {U} such that VAU or U £ V, and is fixed at some base element of Ey; on
6%] — {A}. The map Ey — X is defined analogously. The spaces Fy7, Ey are the standard
nesting factor and the standard orthogonality factor, respectively, associated to U. The
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maps are the standard hieromorphisms associated to U, and the image Py of Fyy x Eyy is a
standard product region. Where it will not cause confusion, we sometimes denote by Ey, Fir
the images of the corresponding standard hieromorphisms.

Remark 1.14 (Automorphisms of product regions). Let (X', &) be a hierarchically hyper-
bolic space and let U € &. Recall that (Fy7, &p) is a hierarchically hyperbolic space, where
the hyperbolic spaces and projections implicit in the hierarchically hyperbolic structure are
exactly those inherited from &. Recall that (Ey, 65) is a hierarchically hyperbolic space,
where CV is as in (X, &) except when V' = A is the E-maximal element. The hieromor-
phism (Ey, 65) — (X, 8) is determined by the choice of A € & that is E-minimal among
all those containing each V with V' L U, which we take as the E-maximal element of Gf].

Let Ay be the group of automorphisms g of & such that g- U = U. Then there are
restriction homomorphisms 0y, 0% : Ay — Aut(Sp), Aut(SF) defined as follows. Given
g € Ay, let 0y (g) act like g on &7 and like g on each CV with V = U.

Define #+ analogously to give an automorphism of 6$ — {A} restricting the action of g on
S, and fixing A. When defining ¢ : im4(Fy) — imy(Ey), we draw attention to two cases,
which it will be important to distinguish in Section

e There exist infinitely many A; € G that are E—minimal with the property that V =
A; whenever V' I U. The minimality assumption implies that these A; are pairwise
non-nested, so, using Lemma [[.4] and the consistency axiom, we see that 7a,(Fr)
has diameter bounded independently of A; (in fact, just in terms of E); thus, when
building the HHS (Ey, 6%}), we can take the hyperbolic space im4(Ey) associated
to the maximal element A to be a single point, and define g : im4(Ey) — imy(Ey)
in the obvious way. This conclusion holds, more generally, if there are two transverse
C-minimal “containers” A;, A; for the domains orthogonal to U.

e The set {A;} of domains that are =—minimal with the property that V' = A; whenever
V 1 U is a pairwise-orthogonal set. In this case, there are at most n such A;, where
n is the complexity, by Lemma[[4l Again, we choose A € {A;} arbitrarily and define
the HHS structure on (Ey, 6%]) using A as the E-maximal element, with associated
hyperbolic space im4(Fy). Now, if there exists h € Aut(&) so that hA = A;
for some 4, then im4,(Ey) is uniformly quasi-isometric to im4(Ey). In particular,
g :ima(Ey) — ima(Ey) can be defined so that the restriction homomorphism 6
makes sense.

Note that, if f € Ay and 2 € Py < X, then dp, x g, (0 (f)(rv(x)), rv (f(2))) is uniformly
bounded, where ri: Py =4, Fy x Ey — Fyr is coarse projection to the first factor, and a
similar statement holds for 9& and projection to Ey.

Finally, recall that the standard product region Py is defined to be the image of Fyy x Eyy
under the product of the hieromorphisms (Fy, Sy), (EU,Gé) — (X,6). This map is
coarsely defined, but it is convenient to fix maps Fyy x Ey — X (realizing those hiero-
morphisms) so that Py = gPy for all U € G and g € Aut(6). Similarly, the image of Fyy
coincides with gFy, etc. The set {Py : U € &} is Aut(&)-invariant.

1.4. Normalized hierarchically hyperbolic spaces and hierarchical quasiconvexity.
Hierarchically hyperbolic spaces, in the sense of Definition [T need not coarsely surject to
the associated hyperbolic spaces, but in almost all cases of interest, they do. Accordingly:

Definition 1.15 (Normalized HHS). The HHS (X, &) is normalized if there exists C' such
that for all U € &, we have CU = Ney (my(X)).

Proposition 1.16. Let (X,8) be a hierarchically hyperbolic space. Then X admits a
normalized hierarchically hyperbolic structure (X,&") with a hieromorphism f: (X,&") —
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(X,6), where f: X — X is the identity and f: & — & is a bijection. Moreover, if
G < Aut(G), then there is a monomorphism G — Aut(&’) making f equivariant.

Proof. Let & = &, and retain the same nesting, orthogonality, and transversality relations.
For each U € &', the associated hyperbolic space CpoprmU is chosen to be uniformly quasiiso-
metric to the uniformly quasiconvex subset 77 (X') of CU. The projection 7yy : X — CpormU
is, up to composition with a uniform quasiisometry, unchanged (and therefore continues to
be coarsely Lipschitz). Let py : CU — CphormU be the composition of the coarse closest-
point projection CU — 77 (X), composed with the uniform quasiisometry 7y (X) — CpormU.
Then for all U,V with UhV or U E V, define the relative projection C,ormU — CpormV to
be the composition of py o p‘[f : (X)) = Cporm V' with the quasiisometry CpormU — 7y (X).
The remaining assertions are a matter of checking definitions. O

Recall from that the subspace Y of (X, &) is hierarchically quasiconvex if there
exists ko = 0 such that 7y (Y) is kg—quasiconvex in CU for all U € & and, if for all k > ko,
each k—consistent tuple b € [ [es CU with U-coordinate in 7y (Y) for all U has the property
that any associated realization point x € X lies at distance from ) depending only on k.

In the interest of staying in the class of normalized hierarchically hyperbolic spaces, we
will always work with a normalized hierarchically hyperbolic structure on )/, namely the one
provided by Proposition Moreover, we will (abusively) eschew the notation CgpmU
and use the same notation for m;())) and its thickening; in other words, we will regard
m7()) as a genuine (uniformly) hyperbolic geodesic space.

Finally, we recall the following notion from [BHSI5D, Definition 5.3, Lemma 5.4]. Let
Y < X be a hierarchically quasiconvex subspace. Then there is a coarsely Lipschitz map
gy : X — Y (the coarse Lipschitz constants depend only on the constants from Definition Il
and the constants implicit in the definition of hierarchical quasiconvexity) with the following
property: for each U € & and z € X, the projection 7y (gy(x)) uniformly coarsely coincides
with the coarse closest-point projection of 7y7(x) to the quasiconvex subspace m7()). The
map gy is the gate map associated to ).

2. DEFINITION OF THE BOUNDARY

Fix a hierarchically hyperbolic space (X,&). For each S € &, denote by 0CS the Gromov
boundary, i.e. the space of equivalence classes of sequences (x,, € CS), where (x,,) and (y,,)
are equivalent if for some (hence any) fixed basepoint = € CS, we have (z,,yn), — . In
particular, dCS need not be compact if CSS is not proper. The topology is as usual.

Remark 2.1 (Extending the Gromov product). For U € &, any p,q € CU u 0CU are joined
to u € CU by (1,200)—quasigeodesics, enabling extension of the Gromov product to dCU.

2.1. Supports and boundary points. We first define 0X = 0(X,S) as a set.

Definition 2.2 (Support set, boundary point). A support set S < & is a set with S; L S;
for all S;,8; € S. Given a support set S, a boundary point with support S is a formal
sum p = Y ¢ g agps, where each pg € 0CS, and ay > 0, and Y g_ga¥ = 1. Such sums are
necessarily finite, by Lemma [L4l We denote the support S of p by Supp(p).

Definition 2.3 (Boundary). The boundary o(X,S) of (X, &) is the set of boundary points.
Notation 2.4. When the specific HHS structure is clear, we write X to mean 0(X, S).

2.2. Topologizing 0X. We topologize dX using the visual topologies on the Gromov
boundaries of elements of {CS : S € G&}. The main challenge is to incorporate these topolo-
gies into a coherent topology on the whole boundary, allowing boundary points supported
on nonorthogonal domains to interact. This requires some preliminary definitions.
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Definition 2.5 (Remote point). Let S = & be a support set. A point p € 0X is remote

(with respect to S, or with respect to some q € 0X with support S) if:

(1) Supp(p) n S = &, and

(2) for all S € S, there exists T' € Supp(p) so that S and T' are not orthogonal.
Denote by 6%““X the set of all remote points with respect to S.

For each S € &, let B(CS) be the set of all bounded sets in CS. If S = & is a support
set, we denote by 5" the set of all U € & such that U L S for all S e S.

Definition 2.6 (Boundary projection). Let S — & be a support set. For each ¢ € 0%6“12(,
let gq be the union of S and the set of domains 7' € 5 such that T is not orthogonal to Wr
for some Wr € Supp(q). Define a boundary projection 0mg(q) € HSeéq CS as follows. Let
4= 2rer a’}qT be a remote point with respect to S. For each S € Eq, let Ts € Supp(q) be

chosen so that S and T are not orthogonal. Define the S—coordinate (dmg(q)) s of 0m5(q)
as follows:

(1) If Ts = S or TghS, then (07T§(q))s = pgs;

(2) otherwise, S £ Ts. Choose a (1,200)—quasigeodesic ray « in CTs joining quﬂs to grg.
By the bounded geodesic image axiom, there exists x € v such that pgs is coarsely
constant on the subray of v beginning at z. Let (87T§(q))s = pgs ().

Lemma 2.7. The map 0mg is coarsely independent of the choice of {Ts} ¢ g-

Proof. Suppose that Ts,Tg € T are chosen so that Tg, T ¢ are not orthogonal to S and
suppose that S = Tg,T¢. In other words, either Ty = S or TshS and the same is true
for T¢. By partial realization (Definition [LI1(8)), there therefore exists y € X so that

ds(pgs,y), dg(pgs,y) < E, whence pgs and pgs coarsely coincide. If S © Tg, then S L T§
since Ts L T; this contradicts the defining property of 7. Hence, in all allowable situations,

pgs coarsely coincides with pgs ; the claim follows. O

Fix a basepoint g € X. We are now ready to define a neighborhood basis for each
P = Y g5 akps, where pg € CS for all S € Supp(p) = S. For each S € &, choose a cone-
topology neighborhood Ug of pg in CS u dCS, and choose € > 0. For convenience, given
g€ X, we let at. = 0 when T € & — Supp(q).

We define the basic set N{US}7E(p) as the union of a remote part, a non-remote part, and
an interior part, as follows:

Definition 2.8 (Remote part). The remote part is:

{Us)e(P) =

ds(@o, (Om5(q))s)  ak
ds (w0, (0mg(q))s)  al

qge 6ng‘VS €S, (dr5(q))s € Us, and VS € S, 5 €S,

< € and Z ak <e
TeS*

Definition 2.9 (Non-remote part). Given p,q € X, let A = Supp(p) n Supp(q). The

non-remote part is:

{17 () = { 4= D afar € X — 5%6le D,y <eVTeA:|af—af|<eqrelr
T VeSupp(q)—A
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Definition 2.10 (Interior part). The interior part is:

a_S _ dS(:E(]v:E)
ags’ dsl(ﬂ?o,l‘)

iy < (0) = {:17 = X‘ VS, S' e S,¥T e S : mg(x) € Us,

dT(x()v:E) }
<, <eb.
ds(zo, )

Definition 2.11 (Topology on X U 0X). For each p € 0X, with Supp(p) = S, and {Us :
S e S}, e >0 as above, let:

Nsye(p) = NI (p) o Nigty () v NI, ().

We declare the set of all such W, {US}7E(p) to form a neighborhood basis at p. Also, we include
in the topology on X U dX the open sets in X. This topology does not depend on x.

Remark 2.12. The /\/'{US}7E(p) need not be open; a priori, they may have empty interior!
The following is an obvious consequence of the definitions:

Proposition 2.13. For all U € &, the inclusion 0CU — 0X is an embedding.
Proposition 217 gives basic properties of 0X; first we need a definition and some lemmas.

Definition 2.14 (Basically Hausdorff). Let H be a topological space and let B be a neigh-
borhood basis. Then (H, B) is basically Hausdorff if for all distinct h,h’ € H, there exist
disjoint B, B’ € B with h e B,/ € B’.

Lemma 2.15. Let (X, &) be hierarchically hyperbolic and let X = X U 0(X,&). Then,
equipped with the neighborhood basis declared above, X is basically Hausdorff.

Proof. Let p,q € X be distinct. The statement is obvious when p or ¢ is in X, so assume
that p,q € 0X. Fix a basepoint zg € X.

For each U € Supp(p), choose a neighborhood Y} of p in CU u 0CU that does not contain
(0T supp(p) (@))u; provided it is defined. For each T' € Supp(q), choose a neighborhood Y}
of ¢ in CT U OCT that does not intersect Nipoog+w({mr(z0)}) and, when it is defined,
N1000E +w ((OTgupp(q) (P))T), Where w = 0 is to be determined; also choose Y;! so that Y} n
Yfﬁ = ¢ when T € Supp(p) n Supp(q), unless pr = gp, in which case we choose Y:,Zf = Y:,q.
Fix € > 0, to be determined. Let NV (p) = N{Y5}7E(p) and N (q) = N{Y5}7E(q).

Finally, for any w,v € 0X, let Supp(w), = Supp(w) U (Supp(w)* — Supp(v)*).

We need an auxiliary claim:

Claim 1. Let z,p,q € 0X. Suppose there exist W, W, € Supp(z) and U € Supp(p),,V €
Supp(q), so that W, +U and W, # U, and W, £V and W, # V. Then there exists
y € Pw, n P, © X such that (0mgpp(p)(z))u 100E—coarsely coincides with 7 (y), and
(0T supp(q) (7))v 100E—coarsely coincides with 7y (y).

(Pw, is the standard product region associated to W), defined in Section 1.3.)

Proof of Claim[. If W,&U or W), £ U, and WAV or W, = V, then any y € P, n Py,
suffices. If U & W), use partial realization to see that, given a (1,209)-quasigeodesic ray
in CW,, with endpoint xyy,, we can choose a sequence (y,,) in Py, N Py, projecting uniformly
close to an unbounded sequence in . This provides the desired y. [ |

Suppose that z € N'(p) n N(q). We consider the following cases:

(1) = € dX is p-remote and g—remote. First of all, notice that by definition of remote,
for any U e Supp(p) there exists W), as in Claim [l and similarly for V' e Supp(q).
We now consider the following subcases.



(2)
(3)

(4)
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(a) There exists U € Supp(p) n Supp(q) with py # qu. Then we would have that
(0Tsupp(p) ())u is contained in both Y} and Y], which are disjoint, a contradic-
tion.

(b) There exists U € Supp(p) n Supp(q) with py = gy but af, # af,. Let U =

Supp(p) N Supp(q). For each V' € U we have that the ratio dv (0,(Omsupp(p) (2DV) 4

dU(xov(aWSupp(p) (x))U)
e—close to both af,/af; and ai,/af;. Hence, if there exists V € U so that af,/af; #

a“l/ / a?], we can choose € small enough to give a contradiction. Otherwise, since
the coefficients sum to 1, the supports of p and ¢ do not coincide, and we deal
with this in the next subcases.

(c) Up to swapping p and ¢, there exists V' € Supp(q) — Supp(p), and there exists
U € Supp(p) not orthogonal to V. If UMV, then by our choice of N'(p), N (q), we
have dy (y, pg) > F,dy(y, pg) > FE for y as in Claim[I] contradicting consistency.
If U= VorV g U, then we reach a similar contradiction of consistency.

(d) Now assume that the previous case does not apply and, up to swapping p and
q, there exists V € (Supp(q) — Supp(p)) n Supp(p)*. Suppose we also have
Supp(p) < Supp(q) U Supp(q)* but Supp(p) N Supp(q)* # F, since otherwise
either ([al) or (D) holds. Let U € Supp(p) — Supp(q). By remoteness of x, U €
Supp(q)*+ — Supp(z)*, so U € Supp(q).. Hence the definition of ¢-remoteness
gives

dU(x07 (aﬂ'Supp(q) (x))U) Gy
dV($07 (aﬂ-Supp(q) (l‘))v) ay

Similarly, we have V' € Supp(p)., so the definition of p-remoteness gives:

dy (l‘o, (aﬂ-Supp(p) (l‘))v) CL{)/
dU<x07 (aﬂ'Supp(p) (x))U) ay

Now, since V' ¢ Supp(p), U ¢ Supp(q), we have af, = af; = 0, so, we may take y

to be the point in X provided by Claim [I and hence we have dvv:20) _ 9¢ and

du (y,70)
% < 2¢, provided w in Claim [Il was chosen sufficiently large in terms of €

and F. This is a contradiction.

x € X: In this case, x can play the role of y in the above arguments.
x € 0X is p—non-remote and g—non-remote: In this case, first choose € € (0,1/2)
smaller than |a}}, — af},|/10 for each W € Supp(p) N Supp(g). The definition of the
non-remote part now ensures that x cannot exist.
x € 0X is premote and g—non-remote: In this case, there exists U € Supp(p),V €
Supp(q) and W,, W, € Supp(x) so that W), is distinct from and non-orthogonal to
U while W, = V or W,, L V. If for each such W, we have W, € Supp(q)*, then by
choosing € < 1, we have that ZTGSupp(z) at < 1, a contradiction. Thus we may take
W, =V € Supp(q).

Now, choose y € Py, so that (0mgupp(p) () 100 E—coarsely coincides with 7y (y).
If U = W, then our choice of N'(p), N'(g) ensures that = cannot lie in both. Suppose

that UhW,. Then my(y), pZVq, p[v}/p all 10 E—coarsely coincide and lie at distance 50F
from the required neighborhood of py, so « ¢ N(p). When U & W, or W, = U, a
similar argument shows that x ¢ N (p) n N (q).
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Hence it remains to consider the case where W, L U. By definition, |aﬁ,q —ajy, | <
q

€. On the other hand, we can assume W, € Supp(p)*, for otherwise we could re-
choose U and W, to be in one of the above cases. Thus, by definition, a"{‘jvq < €. This

yields a contradiction provided we choose, say, € € ﬂTeSupp(q) <0, %)
Hence our choice of N(p), N(q) ensures N'(p) n N(q) = &, as required. m
Lemma 2.16. X is Hausdorff.

Proof. Inlight of LemmaR.T5] it suffices to show that for all p € 0X, with p = ZTESupp(p) arpr,
all € > 0, and all collections {Up : T € Supp(p)} with each Ur a neighborhood of pr in
CT U dCT, the corresponding basic set N{UT},e (p) has nonempty interior.

The topology of basic convergence: Given a sequence {p,} with each p, € X, we say
that p, basically converges to p € 0X if for all € > 0 and all choices of {Ur} as above, we
have p, € Niy,,(p) for all but finitely many n € N. Similarly, {p,} basically converges to
p € X if, for all € > 0, we have p,, € N.(p) for all sufficiently large n.

Define a topology on X as follows: the set A — X is declared to be closed if a € A
whenever there is a sequence {a,} so that a, € A for all n and a,, basically converges to a.
Denote by 9 the space X endowed with this topology.

Nonempty interior of basic sets: Let N' = Ny, (p) be a basic set as above. We
claim that p € Int(N). Otherwise, there exists a sequence {p,} in X — N that basically
converges to p. This is a contradiction since basic convergence to p needs {p,} to enter N.

Equivalence of the topologies: To complete the proof that basic sets in X have
nonempty interior (with respect to the original topology), and thereby complete the proof
of the lemma, it suffices to show that X is homeomorphic to 9.

Now, a set A € X is closed in X (i.e. has open complement) if and only if, for each
pe X — A, we can choose € > 0 and neighborhoods {Ur : T' € Supp(p)} so that Nivy,e(p)
is disjoint from A. But this is equivalent to the following: for all basically convergent {a,}
with each a, € A, the (basic) limit a lies in A. This is in turn equivalent to the assertion
that A is closed in 9. 0

Proposition 2.17. Let (X, &) be hierarchically hyperbolic, and let X = X U 0(X, &).
(1) X is Hausdorff and, if X is separable (e.g. if it is proper), then X is separable.
(2) 0X is closed in X,
(3) X is dense in X.

Proof. The “Hausdorff” part of Assertion (Il follows from Lemma B.I6l Separability of X’
follows from density of the metric space X' in X, i.e. part [B]). Assertion (&) is obvious: no
bounded neighborhood of an interior point contains a boundary point, so no sequence of
boundary points converges to an interior point.

It remains to prove assertion (). Pick a neighborhood Ny} ((p) of p = ZSESupp(p) aleps €
0X, with pg € dCS for S € Supp(p). For each S; € Supp(p) = {S1,...,S54}, fix a uniform
quasigeodesic ray v; in CS from mg(zg) to pg.

First, suppose that d = 1. Then for each ¢, there exists ! such that 7g, (z}) coarsely
coincides with ~; (a‘gl -t) and, in view of the quasiisometric embedding Fg, x Eg, — X
described in Subsection [[3] the point z! can be chosen so that 7r(z}) coarsely equals
mr(zg) for each T' L S;. (Here we have used that (X, &) is normalized.)

Now suppose d > 2. By induction, for all ¢, there exists 2, ; € Eg, such that for all
i < d— 1, the projection mg, (2}, ;) coarsely coincides with %(agi +t), and also 7p(z} ;)
coarsely coincides with mp(zg) for each T orthogonal to each S;. In view of the quasiisometric
embedding Fg, x Eg, — X, there exists a point z/, so that g Es, (zf) coarsely coincides with
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2!, | and 7g,(2f) coarsely coincides with yd(agd ~t). (Here, gpg, is the gate map defined
at the end of Section [[I) For each sufficiently large ¢, the point xﬁl lies in N{Usi}@(p), as
required. ]

Remark 2.18. By regarding each 0CU, with U € &, as a discrete set, we can endow (X, S)
with an alternate topology as a simplicial complex, as follows. For each U € & and each
p € 0CU, we have a O-simplex, and the O-simplices pg,...,pr € 0CUy,...,0CU; span a
k-simplex if U; L U; for 0 < 7 < j < k. There is an obvious bijection from the resulting
simplicial complex to (X, &), which is an embedding on each simplex.

3. COMPACTNESS FOR PROPER HHS
In this section, we will prove that proper HHS have compact HHS boundaries.

3.1. Preliminary lemmas.

Definition 3.1. Let (X, &) be hierarchically hyperbolic. The level ¢y of U € & is defined
inductively as follows. If U is E-minimal, then ¢;; = 1. We inductively define fy = k + 1 if
k is the maximal integer such that there exists V £ U with ¢y = k and V # U.

The following is a slightly modified version of Lemma 2.5 in [BHS15b].

Lemma 3.2. Let (X, S) be hierarchically hyperbolic. Then there exists N with the following
property. Let x,y € X and let {S;}i=1,.n S & be so that deg,(z,y) = 50E for each
i = 1,...,N. Then there exists S € & and i so that S; & S and decs(x,y) = 100E.
Moreover, for each T € & such that each S; E T, we can choose S ET.

Proof. The proof is by induction on the level £ of a =-minimal S € & into which each .S; is
nested. The base case k = 1 is empty.

Suppose that the statement holds for a given N = N(k) when the level of S as above
is at most k. Suppose instead that [{S;}| = N(k + 1) (where N(k + 1) is a constant much
larger than N (k) that will be determined shortly) and there exists a E-minimal S € & of
level k + 1 into which each S; is nested. There are two cases.

Ifdes(z,y) = 100E, then we are done. If not, then the large link axiom (Definition [11(@))
implies that there exists K = K(100E) and T7,..., Tk, each properly nested into S (and
hence of level less than k + 1), so that any S; is nested into some 7Tj. In particular, if
N(k+1) = KN(k), there exists j so that at least N (k) elements of {S;} are nested into Tj.
By the induction hypothesis, we are done.

Note that the proof still works replacing & with &7 when each S; & T'. In this case, we
can take S = T and the T; produced by the large link axiom will also have T; & S £ T for
each 1, as required for the second statement. ]

Lemma 3.3. Let (X,S) be hierarchically hyperbolic. Then for every hierarchy ray ~y there
exists S € & so that wg(y) is unbounded. Moreover, if T € & has the property that
{diamegr () : T' © T} is unbounded, then there exists S © T so that wg(7y) is unbounded.

Proof. The proof of the “moreover” part is a minor variation; we prove the first assertion
and indicate parenthetically how to adapt the proof.

By the distance formula (Theorem [[.9]) and the fact that ~ is a quasi-geodesic, there exists
an increasing sequence {n;} of natural numbers such that for each positive integer 4, there
exists S; € & so that degs(v(ni),7(ni+1)) = 100E. (For the purposes of the “moreover”
part, we choose S nested into T.) Since + is a hierarchy path, it makes coarsely monotonic
progress in CU for each U € &, and thus for each ¢ = 0 we have

dev (7(0),7(t)) = 50E - [{i : n; < t, 8] = U}|.
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Let § € & be the collection of domains in which v makes significant progress; that is,
S is the set of all S € & so that there exists tg > 0 so that for any ¢ > tg we have
des(v(0),v(t)) = 50E. (In the proof of the “moreover” part, we further require that S is
nested into 7.) If |S| < oo, then we are done by the above inequality, so assume |S| = o0.

Let S € & be C-minimal with the property that there are infinitely many S’ € S nested
into S. (In the proof of the “moreover” part, S is nested into T'.) Suppose for a contradiction
that diamg(mg(y)) = D < o0.

Denote by S7 the set of all level-j elements of S nested into S, and let & be maximal with
the property that S* is infinite. Note that this assumption and finite complexity imply that
U~k S¥ is finite. To derive a contradiction, we will use the large link axiom and Lemma
to construct an infinite sequence of distinct S; € |/~ Sk

By the large link axiom (Definition [[I](@)), there exists K = K(D) so that, for any ¢,
there exist T7,..., T} properly nested into S, such that if X € S has X = S and tx <,
then X & T; for some j. If we take ¢y large enough, we can apply Lemma [B.2lto a sufficiently

large subset of S*, all of whose elements are nested into some T;O, and we get some Sy of
level ko > k, so that des, (7(0),v(¢)) = 100E for ¢ > to. Note that Lemma B.2] allows us to
take Sy & T;O, so that Sp = S and thus Sy € S*. By minimality of S, there are finitely
many elements of S* nested into Sy. We can now choose t; > to and apply Lemma to

a sufficiently large subset of S* all whose elements are nested into some T; ! but not nested

into Sp, and get another element S; € S*, for some k; > k, which is properly nested into
S. We can then proceed inductively and construct infinitely many distinct elements S; = S
of level greater than k, giving us our contradiction. O

3.2. Compactness. We are ready to prove:

Theorem 3.4. Let (X, &) be hierarchically hyperbolic, and let X = X U d(X,8). If X is
proper, then X is compact.

Proof. Tt suffices to show that X is sequentially compact since it is separable by Proposition
2171 We will first show that any internal sequence {x,} < X subconverges to some point
in X. Then we will show this suffices for the theorem.

Internal sequences subconverge: Let {z,,} € X be a sequence of interior points. For
each n, let v, be a uniformly Lipschitz hierarchy path between xy and x,, whose existence
is guaranteed by Theorem Since X is proper, either the sequence x, subconverges to
an interior point and we are done, or we can assume that the sequence of hierarchy paths
¥, converges to a hierarchy ray, voo.

Lemma, implies there exists T' € & such that 77 o v, is unbounded. The collection
{T;}%_, for which this is true must be a collection of pairwise-orthogonal elements by the
consistency inequalities (Definition [T (). For each T;, the quasigeodesic ray 77,0y, < CT;
represents a point pr, € dCT;. Set T = {T;}F_,.

We now consider two cases depending on the behavior of the sequence {z,} in TL. First,

suppose lim inf,, sup{der(xg, x,) : T € TL} < 0. Up to passing to a further subsequence of
{x,}, we have well-defined limits for 1 <i,j < k

der.
ri; = lim et (%o, Tn)

e |0, 0],
n der; (w0, Tn) 0.2}

which determine coefficients {a? € [0, 1]} such that a?/ a? =r;j and Y, a? = 1. It is straight-
forward to check that {z,} eventually lies in the interior part of any Ny, y (p), implying
that {x,} subconverges to p = Yo7 apr.
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Now suppose that, up to passing to a subsequence, lim inf,, sup{der(zo,z,) : T € TL} =
. Consider the sequence {yn} = {gg,.(2,)} of gates in the orthogonal complement of 7",

Since (ET, GTL> is an HHS with complexity strictly less than that of (X, &), by induction

on the complexity of (X, &), the sequence {y,} subconverges to ¢ € 0X, where Supp(q) =

(T}, .1 and T; L T; whenever i < k < j. Since (ETv GT¢> c (X,6) is hierarchically

quasiconvex, we can take ¢ € dEg. For each j > k, let g1, € dCT}, so that ¢ is a linear

combination of the g7;. As before, up to passing to a further subsequence, for any 1 < i, j <

k', we can define

_ . der, (w0, )

T‘Z’J’ = lim ——" ¢

n der; (20, Tn)

which determine coefficients {a‘%_}f:l v {aqu }flz 441 Such that

€ [0, 0],

! !
o a"Ti/agqj = 7;4, when r,7" € {p, ¢} and a7, agﬂj are defined, and

Ep K q _
© D1 T2 ki1 ar, = 1.

If some a7, = 0 for r € {p, ¢}, we disregard T;. We now claim that {z,,} (sub)converges to

k k'
_ p q
p= Z ar, PT; + Z ar,qt;-
=1 i=k+1

Pick a neighborhood Ny, y .(p) of p. For large enough n, z, € Ny, (p) because:

o 71, (2n) € Ur, for i < k since (77, (x,)|pT;)., — 0,

T; (IO)
o 71, (zy,) € Ur, for ¢ > k since mp,(x,,) coarsely equals 7, (y,) and v, — q,
ag"j de (xo@‘n)

G‘TT;- a dTi (%0,2n)

o < € by definition, when r,7’ € {p, ¢} and ar,, af}j are defined, and

° dT(x07xn)

1
K :
ar 0w < € for T € <{T,}Z=1) and any 1 < i < k’, as we now show.

, 1
Let T € <{ﬂ}f=1> and choose i so that a7, # 0, for r € {p, q}. Observe that

dT($07$n) _ dT(xO’xn) ) di+1 (w07xn)

dr, (zo,zn)  dpy, (w0, 2n)  d7(20,20)
The first term on the right-hand side can be made arbitrarily small by increasing n since
dr(zg,2zy,) (resp. dp,,, (zo,2y)) coarsely coincides with dp(zo,¥ys) (resp. dr,,, (zo,¥n)) and
{yn} converges to ¢. Since the second term converges to 7441, < 00, this proves the claim
and completes the internal sequence case.

Reduction to the internal sequence case: Recall the definition of the boundary
projection, Definition 2.§]). By passing to a subsequence if necessary, it suffices to consider
any boundary sequence {z,} < 0X, where z, = >’ SeSupp(zn) ag'pd for each n.

We first find {x,} < X with the properties [)-(7) below, and then verify that {z,}
subconverges to the limit of {z,}:

(1) dx(wo,2n) = n,
(2) (ws(xn) |pg)7rs(x0) > n for each S € Supp(z,) (we remind the reader that the notation

(e|e), denotes the Gromov product with respect to the subscripted basepoint),

(3) STZ - % < 1/n for any distinct S, S’ € Supp(zy,),
o 1(xo,xn
(4) For any T € (Supp(z,))* and S € Supp(z,), we have % < 1/n.

(5) For all n and S™ € Supp(zy,), if ThS™ or S™ = T, then dr(p3", x,) < K, for some
uniform K > 0. Moreover, for all such T, we have dp(xg, z,) < dgn(zg, ).
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(6) {z,} converges to p = ZTESupp(p) afpr € 0X with the following property: if there
are infinitely many n for which z,, € 0" X" (with respect to Supp(p)), then there are
infinitely many remote z, such that the following holds for some fixed T' € Supp(p):
there exists S7 € Supp(zy,) so that SpAT or S7 = T', or T &= Sp but dgp (pg%,xo) <
100K’ E, for some constant K’ > 1 depending on {z,} and p but not on n. Moreover,
for all such T', we have der(zo, z,,) < degn (zo, zp).

(7) {z,} converges to p = ZTESupp(p) alpr € 0X with the following property: if there
are infinitely many n for which z, € 0"™X (with respect to Supp(p)), then there
are infinitely many remote z, such that dr((0Tsupp(p)(2n))T, %) < K” for some
K" independent of n and all T' € Supp(p),,. Moreover, for all such T, we have
dCT(xo,xn) < dcgn (a;o,a;n).

To see that such an internal sequence exists, choose a sequence {z,} so that z;,, € P for
all n, where:

P =im H Fs— X |;
SeSupp(zn)
the sequence {x,} satisfies ([II)-(]) (which can be done since they are component-wise con-
ditions); and

min  dx(grs(zn), 20)/dx (9Fs(20), T0) — ©
SeSupp(zn)

as n — 0. Here we fix, for each n, a basepoint (ps)sesupp(z,) and let Fs = Fg x {(Ps/)sr25}-
(Recall from [BHS15bl Remark 5.12] that, whenever Uy,..., Uy € & are pairwise or-
thogonal, we have a standard quasi-isometric embedding Hle Fy, — X whose image is
hierarchically quasiconvex and which is, for each i < k, the restriction of the usual map
Fy, x By, - X.)
We can verify condition () by examining the product regions [ | SeSupp(zn) Fsg — X. Let
ThS™ or S" & T for S™ € Supp(zy,). Since xy, coarsely lies in | [gegupp(z,) £S5 it follows that

diamT(,o;” U mr(Fsn)) =1 and dp(7r(Fsn ), x,) = 1. We thus have, for some uniform C,

dr(zo,2,) < Cdx | 20, [  Fs|+C.

SeSupp(zn)

For sufficiently large n, our choice of {x,} ensures that dg,, (z¢, z,) = Cd <a:0, [ Isesuppzn) £ 5) +

C, verifying the “moreover” part of assertion ().

Let {x,} satisfy ([)-(B). We now prove that there is a subsequence of {x,} satisfying (@).

By replacing {x,} with a subsequence (and replacing {z,} with the corresponding subse-
quence of {z,}), we can apply the proof that internal sequences subsequentially converge to
conclude {z,} converges t0 p = X resupp(p) alpr € 0X.

Consider the set G of n € N so that z, is remote with respect to p. If G is finite, then ()
holds vacuously. Otherwise, by replacing G with an infinite subset, we find 7' € Supp(p) so
that for all n € G, there exists S™ € Supp(z,) with either ThS™ or S = T or T' = S™.

First consider the case where {S™ : n € G} is infinite. By passing to a subsequence if
necessary, and then applying finite complexity, Lemma [[.4] and Ramsey’s theorem, we can
assume that S™"MS™ when n # m. Let G € N be the set of n € G such that 7' S™. Then
for all m,n € Gp, we have dgm (pgm, p‘Sq:l) < F by the consistency inequalities. Hence, again
by the consistency inequalities and the triangle inequality, we have dgn (pgn,xo) < 2F for
all but at most one element of G7. Indeed, if dgn (pgn, xo) > 2F, then dgn (pgzl, xo) > E for
any m € Gr — {n}, so by consistency dgm (p2m, o) < E; the claim follows from the triangle
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inequality since dgm (pL., p‘SqZ) < E. Hence, by replacing {z,} with a subsequence, for all
T € Supp(p) with T & S™, we have dgn(pL.,z0) < 100K’E. Letting S7 = S™ for n € G,
this establishes assertion (6) when {S™ : n € G} is infinite.

When {S™ : n € G} is finite, we can assume that S™ = S™ for all m,n by passing to a
subsequence. Hence, there exists S € & so that for all n € G, and all U € Supp(z,), either
U=SorULT. Fix T and S as above, and replace (z,) with a subsequence so that for
each n € G, we have S € Supp(z,). Then, for each n € G, set S7: = S and observe that
either S T,SAT, or T = S. In the latter case, take K’ = ds(pg,azo), which depends on p
and {z,} but not on n. This completes the proof of ().

We now deduce condition (@) from (I)—(6). Assume G is infinite, so that by (@), there
exists 7" € Supp(p) so that, after replacing G with an infinite subset if necessary, we have
for each n € G some S, € Supp(2,) so that dsn, (pg;/,xo) < 100K'E. Let T € Supp(p).,,-

First suppose that 7' = S%,. Then since T L T' or T = T’, Lemma implies that
dsn, (pLn ,z0) < 200K'E. 1t follows from (2)) that (sn, (#n)[Pgn )ptsr — 00 as m — 00 SO
T’ ! s

that, by discarding finitely many n and applying the bounded geodTesic image axiom, we
have d7((07supp(p) (2n))7; Tn) < E for all n € G. In the remaining cases, where T'hS7, or

7, = T, then we reach the same conclusion, using (O] instead of (@)). This completes the
proof of condition ().

Subconvergence of {z,}: Fix a neighborhood N = Ny} (p) of p; we must check that for
infinitely many values of n, we have z, € N'. For each n, either z, € 0" X (recall that this
means that Supp(z,) N Supp(p) = & and for all T' € Supp(p), there exists S € Supp(zy,)
with T +S) or z, € 0X — 0" X (so that either Supp(z,) N Supp(p) # & or there exists
T € Supp(p) with 7" L S for all S € Supp(zy,)).

The non-remote case: We will consider the non-remote case first. Recall that z, =
>, SeSupp(zn) ag'py. We must check the following conditions:

(a) For each S € Supp(p) n Supp(zy), and infinitely many n, we have p% € Us.
(b) For each S € Supp(p) N Supp(zy,) and infinitely many n, we have a4 — a¥.
(¢) The SUM X regupp(p)—Supp(zn) a}. < K'e for infinitely many n and some uniform K.

Up to passing to a subsequence, (@) follows from (2)) and the fact that z,, — p.

For (B, we have three cases. If Supp(p) N Supp(z,) = &, then this holds vacuously.
If Supp(p) m Supp(z,) has multiple elements, then this follows from (B]) and the fact that
Zn, — p. If Supp(p)nSupp(z,) = {5}, then this follows from (B)) and (@), proved momentarily.

To see (@), first observe that Supp(p) — Supp(z,) < (Supp(z,))* by non-remoteness. Let
T € Supp(p) — Supp(z,) and S € Supp(p) N Supp(z,); note that such an S € Supp(p) N
Supp(z,,) exists, otherwise one of x,, — p or (] is contradicted. By definition of x,, — p,

ap  dr(zo,zp)

Qg d5($07$n)

It follows from (@) that % < % Since each af < 1, it follows that

Z ab < £(X) (e + —) < 26(X)e,
TeSupp(p)—Supp(zn) "

completing the proof of (@) and thus the non-remote case.
The remote case: We must check the following conditions:

(i) For any T € Supp(p), and infinitely many n, we have (87rsupp(p)(zn))T e Up.
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(ii) For infinitely many n and any T € Supp(p).,, T’ € Supp(p), we have

dT<x07 (aﬂ-Supp(p)(Zn))T) CZI%

dT’ (l‘o, (aﬂ-Supp(p) (Zn))T’) alj)“/

<€

(iii) We have X regupp(p)L ~Supp(zn) 47 < K€ for some uniform K.

For any T' € Supp(p) and each n, choose S7 € Supp(z,) so that T" and S} are not
orthogonal. If G is infinite, then we may pass to a subsequence so that ST and T are always
non-orthogonal: that is, T' = ST, or T'hST, or ST = T

We now show that assertion (i) holds for infinitely many n; the proof divides into three
cases according to the above possibilities, which influence the definition of (07gypp(p)(2n))7-

First, if SEAT, then (0Tsupp(p)(2n))T = p;%. In this case, () follows immediately from
conditions (2) and (@) in the definition of {z,}. The same is true if S} — 7. If T' = S7,
then () follows from (@), (@), and the triangle inequality.

Assertion (), in the case when T,7T" € Supp(p), follows from (7). In fact, since {z,}

converges to p, we have

dr(zo,zn)  af
dpi(zo,2n)  aly
and dr(zg, z,) — ©, dp/(xg,z,) — 0. By (@), we have that dr(xg,z,) coarsely coincides
with dr (20, (0Tsupp(p)(2n))7), and similarly for 7’. Hence, (x) implies that the ratio in

Assertion () satisfies the required inequality. If 7" € Supp(p)., — Supp(p), then we have

dr(z0,(0mgy Zn . . ab
d;Ewg,Eéw:uEEEgEzn;;g) — 0. We still know (x) (with GT;F/ replaced by 0) and

dpi (zg, ) — 0. If dp(xq, x,) does not diverge, we are done. If it does, we can approximate
dr (20, (0Tsupp(p)(2n))7) by dr(T0,7,) and we can conclude as above.

=0, (%)

to verify

It remains to verify assertion (). For each n, let T™ € (Supp(p))* N Supp(z,) and choose
S™ € Supp(z,) — (Supp(p))*. Fix P € Supp(p) so that, after passing to a subsequence, P is
not orthogonal to any of the S™. By either (@) or (@), we have degn(xo, zy)/dep(xo, zn) < 1,
while dep (2o, 2n)/dern (20, 2,) < € since z, — p. Hence ai%/af, < e+ L, by @), and
the desired inequality follows since the number of terms in the sum is bounded by &(X),
as in the non-remote case. This completes the proof that {z,} subconverges to p, and thus
completes the proof that dX is compact. U

4. THE HHS BOUNDARY OF A GROMOV HYPERBOLIC SPACE

In this section, we prove that the HHS boundary of a hyperbolic space is its Gromov
boundary, regardless of the chosen HHS structure.

Lemma 4.1. Let (X, &) be hierarchically hyperbolic. If X is hyperbolic, then there exists
C > 0 such that if U,V € © and U LV, then either diam CU < C or diamCV < C.

Proof. Recall from [BHSISD| that if U L V, then there exists a quasiisometric embedding
Fy x Fy — X. Hyperbolicity uniformly bounds the diameter of one of the factors. U

Lemma 4.2. Let (X, &) be hierarchically hyperbolic and X hyperbolic. If v : [0,00) — X is
a hierarchy ray with v(0) = xo, then there exists a unique U € & with w0y : [0,00) — CU
a parametrized quasigeodesic ray. In particular, diamey () < 00 for all V € & with V # U.

Proof. By Lemma B3] there exists U € CS such that diameg () is unbounded. Let V € &
be such that V' # U; by Lemma [£1] there are three cases: V=2 U, U = V, and VAU.

Let ¢y € [0,00) be such that dey(v(0),v(t)) > E? for t = tp. If U € V, then by the con-
sistency inequality, dy (y(t), pl; (7(0))) < E for all t > tp. If V £ U, then dey (v(t), p¥) < E
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for all t > tpy. Similarly, if UV, then dev (v(t), pf;) < E for all ¢ > ¢y by the transverse
case of the consistency inequality. Thus, in each case, diamey () < o0. ]

Theorem 4.3. Let (X, &) be hierarchically hyperbolic and suppose that X is hyperbolic. Let

X =xu 09T X, where 0°T X is the Gromov boundary of X, and let X = X U 0X. Then

the identity map X — X extends uniquely to a homeomorphism ?GT — X.

Proof. Lemma @Il gives 0X = [ [;;cg 0CU and Lemma .2 gives [Supp(p)| = 1 for all p € 0X.

Fix 29 € X and let p € 097X, Let v, : [0,1) — X be a geodesic from xg to p. For any
n e N, let 7, : [0,n) — X be a hierarchy path between x¢ and ~,(n). Since & is hyperbolic,
each 7, uniformly fellow-travels -, and thus v = lim,, 7, is a hierarchy ray from xy to p. The
ray « is independent of the choice of (v,) and is thus uniquely determined by p. By Lemma
12 there exists a unique U € & such that diamey () is an unbounded quasigeodesic ray.
By hyperbolicity of CU, there exists ¢ € dCU such that 7ey () limits to g.

The above discussion yields a well-defined map ¢&" : 97X — 0X given by ¢ (p) = q.

Define ¢ : X L x by ¢|x = idy and ¢|?Gr = ¢%". We claim that ¢ is a homeomorphism.

Bijectivity: The map ¢ is clearly bijective on X. Let p,q € 0" X and suppose that
p # q. Then there exist geodesic rays vy, 7, : [0,0] — X with [v,] = p, [v4] = ¢, and
Yp(0) = 74(0) = zg. Since p # ¢, hyperbolicity of X implies that dx (v,(t),v4(t)) — oo.

By Lemmald.2] v, and 7, have unique domains U, and Uy, respectively, to which they have
unbounded projections. If U, # U,, we are done. Otherwise, U, = U, = U, and Lemma [L.2]
the distance formula, and the triangle inequality imply that dir(y,(t),v4(t)) — o0, whence
o(p) # ¢(q), by definition. Thus ¢ is injective; surjectivity of ¢ follows from Theorem [[7]

Basic sets in X: For convenience, we describe basic sets A (p), for p € d(X, &), in our

current simple situation. Observe that Supp(p) consists of a single S € &, while 8§in;p(p))(

consists of those ¢ € (X, &) with Supp(q) = {T'} with T' # S. It is automatic that T is not

orthogonal to S: if T L S, then Lemma [£T]implies only one of CS or CT' can be unbounded

and thus have nonempty Gromov boundary. It follows that Supp(q) N (Supp(p))* = &.
Choosing € > 0 and p € Us = CS U 0CS, a remote neighborhood of p in X is:

e (p) = {q e || 8CT‘/),:§ GUS} :
S#T
Meanwhile, the nonremote part of the boundary is just 0CS, so

lise(p) = Us.
Finally, the interior part is:

; dr (20, x)
nt _ X ’
e (D) {x € ‘75(517) € Us, ds(z0.2)

The above descriptions will be useful in proving that ¢ is a homeomorphism.
Continuity of ¢, ¢ ': Choose p € d(X, &), supported on S € &, a neighborhood Usg of
pe dCS, and € > 0. We may assume that

<6VTJ_S}.

Us = {y eCSu 0C5‘5|(pn) D Pn — D, limninf W | 75(Pr)) rg(zo) > 7‘}
for some 7 > 0. Choose q € 0°" X so that ¢(q) = p. For each 7/ = 0, let
Ulgr") = {y e X 0 09X (yla)s, > 1"}

Recall that sets of this type yield a neighborhood basis in X
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We exhibit ' > 0, depending on p,r, € and the distance formula constants, such that

¢ (U(q,7")) = Nyg.e(p)-

Indeed, if y € U(q,7’) n 07X, and 7’ is sufficiently large, then any geodesic ray or
segment representing [mg o 7,] has an initial segment of length at least r lying 26-close to
the corresponding segment for p. This implies that ¢(y) € Ug, which is exactly the non-
remote part of Ny (p) (regardless of the choice of €). If y € U(g,r’) is an interior point,
and 1’ is sufficiently large, then similarly 7g(x) € Us.

If 7L S, then, by Lemma 1] there exists a uniform C' > 0 such that dp(zg,y) < C.
Moreover, choosing ' sufficiently large compared to r, C, and the constants in the distance
formula, we have dg(xg,y) = C/e. Hence either y is interior or y € dCS, and so

#(U(g,1")) € Nige(p) © Nigs'e ()

Continuity follows easily: Given an open set O < X, let ¢ € ¢~ '(0). Then, since O
is open, it contains a neighborhood N of ¢(q). The preceding discussion shows that ¢
lies in some neighborhood U which in turn lies in ¢~ *(N) < ¢~ 1(0), so ¢~1(O) is open.
Continuity of ¢! is proved similarly. O

5. EXTENDING HIEROMORPHISMS TO THE BOUNDARY

Hieromorphisms need not extend continuously to the boundary, but under additional
hypotheses on the quasi-isometries implicit in the hieromorphism, such extensions do exist.
However, the class of hieromorphisms that extend continuously to the boundary is contained
in a larger class of maps with this property, and, given the examples we study later in this
section, it is in our interest to focus on this larger class of maps.

Definition 5.1 (Slanted hieromorphism). Let (X, &), (X', &) be hierarchically hyperbolic
spaces. A slanted hieromorphism f : (X,8) — (X', &) consists of:
(1) amap f: X —> X,
(2) a map 7(f) : & — 2% such that «(f)(U) is a collection of pairwise-orthogonal
elements of & for each U € &;
(3) for each U € &, amap p(f,U) : CU = [lyer(pyu) CV

such that:

(I) if U,V € & satisfy U = V, then for each W’ € «(f)(V), there exists W € «(f)(U)
with W & W', and for every W € 7(f)(U) there exists (a unique) W’ e 7(f)(V) with
wo W

(IT) if U,V € & satisty U L V, then W L W’ for all distinct W e = (f)(U), W' € n(f)(V);

(IT) if U,V € & satisty UMV, then for all W € 7(f)(U), there exists W' € «(f)(V) with
W AW’ and vice versa;

(IV) each p(f,U) is a (uniform) quasiisometric embedding (where yycr(s) ) CW);

(V) for all U € &, the following diagram (uniformly) coarsely commutes:

X ;} X/
| I Mwer(n)w)mw

U
cU RACLIN Uwer(pyonCW

(VI) if U,V € & satisty U = V or UAV, then

LU
cv 0 Wywer(pyw)CW

b b
eV~ Thiyen(py v CW
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uniformly coarsely commutes, where g is a coarsely constant map so that: if U = V,

then for each W’ € m(f)(V), the W'-coordinate of g is p{},, for some (hence any, by

Lemma [LH) W e n(f)(U) with W = W', and if UMV, then for each W’ € 7(f)(V),

the W'-coordinate of g is pJ}, for some (hence any) W e n(f)(U) with WhW’;
(VII) if V = U, then

LU
cy 0 Wywer(pyw)CW

|7 (V) b
CV — Thypren(y ) CW

uniformly coarsely commutes, where the map h is defined as follows: given (zw")w er(f) )

for each W e 7(f)(V), the W-coordinate of h((zy)) is pl}; (zwn), where W” is the
unique element of 7(f)(U) with W &= W".

Remark 5.2 (Hieromorphisms are slanted hieromorphisms). Any hieromorphism f is a

slanted hieromorphism in which |7 (f)(U)| =1 for all U € &.

Remark 5.3. There is presumably a still more general version of Definition 5.1 encompass-
ing morphisms f : (X,8) — (X/,&') where f : X — X is a map, f : 26 — 2% sends
pairwise-orthogonal sets to pairwise-orthogonal sets, and f sends appropriate products of
hyperbolic spaces to products of hyperbolic spaces. Simple examples like rotation in E?
require such a definition in order to be regarded as maps of hierarchically hyperbolic spaces.

Definition 5.4 (Coarse similarity). Let M, M’ be metric spaces. Then f: M — M’ is a
(A, €)—coarse similarity if there exist A > 0,e = 0 such that for all p,q € M,

My (p,q) — e < dur(f(p), f(9)) < Mdu(p,g) + €
Definition 5.5 (Extensible slanted hieromorphism). Let f : (X,&) — (X', &) be a slanted
hieromorphism. Then f is extensible if there exist 0 < Ay < A9 and K < o0 such that:
(1) 7(f) : & — 2% is injective;
(2) for all V e &, either there is U € & with V € «(f)(U) or diamey (my (f(X))) < K;
(3) for all U € & and W € w(f)(U), the composition

cv™™D ] cv-ew
ver(Hw)

is a (A, \)—coarse similarity, where the second map is the canonical projection and

A € [A1,A2] (A can depend on U, V) and X' > 0.
Theorem 5.6 (Extending slanted hieromorphisms to the boundary). Let (X, &) and (X', &)

be hierarchically hyperbolic structures on the spaces X, X' respectively. Sz_;ppose that f: (X,6) —

(X', &) is an extensible slanted hieromorphism. Then there is a map f: X — X’ such that
(1) f_|X = f;
(2) flox is injective;
(3) for all f(p) € 0X' and basic neighborhoods f(p) € N of X', the set f~L(N) contains
a basic neighborhood of p e X, i.e., f is continuous at each point in 0X;
In particular, if X is proper, then flox is an embedding with closed image and, if f is an
embedding, then f : X — X' is an embedding whose image is closed.

Proof. For convenience, when the domains of the various maps are understood, we shall

denote each map f: X — X/, 7(f) : & — 2% and p(f,U) : CU — Hywer(ryw)CW by f.
Boundary maps on hyperbolic domains: Let U € &. To each sequence (x,) in CU,

associate the sequence (f(zn))n in Hyyeer(py@)CW. Foreach W e nn(f)(U), let w, (W) e CW
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be the W—coordinate of f(x,). Fix a basepoint z € CU and pw = 7w (p(f,U)(x)) € CW for
each W e n(f)(U).

Suppose that (z,,), represents a point in 0CU, i.e. (x;|x;), — 0 asi,j — o0. Since p(f,U)
is a uniform quasiisometric embedding, we have for each W € 7(f)(U) that (w;(W)|w;(W))p,, —
o0 as i,j — 00. Hence w;(W') converges to a point p(W) e oCW.

For each W e w(f)(U), choose ay € (0,1] so that

aw _ o dw(pw, wa(W))

aw: n dwr(pwr, we (W)
for all W, W' € 7(f)(W), which exists because of the coarse similarity assumption. Then
define p € *yyecq(p)()0CW to be the linear combination ZWew(f)(U) awpw. The assignment
fu((w,)) = p thus provides a map fy : CU U dCU — Wywecr(£)nCW U *weer(p)@)CW
extending the map p(f,U).

For any U € &, the map fiy defined above is injective since the composition of f with any
of the canonical projections Ilyyer(r))CW — CW is a uniform quasiisometric embedding,
and quasiisometric embeddings coarsely preserve Gromov products.

Definition of f: Let p € X, so that p = ZUeSupp(p) Bupu, where py € oCU for
each U, each By € (0,1], and Y;; By = 1. For each U € Supp(p), we defined fy(py) =
ZWew(f)(U) all-qw above, where gy € OCW and Yy, oY, = 1. Let

fo)= ] > Buoty-aw,

UeSupp(p) Wer(f)(U)

which is a point in 0X” since Y;; Dy Bual, = 1 and since Uvesuppp) T((U) is a pairwise-
orthogonal set by Definition 5.1l since f is a slanted hieromorphism.

Injectivity of f|sx: Injectivity of f|sx follows from injectivity of fiy on each oCU,U € &
together with injectivity of 7(f) and the fact that each fy : CU — Wyer(r)@)CW is “fully
supported” in the sense that each a‘[,][, > 0.

Continuity at boundary points: First consider p € 0X. By Proposition 217, there
exists (7,) in X such that x,, — p as n — 0. We check that f(x,) converges to f(p).

Fix a basepoint € X, so that p = ZUGSupp(p) aypy where Y, ay = 1, each ay > 0, and
for all U, U’ € Supp(p),

du(z,z,) au

— 0 and 7dv(x,xn)

(@ an) v Qoo "

whenever U € Supp(p) and V' € Supp(p)*, and finally 7y (z,) — py for all U € Supp(p).

Consider the sequence (wy,) = (f(zy)). For each U € Supp(p) and W € = (f)(U), let
cw - HVeﬂ(f)(U)W — CW be the canonical projection. By hypothesis, for each such W we
have |dw (f(z), wn) — Awdy (2, z,)| < Ay, where Ay € [A1, 2] and Aj;, = 0. Hence for each
U € Supp(p) and W € 7(f)(U), we have that my (w,) = cw o f(7y(x,)) — cw o f(py) and
flry(zy,)) — 2wer()(v) Buawew - f(pu) as required. Moreover, if V € &' does not belong
to w(f), then dy (f(x),wy) is uniformly bounded by Definition [5.5)2).

Finally, if V' € &—Supp(p), then dy (x, z,,) is dominated by dy(x, z,) for any U € Supp(p).
Hence, for such V', we have that dy (f(z), f(zy)) is dominated by dz(f(x), f(z,)) whenever
W e n(f)(V) and Z € 7(f)(U) for some U € Supp(p), since each p(f,U) is a uniform
quasiisometric embedding. Thus f(z,,) converges to f(p).

More generally, given any sequence (z) in X converging to p € 0X, we can use the
ideas in the proof of Theorem [B.4] to build a sequence of internal sequences (x;), so that
lim; xy, ; = 2, for each k. Namely, for each k, we can take a sequence (xj ;) — 2z (if 2, € X,
then we choose xj, ; = zj to be constant), and then we choose IV, > 0 large enough so that if
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n > Ny, then the sequence (x,,) will satisfy conditions ({I)-(d) from the proof of Theorem
3.4l This will force that lim; z ; = 2, and then since limy, 2, = p, the above conditions will
force limy, &y, ,, = p.

Now since lim,, xy ,, = p and lim; xy ; = 2, the internal case above implies lim,, f(ka) =
f(p) and lim; f(xx,;) = z. Together, these imply that limy f(2x) = f(p). Thus f is
continuous at boundary points.

When X is proper: Assertion (B) combines with Theorem B4 and Proposition 217 ()
to imply that f is an embedding; compactness of 0X implies that its image is closed. If
in addition, f is an embedding, then f : X — X’ is an embedding, since assertion (B
again combines with Proposition 217} () and Theorem 3.4l to imply that f is a continuous
injection from a compact space to a Hausdorff space. ]

Remark 5.7. Theorem holds under slightly more general conditions: condition (3] of
Definition need only be imposed on U € & in cases where either there exists V € G with
U LVor|n(f)(U)] > 1 or both. For any U with empty orthogonal complement and for
which 7(f)(U) = {V'} for some V € &, it suffices to require that p(f,U) : CU — CV is a
uniform quasiisometric embedding.

5.1. Limit sets of hierarchically quasiconvex sets. Let (X, &) be a proper hierarchi-
cally hyperbolic space and let ) < X be hierarchically quasiconvex. Let A) be the set
of boundary points p = ZUESupp(p) aypy € 0X such that for all U € Supp(p), there is a

sequence pf; € Ty ()) converging to py.

Proposition 5.8 (Hierarchically quasiconvex subspaces have limit sets). Y UA)Y is a closed
subset of X, and Y is dense in Y UAY. Hence Y has an HHS structure so that Y UAY = ).

Proof. This is a definition chase and an application of Proposition 2.171 O

Remark 5.9. When 7|y is either surjective or uniformly bounded for each U, Theorem [5.0]
together with the HHS structure on ) inherited from X', implies that A) is homeomorphic
to the HHS boundary ¢). This holds in particular for the main examples of hierarchically
quasiconvex subspaces that we use, namely product regions:

Remark 5.10 (Boundaries of standard product regions). Let U € &, and recall from
Section 3 that there is a quasiisometric embedding Fy x By — X coming from the standard
hieromorphisms. By definition, dFy consists of exactly those Y}, aypy € 0X where the
support set {V'} consists entirely of elements of &7, while 0 Eyy consists of linear combinations
of the same form, but with each V' € 6%]. In particular, under the map Fyy x By — X, we see
that the images of d(Fy x {e1}),0(Fy x {e2}) — 0X are identical. Moreover, the subspace
0Fy < 0X is closed. Finally, 0Py < X is a closed subset homeomorphic to dFy * 0Ey,
where * denotes the spherical join.

5.2. Geometrically finite subgroups of mapping class groups. In this subsection, we
will show that certain interesting subgroups of mapping class groups have a well-defined
limit set in the boundary. Before doing so, we give a quick sketch of relevant facts about
mapping class groups and Teichmiiller spaces. For more details about the HHG structure of
the mapping class group, the reader is referred to Section 11].

Fix a finite type surface S. The mapping class group MCG(S) of S acts properly and
cocompactly on the marking graph M(S) of S [MMOQ0O]. The vertices of the marking graph,
called markings, are isotopy classes of certain collections of curves on S (pants decomposition
together with certain transverse curves). MCG(S) and M(S) are quasiisometric via the orbit
map, and we will identify MCG(S) with an orbit in M(S) from now on. The mapping class
group can be given a hierarchically hyperbolic structure by considering the collection &
of all its (isotopy classes of essential) subsurfaces and associating to each Y € & its curve
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graph CY, a graph whose vertices are isotopy classes of essential simple closed curves on
Y, except when Y is an annulus (a case that will be more subtle to deal with later, and
which we will hence explain in more detail here). When Y is an annulus, CY has vertices
the isotopy classes of arcs connecting the two boundary components, and two such vertices
are adjacent if they can be represented by disjoint arcs. The maps my : MCG(S) — 2¢Y are
called subsurface projections and, when Y is not an annulus, they are defined more or less
by intersecting the curves in the marking with Y. When Y is an annulus 7y is defined in
the following way. Let Y be the annular cover of S where the core of the annulus lifts to a
simple closed curve. There is a natural compactification Y of Y which is a closed annulus,
and that can be identified with Y. Given a marking m, lift to Y all the curves in m, except
possibly the (only) one which is isotopic to the core of Y. Each such lift can be compactified
to an arc in Y, and we can finally define my (m) to be the collection of all such arcs that
connect distinct boundary components of Y.

We now comment briefly on Teichmiiller space 7 (.S) endowed with the Teichmiiller metric.
A point on Teichmiiller space corresponds to a hyperbolic metric on .S, and we can hence
consider the systole map Sys : 7(S) — 2°° that maps points in Teichmiiller space to the
shortest curves in the corresponding hyperbolic metric. The set of systoles is non-empty
and pairwise disjoint, thus giving a bounded subset of CS.

5.2.1. Subsurface mapping class groups. For any nonpants subsurface ¥ < S there is a
natural embedding ty : MCG(Y) — MCG(S) which takes any mapping class fy € MCG(Y')
to a mapping class f € MCG(S) so that fly =Y and f|s\y =idg\y; if Y is an annulus, we
take MCG(Y) to be the cyclic subgroup generated by the Dehn (half) twist about the core
of Y.

We can also see this map in terms of markings: For each component X < S\Y (including
annuli with core curves in dY'), fix a marking px € M(X); if X is an annulus, then pux € CX.
Define a map ¢y : M(Y) — M(S) by

wpy)=pmru [Jau [ bx

aedY XeS\Y

for any marking py € M(Y).

The map ty extends to a hieromorphism in the obvious way and it follows from the
distance formula that it is a quasiisometric embedding. Moreover, since diamyz(ty (M(Y)))
is uniformly bounded for each Z € &\Gy and ty is surjective for each W € Sy, it is easy
to see that 1y (M(Y)) is a hierarchically quasiconvex subspace of M(S). Hence we have by
Proposition .8t

Theorem 5.11. For any nonpants subsurface Y < S, the natural inclusion vy : MCG(Y') —
MCG(S) equivariantly extends to a continuous embedding dvy : OMCG(Y) — OMCG(S).

5.3. Convex cocompactness subgroups. Convex cocompact subgroups of mapping class
groups are a much-studied class of hyperbolic subgroups of mapping class groups, mainly
because they are precisely the class of subgroups of MCG(S) whose corresponding surface
subgroup extensions are hyperbolic. Importantly, they satisfy several strong equivalent
characterizations, which we state in the following theorem-definition with parts due variously
to Farb-Mosher [FM02]|, Hamenstédt [Ham05], Kent-Leininger [KLO§|, and the first author

with Taylor [DTT5]:
Theorem 5.12. A subgroup H < MCG(S) is convex cocompact if it satisfies any of the
following equivalent conditions:

(1) Any orbit of H in T (S) is quasiconvex;

(2) Any orbit of H in CS is quasiisometrically embedded;
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(8) Any orbit of H in M(S) is quasiisometrically embedded and has uniformly bounded
subsurface projections;

(4) H is a stable subgroup of MCG(S);

(5) The corresponding extension Iy of m1(S) is Gromov hyperbolic.

The following is a corollary of Proposition B.8 and Theorems E3 and

Corollary 5.13. If H < MCG(S) is a conver cocompact subgroup of MCG(S), then the
inclusion map H — MCG(S) H-equivariantly extends to a continuous embedding Ogy H —
OMCG(S).

Proof. 1t follows immediately from properties (2) and (3) of Theorem that H is a
hierarchically quasiconvex subgroup of MCG(S). Since H is hyperbolic, Theorem 3] implies
that the boundary of the induced HHS structure on H inside of MCG(S) is homeomorphic
to dgr-H. The result then follows from Proposition O

In the rest of the section, we will consider finitely generated Veech subgroups and the
Leininger-Reid combination subgroups of MCG(S), which are generally not hierarchically
quasiconvex. Recall that for both classes of groups, their actions on 7(S) do not extend
continuously everywhere to embeddings of their boundaries into PML(S). The main goal
of the remainder of this section is to prove that such an extension does exist for both classes

of groups into IMCG(S).

5.3.1. Veech subgroups. The construction of Veech and Leininger-Reid subgroups involves
holomorphic quadratic differentials. We will not work with them directly, so we do not
need to define them, but we will rather work with the g—metric associated to a holomorphic
quadratic differential ¢ on the surface S. This is a singular flat metric on S which is locally
isometric to R? except at finitely many points called singularities.

Given a holomorphic quadratic differential ¢ on S, there exists a convex subset T'D(q) <
T(S) with TD(q) = H? called a Teichmiiller disk. Let Aff*(g) denote the affine group
of ¢. Following [LRO6], we call any subgroup G(q) < Afff(q) < MCG(S), with G(q)
acting properly on T'D(q), a Veech subgroup, except that we will also ask that G(q) be
finitely generated. Veech subgroups have the property that every element of G(q) is either
pseudo-Anosov or a multitwist about some annular decomposition A of ¢ [Vee89], where
this annular decomposition comes from a finite measured foliation with only closed leaves
naturally associated to q.

Consider the Veech subgroup G = G(q) < MCG(S). Let Xg be the orbit of G of a
fixed marking p in the marking graph M(S). Given a multitwist ¢ € G with annular
decomposition Ay = {a1,...,ap,}, let

Tyt Xg — H Cay

1<i<ng
be given by 74 (v) = (7o, (V), - -+, Ta,, (V) for v e Xg. If g = Th... N

Ly={g) - mg(p) = [] Cau

1<i<ng

, let

Note that L, = R, and in fact L, is the projection of the g-orbit of y and thus coarsely the
line in R™s with slope (k1, ... kp,), where we identify the origin of R"s with the projection of
p. For each Lg, let 7, : HKK% Ca; — Ly be the standard projection onto L, considered
as a subspace of R™s identified as above.

We now define an HHS structure (G,S¢) on G as follows:
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(Domains) : S is the unique nest-maximal domain in S¢, and for every primitive multitwist
g € G with corresponding annular decomposition Ay = {ag1,. .. agn,}, we include
a domain U, € Gg.
(The spaces) : To S, we associate 7g(G - n) < CS and to each Uy, we set CU,; = L, and declare
U, = S for each g; moreover, we specify that U,nUy for each primitive g # ¢'.
(Projections) : w5 : Xg — CS is the standard projection; for each U, we define 7y, : Xg — Ly
by 7y, (v) = 7r,(m4(v)) for each v € Xg.
(Relative projections) : Given U,V € G¢, we define pg :CU — CV by:
U= V) : In this case V = § and U = U, for some primitive g, then p}; = 7,
g U
(UAV) : IfU = Uy and V = Uy, then

g O7Tg.

U,
o), =7, (9 1)-

Lemma 5.14. If G is finitely generated, then (G,S¢) is an HHS structure on G, and
G < Aut(Gg).

Proof. We need to prove that (G,S¢) satisfies the axioms; since it clearly satisfies pro-
jections, nesting, orthogonality, and finite complexity, it suffices to prove it satisfies the
consistency, large link, bounded geodesic image, partial realization, and uniqueness axioms.
Hyperbolicity of the associated spaces uses Lemma (the only part for which we need
finite generation of G).

There is no nontrivial orthogonality, so partial realization holds by construction. Bounded
geodesic image holds by the bounded geodesic image axiom in (MCG(S),S) and the defi-
nition of p[S]g. The consistency and large link axioms hold for a similar reason. Uniqueness

follows from uniqueness in (MCG(S),S) together with Lemma O
Lemma 5.15. The projection wg(G - ) is quasiconvex in CS.

Proof. Consider the action of G' on the corresponding Teichmiiller disk 7'D(g). Since the
action is proper, this makes G a finitely generated Fuchsian group. Hence, G is geometrically
finite [Mar67], so that it acts with cofinite volume on a convex subspace Cg < T'D(q).
Consider now the image of C and T'D(q) in CS. Since geodesics in T (S) map to quasi-
geodesics in CS [MM99] and Cg is a convex subspace of T(S), it follows that 75(Cgq) is
quasiconvex in CS.

Now, it is not hard to see that mg(Cg) coarsely coincides with wg(G - p). In fact, Cg
contains a G-equivariant collection of horodisks so that the action on the complement C{; is
cocompact, and cocompactness implies that mg(G-p) coarsely coincides with the image in CS
of Cf,. Moreover, each horodisk is stabilized by a multitwist, and the corresponding curves
are short in all hyperbolic metrics corresponding to points in the horodisk. This implies
that the whole horodisk maps to a uniformly bounded subset of CS under the systole map,
namely a neighborhood of the aforementioned curves. To sum up, the projection of the
Teichmiiller disk to CS is quasiconvex and coarsely coincides with the projection of Cf,
which in turn coarsely coincides with the projection of G - u, and we are done. U

Lemma 5.16. There exists V > 0 such that for any U € &—{S}, either diamy (7 (G- p)) <
VoorU = o; € Ay for some annular decomposition Agy. In the latter case, my is (uniformly)
coarsely surjective.

Proof. Let U = S be a subsurface and let A < U be its spine, which is obtained by puling
tight oU with respect to the g-metric, so that vertices of A are singular points and edges
are saddle connections (i.e. geodesics connecting singularities and intersecting the singular
set only at the endpoints). There exists a natural retraction 7 : U — A and for each edge e
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of A, let §, = r_l(me), where m, is the midpoint of e. Each ¢, is either a curve or an arc
n (U, 0U). We now divide into three cases.

U is non-annular: In this case, A has a degree-3 vertex v. Suppose that p has a base
curve « that traverses each saddle connection in A at most once. Then v has some incident
edge e so that d. is disjoint from . Now, for any g € Aff*(g), we have that g- A is the spine
of g - U, with vertices that are singular points and edges saddle connections. In particular,
g -« is a curve using each saddle connection of A at most once, so dcy(a,g - ) < 3,
where ACU denotes the arc-and-curve graph of U. Since there is a 2-Lipschitz retraction
AC(U) — CU [MMOO][Lemma 2.2], it follows that diamgy (G - p) is uniformly bounded.

Since G(q) preserves the set of all singularities, saddle connections, and geodesic repre-
sentatives of curves, we are done provided we choose the marking u in such a way that each
of its base curves traverses each saddle connection at most once.

Ue A, for some g: Let g € G(¢) be a multitwist about curves ai,...,ay, so that

= [[;2, T, where k; € Z — {0}. Hence 7y is k;j-surjective (where U = «;). Indeed,
7TU(g p) = WU(T(Z w), and the k; are uniformly bounded since the action of G(g) on
the corresponding Teichmiiller disc is geometrically finite, and thus there are finitely many
conjugacy classes of multitwists in G(q); see the proof of Lemma

U an annulus and U ¢ A, for any g: The spine A of U contains at least one singularity,
and the angle at the singularity is greater than 7 on both sides. Let U be the annular cover
of S corresponding to U. The lift A of A disconnects U into two connected components,
and we will refer to the closure of each such connected component as a side of A. Consider
a singularity along A and a saddle connection entering the singularity. Then, for any side
of A there exists a unique geodesic ray emanating from the given singularity, forming an
angle of m with the given saddle connection and contained in the given side of A. We let
{a;} be the open arcs in U that can be formed by concatenating two such rays lying in
opposite sides of A. Tt is readily seen that any two a; have intersection number at most 1.
The bound on the diameter of the projection onto CU now follows from the fact that any
arc in the subsurface projection onto CU of some curve in S can be represented either by
a geodesic transverse to a saddle connection in A, which is easily seen to be disjoint from
some «;, or a geodesic containing one of the singularities, which is easily seen to intersect
an appropriate «; containing that singularity at most once. ]

Lemma 5.17. There exists a G—equivariant extensible slanted hieromorphism (G,S¢q) —

(MCG(S), ).

Proof. At the level of spaces, the map G — MCG(S) is the inclusion. Define 7(f) : &g — 2%
as follows: let w(f)(S) = {S}, and for each primitive multitwist g, let 7(f)(U,y) = Ag, where
Ay is the set of pairwise-disjoint annuli corresponding to the multicurve supporting g. This
is G-equivariant since hAy = Ajpgp,-1 for each multitwist g and each h € G.

The map p(f,S) : CS — CS is the identity. For each primitive multitwist g = 7, 511 e T(f:;’ )
the map p(f,U) : Ly — [ [, Ca; was specified above. Observe that the composition of this
map with any of the canonical projections to Co; is a coarse similarity with multiplicative
constants determined by {k1,...,k,,}. These constants are uniformly bounded since there

are finitely many conjugacy classes of multitwists in G(q). O
Combining Lemma [5.I7 and Theorem [£.6] Remark B.7] and Theorem [.3] yields:
Corollary 5.18. For any Veech subgroup G < MCG(S), the inclusion G — MCG(S)

extends continuously to an equivariant embedding 0g,G — OMCG(S) with closed image.

Remark 5.19. Corollary (.18 does not follow from Proposition B.8 because the Veech
subgroup G is not hierarchically quasiconvex in MCG(S) whenever it contains a multitwist
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supported on a multicurve with more than one component; indeed, in this case there are
realization points in MCG(S) whose images in each curve graph lie in the image of G, but
which are arbitrarily far from G.

5.3.2. Leininger-Reid surface subgroups. We now turn to the Leininger-Reid surface sub-
groups constructed in [LROG, Theorem 6.1]. Again, we show that these are non-hierarchically
quasiconvex subgroups of MCG(S) that nonetheless have well-defined limit sets in OMCG(S).
The setup is as follows:

(1) Let q1,...,qn be holomorphic quadratic differentials, with Ag € CS the core of the
annular decomposition of each ¢; such that each complementary component has
negative Euler characteristic;

(2) Suppose Gy = Gp(gq;) for all i < n;

(3) Suppose h € MCG(S) centralizes Gy and is pure and pseudo-Anosov on all compo-
nents of S — Ag.

Then, for

H = G(q1) *qy WP Glg2)h % %y -+ %y W7 G(gn) ™ Fr,
the map H — MCG(S) is an embedding, whenever N = min{|k; — k;| : 4,5 € {1,...,n},i #
j} (where we set k; = 0) is large enough. Moreover, every element of im(H — MCG(S))
(which we denote by H) is either pseudo-Anosov or conjugate into an elliptic or parabolic
subgroup of some k¥ G(g;)h~*i. In particular, the G(g;) can be chosen so that H fails to be

hierarchically quasiconvex for the reason explained in Remark [5.19]
In the remainder of this section, we prove:

Theorem 5.20. The inclusion H — MCG(S) extends continuously to an equivariant em-
bedding 0H — dMCG(S) with closed image.

Proof. This follows from Theorem [5.6] Remark [5.7, and Proposition below. O

Our goal is now to state and prove Proposition (.25 which says that the inclusion of H
into MCG(S) is a slanted hieromorphism. We need control over various projections, which
we achieve in the following preliminary lemmas.

Lemma 5.21. There exists a constant Q so that, for any i and any k, ©5(h*G(q;)h ") is
Q—quasiconvex.

Proof. Apply quasiconvexity of the 75(G(g;)) and boundedness of {mg(1, h*)}rez. O

Denote by ) the set of connected components in .S of the complement of the annuli in
the annular decomposition of the multitwists in Gy.

Lemma 5.22. There exists K so that for any Y transverse to some Yy € Y we have
dy(p¥071) < K.

Proof. This is because p}}jo coarsely coincides with 7y (Py, ), and the fact that 7y is coarsely
Lipschitz (note that there are finitely many Yjp). O

Lemma 5.23. For each g € G(¢q;) — Go for some i and each Y € Y, there exists Y € Y so
that g - Y' is transverse to Y.

Proof. This is a restatement of [LR0O6, Lemma 4.1]. O

Lemma 5.24. There exists C, M with the following property. For any g = g1h™' ... gph™*
with g; € G(q;)) — Go and |m;| = M for each i < k, we have dy,(1,9) < C for each Yo e V.
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Proof. Let K be as in Lemma Proceed by induction on k, for C' to be determined. If
k = 0, there is nothing to prove.

Suppose k > 1. Fix Yge YV and let Y = ¢, Y’ with Y’ € ) chosen via Lemma [5.23] so that
Y'hYy. By induction, dy (¢g1h™,g) = dy+(1,g2h™2 ... gih™*) < C, since hY =Y for any
Y € Y by hypothesis so that g1h™ - Y =¢; - Y' =Y.

By Lemma[5.1I6] dy (1, g1) is uniformly bounded by some V. Hence dy (1, g) = dy (g1, g1h"™ )—
C -V =dy/(1,h™) — C — V. If |mq] is large enough, then this quantity is larger than
K + 10E. Since YyAY', consistency implies that we have dy; (p%o,g) < E. Also,

dYo(p}}%v 1) < dYo(p));oagl) +V = dg;1yo(py Yo’l) +V <V +K,

—1
91
hence dy,(1,9) < 2E +V + K. Thus we set C = 2E + V + K, which determines M. O
Proposition 5.25. The subgroup H < MCG(S) admits a hierarchically hyperbolic space

structure (H, &) so that there is an extensible slanted hieromorphism (H,Sp) — (MCG(S), S)
induced by the inclusion H — MCG(S).

Proof. We follow a very similar procedure to that used for individual Veech subgroups. In
particular, Gy is defined exactly as G was, except that there is now a domain U, for each
primitive multitwist in H. To verify that this yields an HHS structure, we must check that:
(1) ms(H) is quasiconvex.
(2) my(H) is uniformly bounded unless U € A, for some g € H.

Once the properties above are proven, arguing exactly as in the proof of Lemma [5.14] and
Lemma [5.17] yields the desired slanted hieromorphism and completes the proof.

We now set conventions and notations that we use throughout the proof. When some
g=9g1...gr € H with g; € hki(i)G(qj(i))h_kﬂ'(i) — Gy is any fixed element of H, we denote
pr=7s(g1-..q) (with po = m5(1)), and let ; be a geodesic in CS from p;_1 to p;, so that the
concatenation of the 7; is a path from 7g(1) to mg(g). Furthermore, notice that we can write
g = hmogih™ ... g h™ for some g; € G(q;j;)) — Go (more specifically, g; = h=kit) g;nki),
and that |my| for [ < k is bounded below by N (recall that this is the minimal value of
|ki — kj| for i # j). We set hy = h™0gih™ ... g;.

In the following claim, we study geodesics connecting wg(1) to mg(g) for arbitrary g € G.
The claim easily implies that geodesics from mg(1) to mg(g) stay close to mg(H) for any
g € H because each v, is contained in a coset of some hkj(i)G(qj(i))hfkf@ and such cosets are
uniformly quasiconvex byLemma [5:22]]1 Hence, the claim proves that wg(H) is quasiconvex,
which is item [I] above.

Claim 2. There exists a constant R with the following property. For any g € H, the
Hausdorff distance between [ J;y; and [7g(1),7s(g)] is bounded by R, where [7g(1),75(9)]
is any geodesic in CS from 7g(1) to ms(g). Moreover, for any Y € ) we have that
dhly(l,hl),dhly(g, hlhml) < C.

Proof. We first show [ J;y; is uniformly close to [rg(1),7s(g)].

It suffices to show that the endpoints of all 4; lie within controlled distance of [rg(1), ms(g)].
Any such endpoint x coarsely coincides with both 7g(h;) and wg(hih™), for some [ (since
{ms(h™)}mez is a bounded set). Pick any Y € Y, and set Z = h; - Y. By Lemma
we have dz(hh™,g) < C and dz(1,h;) < C. Hence, if m; is large enough, we get
dz(1,9) = dy(1,h™) — 2C > 100E. Notice that by bounded geodesic image pZ needs
to be within 10FE of geodesics from mg(h;) and 7g(h;h™ ), which both coarsely coincide with
the endpoint = we are interested in. If geodesics from 7g(1) to mg(g) did not pass close to x
we could then conclude that they do not pass close to pg, which would imply by bounded
geodesic image that dz(1,g9) < 5E. But this is not the case, and hence we get a bound on
the distance from x to [wg(1),7s(g)], as required.
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Let us now prove that points on [75(1),m5(g)] are close to |, ;. Suppose by contradiction
that there exists z € [7g(1), m5(g)] with dg(z,(J; 1) = 2C +1. Let x1, 22 € [15(1), m5(g)] lie
on distinct sides of x (in the natural order of [7g(1),7s(g)]), with z; closer to mg(1) than =,
and satisfy dg(z;,2) = C + 1. Then any y € |Jv; lies in Ne([rs(1), 21]) v No([z2, 75(9)])-
However, the two neighborhoods are disjoint and the connected set | Jv; contains points in
both, a contradiction. |

Let us now take U € & — {S} and g € H with dy(1,9) = 100E. We need to show that
either U belongs to some Ay or dy(1,g) is bounded independently of U, g.

We proved in the claim that, for any Y € ), the projections of 1 and g on h; - Y coarsely
coincide with the projections of h; and h;h™ respectively, and hence that dp,.y (1, g) > 100E
if jm;| = N is large enough. Since m; can take finitely many values, we therefore get the
desired bound whenever U is of the form h; - Y. We now assume that U is neither belongs
to some Ay nor it is of the form h; - Y. Hence, for any I there exists Y so that h; - Y AU
overlap, and hence are comparable in the partial order <; see Proposition 2.8 of [BHS15b].

Another fact about < is that whenever Y, Y’ € ) and [ are so that h;-Y hh;,1-Y’, we have
hi-Y < hjyq - Y’ again provided |my| = N is large enough. In fact, pZS)Y’ = hl+1pz,1 By

1+1

coarsely coincides with .y (hj11) (Lemma [5.22), which in turn coarsely coincides with
Tp,y (hgh™) by Lemma B.T6]since by = hyh™ g ;. Finally, 7,y (hih™) coarsely coincides
with 7p,,.y(g) by what we said above.

By looking at a predecessor and a successor of U, we then see that the projections of
1,9 onto U coarsely coincide with those of h; - Y, h;y1 - Y’ for some [ and Y,Y’. But these
latter projections coarsely coincide with those of h; and h;h™ g, ;. The projections of Iy
and hih™ are uniformly close by boundedness of m;, while the projections of h;h™ and
hyh™ g, are uniformly close by Lemma This concludes the proof. O]

6. AUTOMORPHISMS OF HHS AND THEIR ACTIONS ON THE BOUNDARY

The most important special case of an extensible hieromorphism is an automorphism of
(X,6). For any automorphism f : (X¥,8) — (X,8), each isometry f : CU — C(f(U))
extends to a homeomorphism f : 0CU — dC(f(U)), yielding an application of Theorem
Corollary 6.1 (Extensions of automorphisms to the boundary). Any f € Aut(&) extends
to a bijection X — X which restricts to a homeomorphism on 0X.

Proof. Let f : (X,8) — (X,8) be an automorphism. Let p € 0X, with p = 3", a‘%_pTi,
where the T; are pairwise orthogonal and pr, € dCT;. Define a map f:oX > 0X by

fp) = > a4 flor),
i=1
where f : 0CT; — OC(f(T})) is induced by f : CT; — CT;. Let f: X — X be the extension
of f which is f on dX; extend f~! similarly. Since f is an automorphism, f is clearly a
bijection. Continuity of f, f_l on the boundary follows from Theorem O
When (G, &) is a hierarchically hyperbolic group, 0G is defined. In general, if X', X’ are
hierarchically hyperbolic with respect to the same collection &, then there is a quasiisometry

X — X’ extending to the identity on the boundary. Indeed, the definition of 0X depends
only on & and the attendant hyperbolic spaces.

Corollary 6.2. Let (G,S) be a hierarchically hyperbolic group. Then the action of G on
itself by left multiplication extends to an action of G on G by homeomorphisms.

Section [6.I]is devoted to automorphisms, whose fixed points in X we study in Section [6.21
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6.1. Classification of HHS automorphisms. In this subsection, we will classify HHS
automorphisms by their actions on &. Let g € Aut(&) and fix a basepoint X € X. Set

Big(g) = {U € &|diam¢y ((g) - X) is unbounded}.
Observe that g - U € Big(g) if U € Big(g), since g: CU — C(gU) is an isometry.

Lemma 6.3. There exists M = M(&) > 0 so that for all g € Aut(&) and U € Big(g), we
have gM - U = U.

Proof. Consider the orbit (g)-U in &.

If there exists n > 1 so that ¢" - U = U, thengk" UlZg(k Dn U ---cg*-UcU for
all k > 1, so we either contradict finite complexity (if (¢g) - U is infinite) or the fact that =
is a partial order (if (g)- U is finite). Hence ¢" - U & U unless n = 0. Similarly, U & ¢"U
unless n = 0.

Next, consider the case where U € Big(g) and ¢" - UAU for some n > 1. Then since
U € Big(g), we can choose arbitrarily large m € N so that dy(X,¢™ - X) > T = 100E +
du(97' - X, X) + f(m), where f : N — N is increasing. Hence dgnyr(g™™! - X g X)>T,
since g : CU — CgqU is an isometry. The triangle inequality shows that dgnU( X, X) >
T —2dgu(X,¢" - X) = 100E + f(m). By considering at least two such values of m, we see
that consistency is contradicted (specifically, we contradict Lemma 2.3 of [BHSI5D]).

It follows that if U € Big(g), then, for all n € Z, either ¢" - U = U or ¢" - U L U. Hence
{g) - U is a pairwise-orthogonal collection. Hence there exists a global M, depending only
on the complexity and Lemma [[4] so that g™ - U = U for each U € Big(g), establishing the
first assertion. 0

Proposition 6.4. The automorphism g € Aut(&) is elliptic if and only if Big(g) = .

Proof. 1f {g) - X is bounded, then Big(g) = ¢ since projections are coarsely Lipschitz.
Conversely, suppose that Big(g) = ¢J. We will show that there exists D = D(g) so that
diamy (my ((g)- X)) < D for all V € &. From this and the distance formula (Theorem [[.0)),
it follows that ¢ is elliptic. Hence suppose that no such D exists.
We need two facts:

(I) For each N > 0, there exists P = P(N,&) so that for all U € & and h € Aut(&),
either some positive power of h fixes U or {U,g-U,...,g" - U} contains a set of N
pairwise-transverse elements. Indeed, as in the proof of Lemma [6.3] for any p, the
elements of {U,g-U,...,g°~! - U} are pairwise =-incomparable, and any pairwise-
orthogonal subset has cardinality bounded by the complexity x of &. Hence, if p
exceeds the Ramsey number Ram(x + 1, N), we have by Ramsey’s theorem that
{U,g-U,...,g°"1-U} contains a set of N pairwise-transverse elements, so we can take
P =Ram(x +1,N)—1.

(IT) For each C' = 0 there exists @ € N with the following property. Let x,y € X and

suppose {V;}ier satisfies dy,(z,y) > F for all 4, and that [I| = @Q. Then there exists
V e & so that V; & V for some i € I, and dy(x,y) > C. This is a slight strengthening
of Lemma B2 this exact statement is Lemma 1.8].

Recall that y denotes the complexity — i.e. the maximum level — in &, so that S is the
unique element of level x. Since Big(g) = ¢J but there are arbitrarily large projections, by
assumption, there exists a level £ < x and a constant R < o so that:

e diamy (7 ({g) - X)) < R when U has level greater than ¢;
e for each D < o0, there exists U € &, of level ¢, with dlamU(WU(<g> X)) > D.

Let U € & be chosen so that dy (X, ¢" - U) > R, where R is a constant to be determined.
We can and shall assume that our U has been chosen at level £, and we emphasize that such
a U can be chosen so as to make R arbitrarily large.
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Let @ = Q(R) be the constant provided by setting C' = R in fact ([I) and let P =
Ram(y + 1,Q). Fact () provides Uy,...,Ug € {U,g-U,...,g" - U} so that U;hU; when
i # j. Now, for 1 < j < Q, we have dUJ (X,9"-X) = R— 100KEQ So, provided R —

which can be chosen independently of R and hence of () — satisfies R > 100K EQ + 10F,
fact () provides T' € & so that U; & T for some j and so that dp(X,¢" - X) > R. Now,
since Uj is a translate of U and Aut(&) preserves the levels, the level of Uj; is ¢, and hence
T has level strictly greater than ¢, which is a contradiction since dp (X, ¢" - X) > R. O

Remark 6.5. In the case where X is proper, there is a quick proof of Proposition relying
on the more powerful tools from Section [0

Lemma 6.6. Let g € Aut(S). Then there exists D = D(g, E) so that diamy (7y({g)- X)) <
D for allU € & — Big(g).

Proof. Let Big(g) = {U;}ier- Note that it suffices to prove the lemma for some positive
power of g, so by Lemma [6.3] we may assume that g - U; = U; for all i € I.

If Big(g) = &, then g is elliptic by Proposition [6.4] from which the lemma follows
immediately: for each V € &, we have diamy (7 ((g) - X)) < K diamxy({g) - X), which
is bounded independently of V.

Next, suppose that Big(g) # & and S ¢ Big(g) (as usual, S € & is the unique E—maximal
element). Then, for each i € I, the element U; is maximal in an HHS (Fy,, Sy,) admitting
a g—equivariant hieromorphism to (X, &). Since U; # S, the complexity of (Fy,,Sy,)
is strictly lower than that of (X, &), so it follows by induction that diamy (my((g) - X))
is bounded independently of V' when V = U;. Indeed, in the base case, when the com-
plexity is 1, X is itself a hyperbolic space and the lemma follows from the usual ellip-
tic/ parabohc/ loxodromic classification of isometries of hyperbolic spaces [Gro87].

Now, let ¥ be the set of all U € & so that U = U; for some i € I. Observe that
T is g-invariant and downward-closed under nesting. Then Proposition 2.4 of [B
provides an HHS (2?::, S — %) with the same associated nesting and orthogonality relations,
hyperbolic spaces, and projections. Since ¥ was g—invariant, g descends to an automorphism
of (?2;, S — F) so that the action of g on & — ¥ is the restriction of the original action on &
and, for each V € &—%, the isometry CV — CgV is the original one. Now g has Big(g) = &
with respect to (2?::, S — F) and hence we are done by the proof of Proposition

The preceding two analyses prove the lemma except in the case where S € Big(g). Hence,
suppose S € Big(g), so that g acts either loxodromically or parabolically on CS. In this case,
we cannot induct on complexity, so we argue directly using consistency, bounded geodesic
image, and simple properties of isometries of hyperbolic spaces.

If Ue & —{S}, then U= S, and pZ = CS is a well-defined diameter—< E subset.

First suppose that g acts loxodromically on CS. Then there exists N = N(g) so that < N
elements of 75({g) - X) lie in the 100F-neighborhood of p%. Let {g* - X}, be the points
in {g) - X = X projecting into N z(p%) = CS, so that n’ —n < N. Then for all 4,j € Z,
consistency and bounded geodesic image imply that

du(g'- X, ¢ -X) < E+ max dg(¢"- X, ¢" - X)

n<k,k<n’

k/
< E+0<%1]3§NKdX( X, 9" - X)+ K,
which is independent of U (here K is the coarse Lispchitz constant from Definition [[T]).
Next, suppose that g acts parabolically on CS. By definition, (g) - X has a unique limit
point in the Gromov boundary of CS, so there is an increasing function f : N — N so that
(9" - ms(X)|g™ - 75(X))rg(x) > f(k) whenever min{|m|, |n|} > k. In particular, there exists
k., independent of U, so that no CS—geodesic from mg(g"™-X) to mg(¢™- X ) passes 100 E—close
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to pY provided |m| > k and |n| > k. We now argue exactly as in the loxodromic case to
bound diamg (77 ({g) - X)) independently of U. This completes the proof. O

Lemma 6.7. For any distinct U,V € Big(g), we have U L V.

Proof. Lemma[6.3] shows that by passing to a uniformly bounded power, if necessary (which
does not affect the big-set), we can assume that gU = U and gV = V. Hence g acts
as an isometry of both of the (not necessarily proper) hyperbolic spaces CU,CV. Since
U,V € Big(g), the isometry g cannot be elliptic on either CU or CV. Hence, by e.g. [Gro87,
Section 8.1, g is either parabolic or loxodromic on CU and CV'.

IfU 2V or UhV, then pg is a uniformly bounded subset of CV, and, since g" - pg =
pgzg = pg for all n € Z, we have that {(g)-orbits in CV are bounded, contradicting that
U € Big(g). O

Definition 6.8 (Elliptic). An automorphism g € Aut(S) is elliptic if some (hence any)
orbit of {(g) in X" is bounded.

Definition 6.9 (Axial). An automorphism g € Aut(&) is awxial if some (hence any) orbit of
{g) in X is quasiisometrically embedded.

Definition 6.10 (Distorted). An element g € Aut(&) is distorted if it is not elliptic or axial.

Example 6.11 (Distorted automorphisms in familiar examples). Let S be a surface of finite
type and « a simple closed curve. In MCG(S), the subgroup {(7,) generated by the Dehn
twist about « is quasiisometrically embedded [FLMOI], but in (7(S),dr), the orbit of 7,
is distorted. In fact, MCG(S) has no distorted automorphisms, as is the case for cube
complexes with factor systems, since cubical automorphisms are combinatorially semisimple
[Hag07]. In Theorem [T] below, we prove that HHGs have no distorted elements. A simple
example of an HHS with a distorted automorphism is obtained by gluing a combinatorial
horoball to Z; this encapsulates the difference between the HHS structures of MCG(S) and
(T(S),dr), where annular curve graphs are replaced by horoballs over annular curve graphs.

Proposition 6.12. The automorphism g € Aut(S) is axial if and only if there exists U €
Big(g) such that n — g™ - 7y (X) is a quasiisometric embedding Z. — CU for any X € X.

Proof. Suppose that there exists U € Big(g) so that n — ¢" - my(X) is a quasi-isometric
embedding. Then the distance formula (Theorem [L9)) yields a lower bound on dy(¢™- X, g"-
X) which is (at least) linear in |m — n|, i.e. g is axial.

Conversely, suppose that g is axial. Lemma [6.7] bounds the number of U € Big(g) by the
complexity of &. Lemma ensures that diamy (7my ({g) - X)) is bounded independently
of V for V ¢ Big(g). Since g acts axially on X, the distance formula (Theorem [[9]) now
implies that there exists at least one U € Big(g) such that g acts axially on CU. U

The next proposition is an immediate consequence of Propositions and [6.12

Proposition 6.13. The automorphism g € Aut(S) is distorted if and only if there exists
U € Big(g) such that {g) - my(X) is unbounded, but, for all U € Big(g), we have

dev(X,g" - X) = o(n).

Definition 6.14 (Reducible). The automorphism g € Aut(&) is irreducible if Big(g) = {S},
where S € G is the unique E—maximal element. Otherwise, S ¢ Big(g) and g is reducible.

Finally, we have the following strong characterization of irreducible axials:

Theorem 6.15. Let G < Aut(S) act properly and coboundedly on the hierarchically hyper-
bolic space (X,S). Suppose that g € G is irreducible azxial. Then g is Morse.
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Proof. By |[BHS14, Corollary 14.4], G acts acylindrically on CS, where S is E-maximal in
S, while g acts hyperbolically on CS. By Proposition 3.8|, g is weakly contracting for
the path system consisting of all geodesics in CS, so g is Morse, by Lemma 2.9]. O

Remark 6.16 (Reducible Morse elements). The converse of Theorem [6.15] does not hold,
as can be seen be examining a Morse element of an appropriately-chosen right-angled Artin
group whose support does not include all generators.

6.2. Dynamics of action on the boundary. In the remainder of this section, we impose
the standing assumption that X is proper. We will analyze the action of an infinite-order
automorphism g on (X, &), according to whether g is irreducible or reducible and according
to whether g is axial or distorted.

6.2.1. Irreducible automorphisms.
Lemma 6.17. Let the irreducible g € Aut(S) fiz some A € 0X. Then Supp(\) = {S}.

Proof. Suppose U € Supp(\) — {S}. Since g is irreducible, its orbit in CS is unbounded. In
particular, this means that the orbit of pg is unbounded. By definition, g - pg = p*giU and
thus U could not be fixed by g, completing the proof. O

Proposition 6.18 (Irreducible axials act with north-south dynamics). If g € Aut(S) is ir-
reducible axial, then g has exactly two fixed points Ay, A\_ € 0X. Moreover, for any boundary
neighborhoods Ay € Uy and A\_ € U_, there exists an N > 0 such that gV (0X —U_) c U,.

Proof. Let g € Aut(&) be irreducible axial. For the rest of the proof, fix a basepoint X € X

Existence of Ay, A_ € dX: For any n, let X,, = ¢" - X. We will show that (X,)
converges to some point in dX’; a similar argument will show that (X_,,) converges to some
other point, and then we will prove they are distinct. By compactness (Theorem [B.4)),
there exists a subsequence (X,,) < (X,) which converges to some point \; € oX. By
irreducibility of g, we must have that A, € dCS < 0X'. By irreducibility and the definition
of convergence, we have that meg(X,, ) — A € 0CS. Axiality of g then implies that, for any
other subsequence (X,,,) < (X,,), the Gromov product (X, ,X,,)x — 0 inCS as k,l — .
This implies that mcg(X,) — Ay € 0CS, which implies that X,, — A, € 0X.

Similarly, we define X_,, — A_ € 0X. Observe that (7T05<Xn),7Tcs(X—n))7rcs(X) is uni-
formly bounded by Proposition [6.12] implying that Ay # A_. Since g stabilizes the orbit, it
obviously fixes Ay and A_. Note that A, A\_ are independent of our choice of X € X.

Uniqueness of A\, A\_ € 0X: By Lemmal6.I7] any point A € 0X fixed by g has Supp(\) =
S. If g fixes three points in X, then it fixes three points in dCS. As such, g coarsely fixes
the coarse median of those points, producing a bounded orbit, a contradiction.

North-south dynamics on 0X: Fix boundary neighborhoods Ay € U, and A_ € U_
with Uy nU_ = (.

Claim 1. For any p e 0X — {\_}, (¢"(p)) does not converge to A_.

Proof of Claim[1. If Supp(p) # {S}, then (¢"(p)) cannot converge to a point in 0X sup-
ported on S, as g does not alter the coefficients of the pieces of p supported on proper
subdomains. In particular, since Supp(A—) = {S}, as shown above, (¢"(p)) cannot converge
to A_. Thus we may assume that Supp(p) = {S}.

Let [X,p] be a hierarchy ray in X. Since Supp(p) = {S}, [X,p] projects to a D-
quasigeodesic, [X,p]s = CS. Let [X,A_] be the orbit (¢§-"(X)), which is a quasigeodesic
with quality depending on g.

Consider m € CS, the coarse median of (A_,p, X). By hyperbolicity, there exist points
Y € [X,pls, Z € [X, A_] sufficiently far out along [ X, p]s and [ X, A_] such that any geodesic
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between Y, Z, [Y, Z], comes uniformly close to m, independent of Y and Z; in particular, the
coarse median of (X,Y,Z) is uniformly close to m. Moreover, there is a uniform constant
d > 0 (depending on D, g, and the hyperbolicity constant, § > 0) such that each of
[Y,Z],[X,Y], and [X, Z] is §'-close to m.

Let my,z € [Y, Z] and mx z € [X, Z] be points ¢'-close to m. Then there exists a uniform
8" > 0 such that [my z, Z] and [mx, z, Z] must ¢"-fellow travel. By axiality, there exists
N > 0 such that, for all n > N, g"(mx z) is between X and ¢"(X) along the quasigeodesic
axis of g in CS. This implies that the coarse median of (X, ¢"(Y), ¢"(Z)) is uniformly close
to X. Thus (¢"(p), A=) x is uniformly bounded and (¢"(p)) cannot converge to A_ in 6CS
and thus not in 0 as well. |

Since the limit of (¢"(p)) is a fixed point, uniqueness of A_, A\ and Claim [l imply that
g"(p) > Ay for any pe 0X — {\_}.

Now consider the function f: 0X —U_ — N, where f(p) is the least power N, such that
g™ (p) € Uy Since A\, and A_ are the unique fixed points of g, such a power exists, otherwise
the sequence (¢"(p)) < 0X would subconverge to another fixed point. Since X is compact
(Theorem 34)) the function f attains a maximum, Ny. By definition, g™ (60X — U_) < Uy,
completing the proof. O

We now treat the irreducible distorted case:

Proposition 6.19 (Irreducible distorteds act parabolically). If g € Aut(&) is irreducible
distorted, then g has exvactly one fized point \y € 0X, and g" - X,g7" - X — Ay for any
XeX.

Proof. Let S € & be the unique =—maximal element, so that ¢S = S and g : CS — CS is
an isometry. By the definition of irreducibility, Big(g) = {S}, so ¢ has unbounded orbits
in the d—hyperbolic space CS. We now apply the classification of isometries of hyperbolic
spaces, as summarised in [CACMTI5| Section 3|, emphasizing that these results do not rely
on properness of the space in question.

First, by Proposition 3.2 of [CACMT15| and the fact that (g) - mx(X) (which coarsely
coincides with mg({g) - X)) is distorted — i.e. not quasiconvex — in CS, we have that the
action of {g) on CS is not lineal or focal. By Lemma 3.3, the action of {g) on CS is not
of general type. Hence the action is horocyclic, i.e. the limit set of (g) on dCS consists of
exactly one point )\, with g\, = A\;. Moreover, Proposition 3.1 of implies
that every A # )y in dCS has infinite (g)-orbit. We also denote by A, the image of this
limit point under the usual (Aut(&)-equivariant) embedding 6CS — 0X. We thus have
a fixed point A\, € 0X for g. Now, suppose that A € 0X is fixed by g. By Lemma [G.I7
A€ dCS < 0X. If X # Ay, then (as a point of dCS), A cannot be fixed by g, so A4 is the
unique fixed point in 0X.

Finally, if p € 0X — )y, then g™ -p — Ay, for it subconverges to some point by compactness
of X (Theorem [3.4]), which is fixed by g and thus must be Ag by uniqueness. O

Proposition 6.20. Let g € Aut(S) be irreducible distorted and fix \y € 0X. For any
neighborhood U < 0X of Ay, there exists N > 0 such that if pe 0X — U, then gV -peU.

Proof. Fix a neighborhood A\j € U < 0X and let p € 0X — U. Let F : X — N be the map
which takes each p € X to the minimal n € N such that ¢” - p € U; note that F is defined by
Proposition We prove that F' is bounded.

Assume not; then there exists a sequence (p;) < 0X such that F(p;) = n; — o as i — .
By compactness of X, the sequence (p;) accumulates on some point p € 0X. If N, = F(u),
then ¢™V# - e U. Choose an open neighborhood g™ - peV c U.
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By passing to a subsequence if necessary, we may assume p; — p and continuity of the
action of g on 0X implies that g™Nu-p; — ¢™V# - . In particular, this implies that the sequence
(g™V# - p;) eventually lies in V' < U, a contradiction. O

6.2.2. Reducible automorphisms. We now turn to non-elliptic reducible automorphisms. As
before, we assume X is proper, g € Aut(&) has infinite order and is thus axial or distorted,
and Big(g) # & denotes the set of (pairwise—orthogonal) U € & where diam¢y ((g)-X) = 0.

If g is reducible, then Big(g) = {A;} u {B,}, where g acts axially on CA; and distortedly
on CBj for all 4,5 and A;, B; # S for all 7, j. Proposition implies that ¢ is axial if and
only if {A;} # J; otherwise g is distorted.

We must be careful with nontrivial finite orbits in &. To that end, recall that by
Lemma there exists M = M(&) > 0 such that g™ fixes Big(g) pointwise. The proof
of that lemma shows that g™ in fact fixes {4;} and {B;} pointwise, since we cannot have
g-A; = Bj for any i, j. Let h = g™, and note that Big(h) = Big(g). Note that we can choose
M so that any pairwise-orthogonal subset of & stabilized by h is fixed by h pointwise.

Lemma 6.21. Let V € & and suppose that V £ U or VAU, for some U € Big(g). Suppose
also that p € 0X is fized by g. Then V ¢ Supp(p).

Proof. By hypothesis, h - p = p. Observe that (h) - pg is unbounded. Since U € Big(g), we
have that h - pg = p?jv and h - U is infinite, implying U ¢ Supp(p), as required. ]

We denote by S¥ a k-sphere and by D* a k-ball. Given spaces X,Y, we denote by X «Y
their join. For each i, j, let F; = Fgu,, FJ’ = I'p; be the standard factors associated to 4;, B,
so that there is a quasiconvex hieromorphism [ [, Fj x [ | j Fj’ — X, inducing an embedding
*;0F; — %;0F J/ — 0X whose image is a closed g—invariant subset which we denote €(g).
(Note: The image of [, F; x Hj FJ’ need not be g-invariant, but since g stabilizes each
standard product region F]’ x Ep,, the subspaces gF;, F; are parallel, and thus have the
same boundary.)

For each 14, the action of h = ¢™ on Pr, =~ F; x E4, induces an action of h on F; by
applying the restriction homomorphism 64, : Stabae)(A4i) — Aut(S4,). For each A;, let
h; be the image of h under this homomorphism, and let h; be the image of h under the
corresponding restriction homomorphism for B;.

The following proposition says that, up to taking a power, a reducible automorphism can
be decomposed into irreducible automorphisms on subdomains:

Proposition 6.22. If g is non-elliptic reducible and h = g™, then the following hold:

(1) For each i, h; is an irreducible axial automorphism of F; which fixes a unique pair
of points \j 4+, \i — € 0CA; and acts with north-south dynamics on 0CA;;

(2) For each j, hj is an irreducible distorted automorphism of F]’ and fizes a unique
point Ap; € ICB;.

Hence, g stabilizes (and h fizes pointwise) a nonempty subspace S(g) » C(g) < 0X, where
S(g) = & or S(g) = SHAH=1 and C(g) = & or C(g) = DRB. Moreover, for all n > 0, g"
does not fix any point in €(g) — S(g) » C(g).

Proof. For each i, h; acts on CA; axially by the assumption on g and irreducibly by con-
struction. Hence, Proposition implies that h; fixes two points A; 4, \; — € dCA; and
acts with north-south dynamics on 6dCA;. Similarly, for each j, h; acts on CB; distortedly
by assumption and irreducibly by construction. Proposition then implies that h; fixes
a unique point A, € dCB;.
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If {A;} # J, then each A; contributes a pair of points \; ., \; — € 0CA; fixed by h, which
we can think of as a copy of S”, namely S?. Moreover, h clearly fixes the join of these
spheres, %*;S{ =~ SHA}=1 = §(g), as required.

Similarly, if {B;} # J, then each B; contributes a point A, € dCB; fixed by h, and h
fixes the join of these points, *;\;, = DB} = C(g), as required.

Since h fixes these S(g) and C(g), h clearly fixes S(g) * C(g). Now, if g" fixes a point
A € €(g), then h™ = (¢™)M fixes A\. If A = X aip; + 2. 0jq;, where p; € 0F; and ¢; € OF],
then the uniqueness of the A; 1, A; -, A, implies that, for a; # 0,b; # 0, we must have
Pi = Aiy or p; = A\, _ and ¢j = )\hj. O

Remark 6.23. Set Comp(g) = {p € 0X|Supp(p) < {Ai,Bj}fjj} and let Fix(h) € 0X be the
set of fixed points of h. It is not difficult to show that Fix(h) < S(g) » C(g) » Comp(g), but
proper containment can happen.

Lemma 6.24. Let U € Big(g) and U & V. For all p € 0X such that g"(p) = p for some
n > 0, we have V ¢ Supp(p).

Proof. It suffices to prove the lemma for h = ¢™. Suppose for a contradiction that V e
Supp(p). Since U € Big(h), diamy ((h) - p¥/) is uniformly bounded. Take any sequence
X — pin X; note that this implies X}, — py in CV. Thus, there exists K > 0 such that
dy (X, p¥) > 100E if k > K.

Since h is unbounded on CU, there exists N > 0 depending only on K such that
dy(Xg, h"(Xg)) > 100E if n = N and k > K. If v is a hierarchy path between X}
and h"(X}y) in X, then the bounded geodesic image axiom (Definition [[I} (7)) implies that
mv () n Ne(pl}) # &. In particular, this implies that dy (X, h" (X)) > 100E. Thus, for
any n > N, we have that (X, h" (X)) pu is uniformly bounded as k — o, which implies
that no power of h could fix p, a contradiction. O

Proposition 6.25. Let p e 0X be such that g™ (p) = p for some M > 0. Then

pe S(g) xC(g) * (ﬂaE““ N ﬂaEBj> .

Proof. Lemmas and imply
Supp(p) = U (GAz U GBJ' Y ({Al}l @ {BJ}L)) )
,J
which, together with Proposition and g-invariance of Big(g), gives the claim. O
6.3. Dynamics on boundaries of HHG. Fix a hierarchically hyperbolic group (G, S).

Definition 6.26 (Stable boundary points). A point p € 0G is a stable boundary point if p
is a fixed point of some irreducible axial element of Aut(&).

The next lemma states that irreducible axials have cobounded orbits.

Lemma 6.27. Let g € G be an irreducible axial. Then given any X € X, there exists N > 0
such that diamey ((g) - X) < N for any U € & — {S}.

Proof. If not, then there exists a sequence of domains U,, € & such that diamey, ((9)-x) = n
for each n. Since g is irreducible axial, (g) - X projects to a uniform quasigeodesic in CS.
By the bounded geodesic image axiom and hyperbolicity of CS, for each n > 100F,
there exists a sequence (k,) < Z such that p5" € Ng([gF - X,¢"*! - X]) = CS, where
[¢"- X, g 1. X] is any geodesic between g*7- X and gF»*'. X in CS. Moreover, since (g)- X
is a uniform quasigeodesic in CS, it follows that dp, (g% X, g*»*1- X)) = diamy;, ({g)-X) = n.
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It follows that there exists a sequence of domains U], = g k.U, € & with pg;L €
NE([X,g-X]) and dy (X, g- X) = diamyy ((g)- X) = n, which is impossible by the distance
formula. This completes the proof. O

Proposition 6.28. If G has an irreducible axial element, then the set of stable boundary
points is dense in 0G.

Proof. Let p € G be any point and let A € dG be a stable boundary point for some
irreducible axial g € G. Choose X € X and let v, = [X,¢" - X] be a D-hierarchy path
between X and ¢" - X. Let v = [X, \] be the limiting D-hierarchy ray as n — c0. Since
Yn — 7 uniformly on compact sets and {g) - X is uniformly cobounded by Lemma [6.27] it
follows that ~ is uniformly cobounded.

By coboundedness of the action of G and density of the interior (Proposition 2.I7]), there
exists a sequence (g,) € G and N > 0 such that g,(X) — p and thus g, - A — p. Since G
acts on itself by automorphisms, we have that g, -[X, A] projects to an infinite quasigeodesic
in CS, implying that g, - A € 0CS < 0G, which completes the proof. O

Theorem 6.29 (Topological transitivity of the G-action on 0G). Let (G, &) be a hierarchi-
cally hyperbolic group with G not virtually cyclic and containing an irreducible axial element.
For any p € 0G, G - p is dense in 0G.

Proof. Let U € 0G be an open set. By Proposition [6.28] there exists an irreducible axial
g € G with stable boundary points Ay 1, Ay — € 0G, one of which is contained in U. Suppose
that Ay + € U and A\, — # p. Then since G is Hausdorff, it follows from Proposition
that some power of g moves p into U, as required. Hence either we are done, or for every
irreducible axial g with Ay y € U, we have A\, _ = p.

Now, suppose that there exists ¢ € 0G — U u {p}. Then, by Proposition [6.28] and the fact
that G is Hausdorff, we may argue as above, using Proposition [6.I8] that some irreducible
axial element takes p arbitrarily close to ¢, and thus that some power of g takes a translate
of p into U, as required, unless p is a stable point for every irreducible axial element of G.
But then G does not contain two independent irreducible axial elements whence, since G
acts acylindrically on CS by [BHSI4, Theorem 14.3|, a theorem of Osin (see Theorem
below) implies that G is virtually cyclic. U

Corollary 6.30. If (G, ) is an HHG with an irreducible axial, then 0CS is dense in 0G.

Remark 6.31. In Section [0 we investigate the question of when groups of HHS automor-
phisms contain irreducible axial elements. In that section, we consider a more general class,
so-called “rank-one” elements, of which irreducible axial elements are the main examples.

7. COARSE SEMISIMPLICITY IN HIERARCHICALLY HYPERBOLIC GROUPS

Theorem 7.1. If (G, &) is a hierarchically hyperbolic group, then each g € G is either elliptic
or azial, and 7y ({g)) is a quasiisometrically embedded copy of Z for each U € Big(g).

Proof of Theorem [Zl This follows from Lemma [7.3] and Lemma [Z.4] below. O
Our main tool here is the following result of Bowditch:

Lemma 7.2 (Lemma 2.2 of [Bow08|). If G acts acylindrically by isometries on a hyperbolic
space M, then each element of G acts either elliptically or lozodomically on M.

Lemma [[2] and Theorem 14.3| combine to yield:

Lemma 7.3. If g € G is irreducible, then g is either elliptic or azial.
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Recall that for any reducible g € G, we have Big(g) = {A;} U {B;}, where g acts axially
on each CA; and distortedly on each CB;. It remains to prove:

Lemma 7.4. If g € G is reducible, then {B;} = .

For each U € &, let Gy = AynG be the subgroup of G fixing U € & and let Gy = 0y(Grr),
where Ay = Stabaue)(U) and 0y : Ay — Aut(Sy) is the restriction homomorphism.

Lemma 7.5. Let U € &. Then Gy acts acylindrically on CU.

Proof of Lemma[Z3. By definition, Gy acts by automorphisms on the hierarchically hyper-
bolic space (Fyr,Sr). We first establish:

Claim 1. For each R > 0, there exists K = K (R) such that any R-ball B < Fy intersects
gB for at most K elements g € Gy.

Proof of Claim/[d. Since the inclusion hieromorphism (Fy, &y) — (G, ) is a quasiisometric
embedding (with constants independent of U), it suffices to bound the number of cosets
g(ker 0y7) in Gy so that g(ker 0y) - (B’ x Ey) = (gB’) x Ey intersects B’ x Ey, where B’ is
a ball in Fy ¢ Py < X of radius depending on R and the quasiisometry constants. Such a
bound exists because G acts on itself geometrically. |

We now follow the proof of Theorem 14.3 of [BHSI4]. Let € > 0 be given and let
R > 1000e. Consider the set $ of g € Gy so that dy(x, gz),dy (y, gy) < €, where z,y € Fy.
Choose s as in the distance formula for (Fy7, Sy7) and, for each 7 = 0, consider the set £(r)
of E-maximal V € &y — {U} so that dy(z,y) > so and |[dy(z, pf;) — §| < re. Arguing
exactly as in the proof of Theorem 14.3 of yields a uniform bound on [£(11)|. We
then divide into two cases.

First, if £(10) # ¢, then we again argue as in the proof of Theorem 14.3],
reaching the conclusion that, if V' € £(10) and g € $, then gp, (x) coarsely coincides with
g - gp, (x), from which it follows from Claim [I] that §) has uniformly bounded cardinal-
ity. The argument in uses only the Gp—equivariance of the gate construction and
Definition [[[T] and thus goes through.

Similarly, if £(10) = ¢, then the argument in uses only the existence of hier-
archy paths, large links, bounded geodesic image, the distance formula, and a bound on
the cardinalities of stabilizers of balls in Fy;. The latter comes from Claim [I and thus the
argument works verbatim in the present context. ]

Proof of Lemma[74 Let U € Big(g). Let M > 0 be as in Lemma 6.3 and set h = ¢™; note
that h-U = U, i.e. he Ay. Let hy = 0y(h) € Gy. By LemmalZ5, Gy acts acylindrically on
CU, so by Lemma [[L2] hy is either elliptic or loxodromic on CU. Since U € Big(h), it must
be the case that A is loxodromic on CU. Since h acts like hyy on CU, the claim follows. [

8. ESSENTIAL STRUCTURES, ESSENTIAL ACTIONS, AND PRODUCT HHS

8.1. Product HHS. It is shown in [BHSI5b| that, if Xy, X; admit hierarchically hyperbolic
structures, then Xy x A7 admits a hierarchically hyperbolic structure making the inclusions
X, — Ay x A} into hieromorphisms with hierarchically quasiconvex image. Rather than
recall the construction, we now give a more streamlined (equivalent) definition.

Definition 8.1. Let (X, &) be a hierarchically hyperbolic space. Then (X, &) is a product
HHS if there exists K < o0 and U € & such that for all V € &, either V=2 U, or V L U, or
diam(CV') < K. If, in addition, for each n € N there exist V,W € & with V = U, W L U and
diam(my (X)), diam(my (X)) > n, then (X, S) is a product region with unbounded factors.
Observe that (X, ) is a product HHS if and only if there exists U € & so that Py — X is
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coarsely surjective, and that (X, &) is a product region with unbounded factors if in addition
Fy, Ey are both unbounded.

8.2. Essential structures and cores.

Definition 8.2 (Essential HH sructures). Let (X, &) be an HHS and let G < Aut(S).
Then (X, 8) is G-essential if, for any G—invariant hierarchically quasiconvex ) < X, all of
X is contained in some regular neighborhood of .

Remark 8.3. Compare Definition to the definition of a G—essential cube complex
from [CS11], which requires that the cube complex be the cubical convex hull of a G-orbit
(but actually requires something stronger).

Proposition 8.4 (Essential core). Let (X, &) be an HHS and let G < Aut(S) be a subgroup.
Suppose that one of the following holds:

(1) G acts properly and cocompactly on X and with finitely many orbits on &, i.e. (G,S)
is an HHG;
(2) G acts on X with unbounded orbits and with no fized point in 0X .

Then there exists a G-invariant, G-essential, hierarchically quasiconvexr subspace Y < X

so that whichever of () or @) held for G —~ X holds for the action of G on ).

Proof. 1f (X,&) is an HHG, the claim follows immediately with ) = X. In the second
case, we will build Y < X so that ) is hierarchically quasiconvex and G-invariant, with the
property that if )/ < X is hierarchically quasiconvex and G-invariant, then there exists an
R > 0 such that Y < Ng()’). Given such a Y, the fact that G does not fix a point in 0)
follows from Proposition 5.8 and the hypothesis that G does not fix a point in 0X.

To construct Y, for each U € &, let Hyy < CU be the union of all geodesics starting and
ending in 7y (G - x) for some fixed basepoint = € X. A thin quadrilateral argument shows
that Hy is uniformly quasiconvex. Let ) consist of all realization points y with 7y (y) € Hy
for all U € &; this subspace is easily seen to have the required properties. ]

Recall that, by hierarchical quasiconvexity, (), &) is normalized: for each U € &, the
associated hyperbolic space is uniformly quasiisometric to n7(Y) < CU.

9. COARSE RANK-RIGIDITY AND ITS CONSEQUENCES

Throughout this section, (X, &) is a hierarchically hyperbolic space with X' proper and &
countable; we always let S denote the E-maximal element of &. In this section, we consider
countable subgroups G < Aut(&) (so that, by the distance formula, G acts discretely on
X). These standing hypotheses cover the case where (G, &) is an HHG. We emphasize our
standing assumption that all HHS are normalized.

Definition 9.1 (Rank-one automorphism). The automorphism g € Aut(&) is rank-one (on
(X,6)) if:

e g is axial;

e [Big(g)| = 1;

e if U € G is orthogonal to the domain in Big(g), then diam(7y (X)) < o0.

Irreducible axial elements are rank-one.

Our first goal is to show that, under the above hypotheses, either G' contains an irreducible
axial element or the G—essential core of X is a product HHS (not necessarily with unbounded
factors). This is done in Section @] using tools from Sections 020304l In Section 0.5
we apply results of Section
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9.1. Irreducible axials or fixed domains. We now prove the following two parallel propo-
sitions (one covering the non-parabolic case, and one covering the HHG case):

Proposition 9.2. Let (X, &) be an HHS with X proper and & countable. Let the countable
group G < Aut(S) act with unbounded orbits in X and without a global fized point in 0CS.
Then either G contains an irreducible azial element, or there exists U € & — {S} so that
|G- U| < 0. Moreover, any G—essential hierarchically quasiconver subspace ) < X coarsely
coincides with the standard product region Py n' ).

Proof. By Proposition 84 there exists a G-invariant hierarchically quasiconvex subspace ),
with a hierarchically hyperbolic structure (), &) admitting a G—equivariant hieromorphism
(V,6) — (X, 6) that is the inclusion on ) and the identity on &, and so that (), &) is G-
essential. Moreover, GG continues to act without a global fixed point in 6CS. Hence, since ) is
proper and & is countable, Proposition provides an irreducible axial isometry of (), &)
(hence of (X,6)) unless diam(wg())) < oo. If diam(mwg())) < oo, then Proposition
completes the proof. O

The HHG version requires the following theorem of Osin, which we also use elsewhere:

Theorem 9.3 (Theorem 1.1 of [Osil3]). Let G be a group acting acylindrically on a hyper-
bolic space. Then exactly one of the following holds:

(1) G has bounded orbits;
(2) G is virtually infinite cyclic and contains a loxodromic element;
(3) G contains infinitely many independent lozodromic elements.

Proposition 9.4. Let (G,S) be an HHG. Then either G contains an irreducible azial ele-
ment or there exists U € & such that |G - U| < o0 and G coarsely coincides with Py.

Proof. The G—action on (G, &) is essential. If diam(CS) = oo, then, since G acts acylin-
drically on CS, as proved in [BHS14l Section 14|, Theorem implies that G contains an
irreducible axial element. Hence we can assume that diam(CS) < oo, and in particular that
G has no fixed point in dCS = . The claim now follows from Proposition O

9.2. Finding finite orbits in &. Let u be a probability measure on G, whose support
generates G. All spaces are equipped with their Borel o—algebra, so every subset of G is
measurable, while the measurable subsets of X are determined by Definition 2111

Lemma 9.5 (Stationary measure on X). There exists a p-stationary probability measure v
on X, i.e. for all v—measurable & < X,

v(E) = > ulgv(g ™ E) = pxv(E).
geG

Proof. This is a standard fact, relying on compactness of X, i.e. Theorem[34l See e.g. [Fur63,
Lemma 1.2]. O

Remark 9.6 (Sampling X'). Since our aim in this section is to establish that, after passing
if necessary to a G—essential core, G contains an irreducible axial element or X is a product
HHS, and these properties are insensitive to modifications of A within its quasiisometry
type, we now “discretize” X, for convenience in the proof of Lemma

Let D = G\X, and let d be the quotient pseudometric, so (D, d) is proper since X is proper.
Hence there exists ¢ > 0 and a countable set {Z,,},=0 in D such that NP ({Z,}) = D. Thus
X contains a countable, G—invariant set {x,}n>0 for which the inclusion {z,} — X is a
quasiisometry, and we replace X’ with {x, }. We can thus assume that X is countable.

Lemma 9.7. For each U = S, the set {p € 0X : Supp(p) = U} is v—measurable.
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Proof. Either {p € 0X : Supp(p) = U} = &, in which case we're done, or U = {U;} is a set of
pairwise-orthogonal domains. Let X be the set of points ¢ € dX so that, for all V' € Supp(q),
there exists U € U with V £ U. Note that Y = {p € 0X : Supp(p) = U} < Xy. Let X} be
the subset of Xj consisting of those g € A such that for some V' € Supp(q), we have V ¢ U
(so V is properly nested in some U € U and orthogonal to the remaining elements).

Xj is closed in X': We will check that for any sequence {g, } with each ¢, € X, if ¢, — ¢,
then g € Xy. Suppose not, i.e. suppose that there exists V' € Supp(q) so that V = U for all
U € U. Consider a basic neighborhood N = /\/E,{ ~np3(@) of g. There are two cases.

First case: This is the case where there exists U € U so that UhV or U © V and, for
infinitely many n, there exists W € Supp(gy,) so that W = U and W £ V. Let Z be the set
of such n.

First, suppose that g, is remote with respect to ¢. Suppose that the basic neighborhood
N has been chosen so that Ny does not meet the 10? E-neighborhood of pg. Then for
arbitrarily large n € Z, the subsets p¥, ptV coarsely coincide, and hence (0T Supp(q) (@n))v =
p‘V/V does not lie in Ny . It follows that for arbitrarily large n € Z, we have g, ¢ N, by the
definition of the remote part of a basic set. This is a contradiction.

Second, suppose that ¢, is non-remote with respect to ¢, where n € Z. Exactly as before,
suppose that Ny does not meet the 10° E-neighborhood of p‘[f (which is still defined by
assumption). We still have that p‘V}/ is defined and coarsely coincides with pg, for some
W e Supp(gy), by assumption. Hence, again, we have that (0Tgupp(q)(qn))v = p‘va does not
lie in Ny. From the final condition in the definition of the non-remote part of a basic set,
it follows that ¢, ¢ N, which is again a contradiction.

Second case: In this case, for all but finitely many n, we have V' L W for all W € Supp(qy,).
The point g, is non-remote with respect to ¢. Indeed, there exists V' € Supp(q) which is
orthogonal to every element of Supp(g,). In particular V' € Supp(q) — Supp(g,) N Supp(q).

dn
Now, ZTeSupp(qn)*Supp(Q) ar <€ 8O
qr
Z ap' >1—¢,
TeSupp(gn)nSupp(q)

while |af. — a"| < € whenever T € Supp(g,) N Supp(q). Hence

D ag. > 1 —€(|Supp(gn) N Supp(q)]),
TeSupp(q) "Supp(gn)

which is impossible when ¢ is sufficiently small compared to a?/, since V' ¢ Supp(qy,). Hence
qn ¢ N, a contradiction.

Conclusion: Let T be the set of support sets V # U such that for each V' € V, there
exists U e U with V £ U. Then ¥ is countable, being a set, of finite subsets of the countable
set &. Now, A} is the union over all ¥V € T of the set Xy(V) of ¢ € 0X such that for each
W e Supp(q), there exists V € V with W = V. Hence, by the previous part of the proof, X;
is a countable union of closed sets. Thus ) = Xy — X is Borel, and hence v—measurable. [

Lemma 9.8. If G has no finite orbit in (& — {S}) U dCS, then v is supported on 0CS < X.

Proof. Let D be the set of finite subsets of &, so that D is countable and G acts on D in
the obvious way. By construction, {S} and ¢ are the only elements of D whose G-orbits
are finite. We first define a map O : X — D. Note that if & = {S}, then X = 0CS, and
the claim follows, so we assume that there exists U © S.

Defining O on boundary points: For each p € 04X, let O(p) = Supp(p). Observe that
this assignment is G—equivariant and that O(p) = {S} if and only if p € 0CS.

Defining O on interior points: Let B < X contain exactly one point from each G-
orbit, and choose F' € D — {{S}, @}. For each = € B, let O(z) = F. Then, for any = € B
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and g € G, let O(gr) = gF. Then O is G—equivariant and, for all x € X', the nonempty
finite set O(x) differs from {S}. For any F’ € D, either O~ (F') = & or F' = gF for some
g € G. Hence, for any subset D’ of D, we can write O~}(D’) = UgFeD' gB. Tt follows that
O~Y(D') is a countable union of translates of B, which is a countable union of closed sets

(singletons) by Remark [1.6] and thus O~*(D’) is Borel.

Measurability of X — dCS: Since 0CS = {p € dX : Supp(p) = {S}}, it follows from
Lemma that X — 0CS is measurable.

Measurability of O: There is a probability measure 7 on D given by #(A) = v(O~1(A)),
for each A < D. A set O~1(A) decomposes as:

{reX :0(x)e A} U {pe dX : Supp(p) € A}.

The set {p € 0X : Supp(p) € A} = Uyea {p : Supp(p) = U}, which is v-measurable by Lemma[@.71
Since A € D is countable, it suffices to show that O~!(F) n X is Borel for each F' € D, but
this was established above.

Conclusion: We have that O : X — D is a measurable G—equivariant map. Since G
preserves CS, it follows that X — dCS is a G-invariant v—measurable set.

Suppose that F’ € D has the property that G-F” is finite. Then G-U is a finite G—invariant
subset of & for each U € F” and, by our hypothesis that there is no finite G-orbit in & —{S},
we have that F' = {S}. Since O(e) # {S} for all e € X — 0CS, it follows that O(X — CS)
does not contaln a finite G-orbit. As shown in e.g [Bal89],]JKM96, Lemma 2.2.2], ﬂm,
Lemma 3.4][Hor14l Lemma 3.3], we must have v(X — dCS) = 0.

Corollary 9.9. If diam(CS) < o, then G stabilizes a finite subset of & — {S}.

Proof. By hypothesis, dCS = (&, so v cannot be supported on dCS. Hence G has a finite
orbit in & U dCS by Lemma and thus G must have a finite orbit in & — {S}. O

9.3. Finding product structures when diam(CS) < .

Proposition 9.10. Suppose G < Aut(S) is a countable subgroup, where diam(CS) < oo.
Then there exists U € & — {S} and a finite-index subgroup G’ such that G'-U = U and X
coarsely coincides with Py. Hence either (X, &) is a product HHS with unbounded factors
or X coarsely coincides with Fy or Ey.

Proof. By Corollary @] there exists U € & — {S} and a finite-index subgroup G’ < G so
that G’ - U = U. Note that G’ continues to act essentially on (X, &), coarsely stabilizing
Py. Since Py is hierarchically quasiconvex, X coarsely equals Py by essentiality. The last
assertion is immediate. g

9.4. Finding irreducible axial elements when diam(CS) = .

Proposition 9.11. Let (X, &) be a hierarchically hyperbolic space. Let G < Aut(&) act
essentially and suppose that G acts on X with no global fixed point in 6CS and that CS is
unbounded. Then G contains an irreducible axial automorphism of (X,S).

Proof. Suppose that every orbit of G in CS is bounded, so that, fixing x¢ € X, there exist
@, R < o0 so that diamg(G - mg(xp)) < R and G - wg(zp) is Q—quasiconvex. Consider the set
of all F—consistent tuples (by)pes such that bg € G- wg(xp). Let ) be the set of realization
points in X corresponding to such tuples, provided by Theorem [[L7] and note that G acts
on ). By definition, ) is hierarchically quasiconvex in X provided 7y()) is uniformly
quasiconvex in CU for each U € &, which we now verify.

If b is such a tuple, with dg(bg, pg) < F, then consistency puts no constraint on the

U—coordinate of B, i.e. for any such U, the map ny : YV — CU is uniformly coarsely
surjective, and in particular 7g7()) is uniformly quasiconvex in CU. On the other hand, if
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ds(pY,G - ms(wo)) > E, then consistency and bounded geodesic image imply that () is
uniformly bounded, and hence uniformly quasiconvex.

The existence of Y contradicts G—essentiality of X. Hence G has an unbounded orbit in
CS, so either there exists g € G acting loxodromically on CS, so g is irreducible axial, or
there exists a unique fixed point p € dCS, which is impossible. U

9.5. Coarse rank-rigidity. Recall that a metric space X is wide if no asymptotic cone of
X has a cut-point. The following lemma is well-known and elementary:

Lemma 9.12. Let X be a metric space quasiisometric to the product Xy x Xy, where each
X; is unbounded. Then X is wide, i.e. no asymptotic cone of X has a cut-point.

We now prove the main theorems of this section. Much of the work was done in proving
Propositions and [0.4} the remaining work is largely in sorting out technical issues that
arise when attempting to induct on complexity; these issues mainly stem from the fact
that, given U € &, the induced HHS structure on Ey does not have a uniquely-determined
C-maximal element.

Theorem 9.13 (Coarse rank-rigidity for non-parabolic actions). Let (X,&) be an HHS
with X proper and & countable. Let the countable group G < Aut(S) act essentially with
unbounded orbits in X and without a fized point in (X, &). Then one of the following holds:

(1) X is a product HHS with unbounded factors; specifically, X is coarsely equal to Py
for some U € & with |GU| < w0;
(2) there exists g € G such that g is rank-one.

If conclusion () holds, then X is wide.

Proof. By Proposition [0.2] either G contains an irreducible axial element, which is rank-one
by definition, so conclusion 2] holds, or there is a finite-index subgroup G’ < G fixing some
U e & —{S}, so that by essentiality, X coarsely coincides with the standard product region
Py. This implies that X is a product HHS. Choose U of minimal level with this property,
i.e. no domain of lower level has a finite G—orbit in &.

Since G has unbounded orbits in X, at least one of Ey;, Fyy is unbounded. If Fy, By are
both unbounded, then conclusion [I] holds, and we are done. The statement about wideness
follows from Lemma

If Fy is unbounded and Ey is bounded, then (Fy,S&p) is a HHS with Fyy proper and
Sy countable, on which G’ acts by HHS automorphisms with no fixed point in dCU (for
otherwise G would have a fixed point in 0X). By minimality, G’ has no finite orbit in
Sy — {U}, so Proposition provides g € G’ acting as an irreducible axial element of
Aut(Sy). As an element of Aut(&), we see that g is rank-one, for otherwise there would be
some V' L U with diam(CV') = oo, contradicting that Ey is bounded.

Finally, suppose that Ey is unbounded and Fy; is bounded. Let € be a minimal G'-
invariant set of C—minimal elements C' of & — {S} such that W = C whenever W L U.

Suppose that there exists C' € € with C' L U. Then g-C 1L g-U = U for all g € G’, so
g-C £ C, from which it follows that (passing if necessary to a further finite-index subgroup
if necessary) G'-C = C. Then (Ey, S¢) is an HHS satisfying the hypotheses of the theorem,
and G’ < Aut(S¢) acts without a fixed point in 0Ey (since it stabilizes 0Ey < 0X). In
this case, the claim follows by induction on complexity. Indeed, in the base case, |§| = 1
and the theorem is obvious. Otherwise, induction shows that either conclusion () holds, or
there exists g € G that acts as a rank-one element of Aut(&¢). Since G’ preserves Py and
Py coarsely equals X, this implies that g is rank-one on (X, &), as required.

The definition of €, and Definition [[1l ([B]), imply that C £ U and U = C for all C € €.
Hence it remains to consider the case where each C' € € satisfies C AU fix such a C. Since
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G stabilizes U, it coarsely stabilizes the image Py of Py = Fiy x Eyy — X. In other words,
for any basepoint x € X, the orbit G’ - z lies in a neighborhood of Py;. Now, since ChU,
the definition of Py implies that o (gz) uniformly coarsely coincides with pg for all g € G/,
whence diam (7o (G - x)) < o0 so, by essentiality, diam (7o (X)) < o0.

In this case, form a new index set 65 by appending to the set of domains orthogonal to
U a new domain C. In 6%} N G, the associated hyperbolic spaces, projections from Epr, and
relative projections are defined as in &. The hyperbolic space CC is a single point, so the
projections ¢ : X — CC and pg, for V'L U, are defined in an obvious way. We thus have
an HHS structure (Ey, 6%}) with G’ < Aut(Gé), of complexity less than that of &, and we
can argue as above by induction. Observe that, if g € Aut(Gé) is rank-one on Ey, then
Big(g) consists of some element of &3 N &, and since m¢ (&) is bounded for all C € €, and
we can argue as above that g is rank-one on (X, S). U

Theorem 9.14 (Coarse rank-rigidity for HHG). Let (G, &) be an infinite hierarchically
hyperbolic group. Then exactly one of the following holds:

(1) (G,8) is a product HHS with unbounded factors, and G is wide;

(2) G contains a rank-one element, and is thus not wide.
Moreover, conclusion () holds if and only if diam(CS) < co.

Proof. By Proposition [0.4] either G contains an irreducible axial element, which is rank-one,
or there exists U € & — {S} with G’ - U = U for some finite-index G’ < G, and G coarsely
coincides with Py. In the latter case, we argue as in the proof of Theorem [.13] by induction
on complexity, using the following observation: if V' € & — {S} and a finite-index subgroup
G’ fixes V, then the action of G’ on Fy is proper and cobounded. Moreover, G’ acts with
finitely many orbits on Gy, so (G', &y ) is an HHG structure on G’, enabling induction. [J

9.6. Tits alternative for HHGs. The goal of this subsection is the following theorem:

Theorem 9.15 (Tits alternative for HHGs). Let (G, &) be an HHG and let H < G. Then
H either contains a nonabelian free group or is virtually abelian.

Before we proceed with the proof, we need some supporting results:

Proposition 9.16. Let (G, &) be a hierarchically hyperbolic group. Then any H < G
containing an irreducible axial element is virtually Z, or contains a nonabelian free group.

Proof. Since G acts on CS acylindrically [BHS14], and hence H < G does, Theorem
implies that either H is virtually cyclic or H contains irreducible axial elements g, h so that
{h*} n {g*} = . Proposition and Proposition ZI7 () enable an application of the
ping-pong lemma, showing that ¢, h"V freely generate a free subgroup F, for some N > 0.

Or, one can apply Corollary 14.6 of [BHS14|, which uses Proposition 2.4 of [Fuj0g]. O

Lemma 9.17. Let (G, &) be an HHG with S € & E-maximal. Suppose that H < G has
bounded orbits in CS and fives some p € CS. Then |H| < o0.

Proof. By Theorem 14.3 of [BHS14], G acts acylindrically on CS, i.e. for each ¢ > 0, there
exists R > 0 and N € N so that whenever s, s’ € CS satisfy dg(s,s’) = R, there are at most
N elements g € G for which dg(s,g-s),ds(s’,g- ") <e.

Fix s € CS and let ¢; bound the diameter of the orbit H - s. Let v be a (1,200)-
quasigeodesic ray with endpoint p and initial point s, where CS is d—hyperbolic. Then,
for all h € H, the ray h -~ emanates from h - s and has endpoint h - p = p. This fact,
together with a thin quadrilateral argument, shows that there exists k = k(0) and Ry such
that for all h € H, we have dg(t,h - t) < kd whenever t € v satisfies dg(s,t) > Ry. Let
e = max{e1,k0} and let R, N be the associated constants coming from acylindricity. Then
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we can choose t € v so that dg(s,t) > R while dg(s,h - s),dg(t,h-t) <e€forall he H, and
hence |H| < N. O

Proof of Theorem [9.13. Note that H is a countable subgroup of Aut(&), since G is finitely
generated. We divide into cases, according to whether H fixes some p € 0G.

H fixes p € 0CS: In this case, by Proposition [0.16] H is either virtually cyclic, contains
a nonabelian free group, or, by Theorem 03] H has a bounded orbit in CS. Lemma
implies that H is finite in the latter case.

H has no fixed boundary point: Suppose there is an irreducible axial g € H. Then
either H contains a nonabelian free-group or H is virtually Z, by Proposition

Otherwise, Proposition provides U € & — {S} such that H - U is finite and the H—
essential core ) of in GG coarsely coincides with Py n'). By replacing H with a finite-index
subgroup if necessary, we can assume that H - U = U.

Thus we have an H—-essential product HHS (X x A7, &) with H < Aut(6&*) acting on
Xy x X1. Here & consists of two disjoint subsets &g, &1, together with various domains
whose associated spaces are uniformly bounded, with the property that Uy L Uy for all Uy €
So,U; € 67 and each 6; gives X; an HHS structure (for more on product decompositions,
see [BHSI5D]). Let H; < H be the stabilizer of some (hence any) parallel copy of ;.

Observe that H; < Aut(S;) is an action on an HHS of strictly lower complexity, for
i € {0,1}, namely (&X;,S;). If H; contains no irreducible axial element, then X; decomposes
as a product HHS, by Theorem Otherwise, applying Lemma and Theorem [Q.3]
we see that either Hy or Hy (hence H) contains a nonabelian free group, or H; is virtually
Z for i € {0,1}. Hence, either H contains a nonabelian free subgroup, or by induction
on complexity, we have a product HHS ([]; L;,Gi) such that H; < Aut(&;) and each

Lé- ~,i. R. In the latter case, we conclude that H virtually acts geometrically by HHS

automorphisms on (HZ] L;, G*). Hence, for some n, a finite-index subgroup of H acts by
uniform quasi-isometries on R", so H is virtually abelian.

H fixes p € 0G—0CS: In this case, H has a finite-index subgroup fixing some U € Supp(p)
(so U = S). We now argue by induction on complexity as above. O

9.7. The “omnibus subgroup theorem”. Our next result generalizes the Handel-Mosher
“omnibus subgroup theorem” from [HMI10]. Theorem below implies the omnibus sub-
group theorem in the case where X’ is the mapping class group of a connected, oriented
surface of finite type. In order to state the theorem, we need to restrict the class of HHS we
consider, and give some definitions.

Definition 9.18 (Hierarchical acylindricity). Given an HHS (X, &), we say G < Aut(S)
is hierarchically acylindrical if, for each U € &, the image of G n Ay under the restriction
homomorphism 0y : Ay — Aut(Sy) acts acylindrically on CU.

Lemma [ Hlimplies that every group of automorphisms of an HHG is hierarchically acylin-
drical. Moreover, hierarchical acylindricity passes to subgroups. For the rest of this subsec-
tion, fix G < Aut(S) to be hierarchically acylindrical.

Definition 9.19 (Active domains). Let G < Aut(S) be a group of HHS automorphisms.
We say U € & is an active domain for G if diamy (7 (G - z)) is unbounded for some (hence
any) x € X. Let 2(G) be the set of E-maximal active domains for G. Note that if G = (g),
then 20(G) = Big(g).

Theorem 9.20 (Omnibus Subgroup Theorem). Let (X, &) be a hierarchically hyperbolic
space with & countable and X proper. Let G < Aut(S) be a countable hierarchically acylin-
drical subgroup. Then there exists an element g € G with A(G) = Big(g). Moreover, for any
g € G and each U € Big(¢'), there exists V € Big(g) with U £ V.
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Before we prove Theorem [0.20] we prove a lemma related to fixed boundary points of G.
Throughout, £(&) denotes the complexity of (X, &), i.e. the length of a longest E—chain.

Definition 9.21 (Fixed-point set). Given an arbitrary HHS (X, &) and G < Aut(S), let
Fix(G) = {pe dX,6) | G- p =p}.

Given p € Fix(G), let G' <y; G be a finite index subgroup of G which fixes each U €
Supp(p). Let U € Supp(p) and suppose that G is hierarchically acylindrical. Since G’ fixes
U, the restriction homomorphism 6y gives a group G7; which (coarsely) acts on Fyy and acts
acylindrically on CU. The next lemma relates supports of fixed points to active domains.

Lemma 9.22. If p € Fix(G), U € Supp(p), and V € A(Q), then either U L'V or U =V.
Moreover, in the latter case, there exists g; € Gy, such that U € Big(gy;) and {g;;) <f.i. Gy;.

Proof. We separately analyze two cases.

The case UhV or U & V: Suppose that UhV or U Z V, i.e. pg is a well-defined coarse
point. Since G'-U = U, we have that G’ coarsely stabilizes the image of Py = Fy x By — X,
which we denote Py. In other words, G’ - g is uniformly close to Py for all zg € Py.

By definition of the standard embedding, if VAU or U = V, then my(Py) = pf € CV
(see Subsection [3]). Thus for any xg € Py and V € & with UV or U = V, we have

diamy (G' - zg) = 1

which implies that any orbit of G’ projects to a bounded subset of CV. Hence V ¢ 2A(G), a
contradiction. Thus either V=2 U or V L U.

The case V' = U: Now suppose V' = U. Since U € Supp(p), it follows that Gy,
fixes a point py € dFy, where py € 0CU. Since G is hierarchically acylindrical, Gy, acts
acylindrically on CU. By Theorem @3] and the fact that G, fixes a point in dCU, one of the
following holds:

(1) G, has bounded orbits in CU;
(2) G}, contains an element g;; which acts axially on CU, and {g;,) <y.;. G-

If item () holds, then, since GY; fixes a point of dCU, Lemma [@.I7implies that |G};| < 0.
In this case, since V = U, we have my (G’ - ) = my (G - x) is finite, so V ¢ A(G), a
contradiction.

If item (2)) holds, then we have found the desired element gj;. Moreover, the existence of
this element shows that U is nested into some element of 2((G). On the other hand, V = U
and V € A(G), so U =V by maximality of V.

Thus the only possibilities are that either V' L U or U = V and the desired g;; exists. O

We are now ready for the proof of Theorem [0.20!

Proof of Theorem [2.20. The “moreover” part of the statement follows automatically from
the first assertion and the definition of 2(G), for if ¢ € G and U € Big(g’), then U is an
active domain for G and thus U must nest into some domain in A(G) = Big(g).

We now prove the main part of the statement. By Proposition B4l we can assume that
G acts essentially on X'. Let S € G to be the unique E-maximal domain in &. Note that if
G contains an irreducible axial element or has finite order, then we are done. Moreover, by
acylindricity of the action of G on CS, either G contains an irreducible axial or has bounded
orbits in CS (so S ¢ A(G)).

In particular, if G fixes a point of dCS, then Lemma implies that |G| < o0, and we
are done. We may therefore assume that G does not fix a point in dCS and S ¢ A(G).

We now argue by induction on complexity of &. Suppose that £(&) = 1. Then either
there is an irreducible axial element, and we are done, or GG acts with bounded orbits on C.S,
in which case A(G) = & since & = {S}, and we are done.
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Now assume that the statement holds for any group of automorphisms of an HHS that
satisfies the hypotheses of the theorem and has complexity less than £(&).

There are two main cases, depending on whether or not G has a fixed point in X

First consider the case where G fixes no point of 0X. Proposition implies that either
G contains an irreducible axial, in which case we are done, or there exists U € & — {S} such
that |G - U| < o0 and X is coarsely equal to Py < X. In the latter case, after passing to a
finite-index subgroup if necessary, we have G acting by automorphisms on the HHS (Py, &)
(with complexity £(&)).

The remaining possibility is that G fixes some p € dX — dCS. In this case, after passing if
necessary to a finite-index subgroup, we again find U € & — {S} with GU = U and G acting
by automorphisms on the HHS (P, &) (with complexity £(S)).

In either case, let Py = Fy x Ey, so that & contains orthogonal subsets GU,GKL] such
that (Fy,&y) and (Ey, &) are HHSes of complexity at most £(&) — 1. By replacing G
with an index-2 subgroup if necessary, we can assume that G stabilizes &. Moreover, G
stabilizes 650 ={Ve&:V LU} ie 650 is obtained from 6$ by removing W if
W +U, where W & S is the (arbitrarily-chosen) E-minimal “container” domain containing
everything orthogonal to U.

Recall that 6%} consists of all domains V' € & with V' | U along with a =-minimal domain
W e & such that V2 W for all V L U. If W is the unique such domain, then G- W = W,
and thus G admits a natural restriction homomorphism to Aut(Gé).

Otherwise, W ¢ 20(G). Since diamyy (1w (Py)) = 1, we may replace W with single point
W* so that CW* = {«}. From this we obtain a new HHS structure on (Ey, 65"), where
65" = 6$ — W u {W*}, by making the obvious alterations to the projection and domain
maps associated to W.

In either case, let Gy be the image of G under the usual restriction homomorphism
Ay — Aut(&y). Let G be the image of G under the restriction map v : Ay — Aut(&3)
or, if W is not unique, we take G[L] be the image of ¢ : Ay — Aut(Gé") defined as follows:
for all g € Ay, the map v¥(g) acts like g on 6%]" and acts as the identity on CW*.

Hence we have HHS (Fy7, 6p), (Ey, 6#), of complexity at most £(&)—1, and groups Gy <
Aut(Sy) and G < Aut(SF) or Aut(Gé"), that satisfy the hypotheses of the theorem.

We now show that A(G) = A(Gy) L A(GF). The inclusions A(Gy ), A(GE) — A(G) are
obvious. Conversely, suppose that V € 2A(G). If U € Supp(p) for some p € Fix(G) (as we
can assume is the case whenever Fix(G) # (), then Lemma implies that V' = U or
V1LU,ie Ve &yu 6%] (and, if V' = W, then W is the unique container and hence
G—invariant). Otherwise, the proof of Lemma shows that V L U or V = U. Hence
VeA(Gy) u Ql(G%)

By induction on complexity, either A(Gy) = &, or there exists h € Gy with Big(h) =
A(Gy). Likewise, either A(Gj) = &, or there exists ht € G with Big(ht) = A(Gp).
If A(Gy) = & (repsectively, A(G) = &), we take h = 1 (respectively, ht = 1). Since
A(G) = A(Gr) uA(GE), we must use h, bt to find g € G with Big(g) = A(Gr) u A(G).

Choose h, h' € G stabilizing & and 6$ and mapping to h € Gy, h* € G, respectively,
under the above restriction maps. Let k be the image of h in Gé and let k be the image
of h in Gy, so we are considering the action of h, k+ on &y and h', k on 6#.

Let {U1,...,Us} = Big(h) © 6y and let {V4,...,V;} = Big(h') < &. By passing to
powers, we can assume that hU; = U; and hLVj =V} for all 4, j. Since the action of G; on
Sy preserves A(Gy), and the action of Gﬁ on 6(§ preserves Ql(Gﬁ), we can, by passing to
powers, assume that k+ preserves each U; and k preserves each Vi.
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Let N » 0 and consider F' = (™, (hH)1N) < G. The image of F in Gy is F =
(AN, (kH)1ON) and the image of F'in G is F'+ = (&, (h+)1°N). The above discussion shows
that F acts acylindrically on each CU; and F- acts acylindrically on each CV;. Examining
the various cases that arise according to how k acts on the CV; and how k- acts on the
CUj; shows that, in each case, there exists ¢ € F whose image in F is loxodromic on each
CU; and whose image in F'* is loxodromic on each V;. Hence Big(g) = 2A(Gy) uA(Gf), as
required. ]

The following is an immediate but useful corollary of Theorem [0.201

Corollary 9.23. If G < Aut(S) is hierarchically acylindrical, then A(G) is pairwise or-
thogonal.

9.8. Rank-rigidity for some CAT(0) cube complexes. We now use Theorems [0.14] and
to reprove the rank-rigidity theorem of Caprace and Sageev [CS11], in the case where
the cube complex in question contains a factor system. See Section [I0l for a discussion of
the definition, and the definition of the simplicial boundary 0, X of the cube complex X.

Corollary 9.24 (Rank-rigidity for cube complexes with factor-systems). Let X' be an un-
bounded CAT(0) cube complex with a factor-system §. Let G act on X and suppose that one
of the following holds:

(1) G acts on X properly and cocompactly;
(2) G acts on X with no fized point in X U 0, X.

Then X contains a G—invariant convex subcomplex Y such that either G contains a rank-one
isometry of Y or Y = A x B, where A and B are unbounded convex subcomplezes.

We remark that in view of Remark 5.3|, we could have stated the corollary in
terms of fixed points in the CAT(0) boundary rather than the simplicial boundary, but we
have opted for the latter because of the close relationship between the simplicial and HHS
boundaries discussed in Section

Proof of Corollary[9.24 First suppose that G acts on X’ essentially, in the sense that ev-
ery halfspace contains points of some G-orbit arbitrarily far from the associated hyper-
plane (in particular, X does not contain a G—invariant proper convex subcomplex). Recall
from that X is equipped with a hierarchically hyperbolic structure (X, &), where
S is the set of factored contact graphs of elements of §, and that G < Aut(&). If G acts on
X properly and cocompactly, then (G, &) is an HHG; if G acts on X with no fixed point in
0, X, then G does not fix a point in d(X, &), by Theorem [[0.1] below.

Depending on which hypothesis we invoke, one of Theorem or Theorem implies
that either there exists g € G which is rank-one (in the HHS sense) or there exists U € &
so that X' coarsely coincides with Py, which has unbounded factors, and G'U = U for some
finite-index G’ < G. In the former case, elements that are rank-one in the HHS sense (with
respect to this particular HHS structure on X’) are rank-one isometries of X in the usual
sense, by Proposition 5.1] and the definition of a factor system Section 8|.

In the latter case, Py = Fy x Ey is a genuine convex product subcomplex with unbounded
factors (see [BHS14]). Let g € G and suppose that H is a hyperplane intersecting Py but not
gPyr. Since Py is coarsely equal to X' and X is essential, the halfspace of Py separated from
gPy by H contains points arbitrarily far from H, whence Py and gPpy cannot lie at finite
Hausdorff distance. This contradicts that Py is invariant under a finite-index subgroup of
G. Hence Py and gPy are parallel for all g € G, i.e. they are crossed by exactly the same
hyperplanes. Thus X = Py x Y for some compact cube complex Y, whence Y is a single
point, by essentiality. It follows that Py is G—invariant, so X = Py by essentiality. Hence
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X decomposes as a product with unbounded factors. In general, we first replace X by its
G—-essential core in either preceding argument, using Proposition 3.5 of [CS11]. O

Remark 9.25. Question A of asks whether the existence of a proper cocompact
action of G on the CAT(0) cube complex X ensures that X contains a factor system. By
a result in [BHS14], the answer is affirmative provided X embeds as a convex subcomplex
in the universal cover of the Salvetti complex of some right-angled Artin group. Although
it is a strong condition, we believe that such embeddings always exist (although there is in
general no algebraic relationship between G and the RAAG).

9.8.1. The Poisson boundary of an HHG. Results in show that, if G is an HHG
with diam CS = oo, then, given a nonelementary probability measure p on G, the boundary
0CS admits a u—stationary measure making it the Poisson boundary. As a topological model
of the Poisson boundary, dC.S is unsatisfactory since it need not be compact. However:

Theorem 9.26 (The HHS boundary is the Poisson boundary). Let (G, &) be an HHG with
diam CS = o0, p be a nonelementary probability measure on G with finite entropy and finite
first logarithmic moment, and v the resulting p-stationary measure on 0G. Then (0G,v) is
the Poisson boundary for (G, ).

We use acylindricity of the action of G on CS and a result of Maher-Tiozzo [MT14]:

Theorem 9.27 (Theorem 1.5 in [MT14]). Let G be a countable group which acts acylindri-
cally on a separable Gromov hyperbolic space X . If i is a nonelementary probability measure
on G with finite entropy and finite first logarithmic moment with corresponding stationary
measure v, then (0X,v) is the Poisson boundary for (G, ).

Proof of Theorem[220. Let p be a nonelementary probability measure on G with finite en-
tropy and finite first logarithmic moment. Since G acts on CS acylindrically [BHS14]|Theorem
14.3|, Theorem implies that there exists a p-stationary measure v/ on 0CS such that
(0CS, ") is the Poisson boundary for (G, p).

Let f: dCS — 0G be the embedding from Proposition By Lemma 0.7 f(JCS) is
Borel, so for any Borel subset V' < 0G, the set V' n f(0CS) is Borel. Define a new measure
von dG by v(V) =v (f~(V n f(2CS))) .

Since f is G-equivariant, it follows that v is p-stationary. By definition, f(0CS) has full
v-measure. Moreover, (0G, v) is a p-boundary by measurability of f and it is maximal since
(0CS,v") is maximal. Thus (0G,v) models the Poisson boundary for (G, u). O

10. CASE sTUDY: CAT(0) CUBE COMPLEXES

Throughout this section, X is a locally finite CAT(0) cube complex in which each collec-
tion of pairwise-intersecting hyperplanes is (not necessarily uniformly) finite. In [BHS14], it
is shown that CAT(0) cube complexes can often be given HH structures using certain collec-
tions of convex subcomplexes called factor systems. We recall the definition in Subsection
When § is a factor system for X, denote the resulting HH structure by (X,F).

The simplicial boundary of X was introduced in [HagI3|; we recall the definition below.
The simplicial boundary and the HH structure are closely related by the following theorem:

Theorem 10.1 (Simplicial and HHS boundaries). Let X be a CAT(0) cube complex with a
factor system §. There is a topology T on the simplicial boundary 0, X so that:
(1) There is a homeomorphism b: (0, X,T) — 0(X,T),
(2) for each component C' of the simplicial complex 0, X, the inclusion C — (0, X,T)
1s an embedding.

In particular, if §, &' are factor systems on X, then 0(X,J) is homeomorphic to 0(X,T').
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We prove Theorem [I0] in Subsection I0.3]

Remark 10.2. Proposition 3.37 of relates 0, X to its Tits boundary dpX. There
is an analogous relationship between the HHS boundary and the visual boundary when the
former is defined (i.e. when X has a factor system). Specifically, one can show that there is
a commutative diagram

o,x Ly orx

b| J/id

(X, F) D OpisX

where b is the bijection from Theorem [0l I and J are embeddings, J is m/2-quasi-
surjective, and 0(X,F) is a deformation retract of d,sX. The CAT(0) metric on X is far
afield from our present discussion, since the HHS structure depends only on the combina-
torics of A and is insensitive to changes in the CAT(0) metric (unlike the visual bound-
ary [CKO00Q]), so we will not give a detailed proof of the above. The top part of the diagram
comes from Proposition 3.37]; the missing ingredient is to shown that J is an em-
bedding, which is a tedious exercise in the definition of the topology on d(X, ).

10.1. The simplicial boundary. We first recall the necessary definitions from [Hagl3].

Definition 10.3 (UBS, boundary equivalence, minimal UBS). A set U of hyperplanes in
X is a unidirectional boundary set (UBS) if each of the following holds:

U is infinite;

if U,U’' € U and a hyperplane V separates U, U’, then V € U;

if U,U',U" € U are pairwise disjoint, then one of them separates the other two;

for all hyperplanes W, at least one component of X — W contains at most finitely
many elements of U.

Given UBSes U, V, let U < V if all but finitely many elements of I/ lie in V. The UBSes U, V
are boundary equivalent if U <V and V < U, and U is minimal if U and V are boundary
equivalent for all UBSes V with V < U.

Remark 10.4. Any infinite set of hyperplanes which is closed under separation contains a

minimal UBS [Hagl3| Lemma 3.7].

Proposition 3.10 of shows that each UBS U is boundary equivalent to a UBS of
the form |_|f:0 U;, where each U; is a minimal UBS, and this decomposition is unique up
to boundary equivalence. Up to reordering, for 0 < ¢ < j < k, for all but finitely many
U e Uj, the hyperplane U intersects all but finitely many elements of ;. In this situation,
U; dominates U;. The number £ is the dimension of U.

Definition 10.5 (Simplicial boundary). A k—simplex at infinity is a boundary equivalence
class of k—dimensional UBSes. If v,v’ are simplices at infinity, represented by boundary
sets V, V', then V n V' is, if infinite, a boundary set representing the simplex v n v’. The
simplicial boundary 0, X of X is the simplicial complex with a closed k-simplex for each
k—dimensional simplex at infinity; the simplex u represented by the UBS U/ is a face of the
simplex v, represented by V, if U < V.

Remark 10.6 (Boundaries of convex subcomplexes). It is shown in that if Yy € X
is a convex subcomplex, then 0, ) < d, & in a natural way: each simplex at infinity in 0, Y
corresponds to a UBS in X consisting of hyperplanes that intersect ), and these hyperplanes
intersect in X exactly when they intersect in ), by convexity.
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10.1.1. Visibility.

Definition 10.7 (Visible simplex). The simplex w at infinity is wvisible if there exists a
combinatorial geodesic ray 4 in XM such that the set & of hyperplanes intersecting ~
represents the boundary—equivalence class u. Otherwise, the simplex u at infinity is invisible.
If every simplex at infinity is visible, then X is fully visible.

Theorem 3.19 of [Hagl3] states that every maximal simplex of 0, X is visible. Visibility is
also related to a subtlety in the definition of 0, X

Remark 10.8 (Visibility and proper faces). Let |_|f:0 U; be a UBS, with each U/; a minimal
UBS, numbered so that for 0 < 7 < j7 < k and all U € U;, we have that U n'V #
for all but finitely many V € U;. If, up to modifying each U; in its boundary equivalence
class, U n'V # (& whenever U € U;,V € V;, and i # j, then the simplex u represented by

|_|f:0 U; is visible. In this case, X' contains an isometrically embedded (on the 1-skeleton)
cubical orthant, the boundary of whose convex hull is u. Conversely, if we know that each U;
represents a visible O-simplex, then | |,_, U; represents a visible simplex at infinity for any
K < {0,...,k}, as is proved in [Hagl3|. If this does not occur, then there may be subsets
K < {0,...,k} so that | |,_, U; represents an invisible simplex at infinity, or is not even a
UBS (by virtue of failing to satisfy the condition on separation). In other words, when X is
not fully visible, simplices at infinity may have proper faces that are not genuine simplices
at infinity represented by UBSes.

A visible simplex v € 0, X' is represented by the combinatorial geodesic ray v < X M) if
the UBS of hyperplanes intersecting = represents the boundary equivalence class v.

Remark 10.9 (Factor systems and visibility). Conjecture 2.8 of states that if X' is a
CAT(0) cube complex on which some group acts geometrically, then X is fully visible. Also,
the proof of Theorem [[0.] shows that, if X contains a factor system (see Definition [[0.10),
then every simplex of 0, X" is visible. This is another reason for interest in Question A
of [BHSI5D], which asks whether every CAT(0) cube complex on which some group acts
geometrically contains a factor system.

10.2. Factor systems: hierarchical hyperbolicity of cube complexes. We now sum-
marize results from yielding hierarchically hyperbolic structures on X. We refer
the reader to Section 2 of for discussion of convex subcomplexes and the gate map
gr : X — F from X to any convex subcomplex F'.

Recall that each hyperplane H of X lies in a carrier, N'(H), which is the union of closed
cubes intersecting H. For all H, there is a cubical isomorphism N (H) ~ H x [—%, %],
a subcomplex of X which is the image under the inclusion N(H) — X of either of the
subcomplexes H x {%} or H x {—%} is a combinatorial hyperplane. We say that two convex
subcomplexes F, F’ of X are parallel if for any hyperplane H of X', we have H n F # F if
and only if H n F' # ¢f. We let § denote a choice of representatives for each parallelism
class of elements of §.

Definition 10.10. A factor system § is a set of convex subcomplexes such that:

(1) Each nontrivial combinatorial hyperplane of X belongs to §, as does each convex
subcomplex parallel to a nontrivial combinatorial hyperplane,
(2) Xeg,
(3) there exists & > 0 such that for all F, F’ € §, either gp(F’) € § or diam(gr(F")) <&,
(4) there exists A > 1 such that each point in X belongs to at most A elements of §.
We require that elements of § are not single points. (This condition is only imposed to

ensure that nesting and orthogonality are mutually exclusive: if F' is a single point and
F' e 3§, then FF L F' and F £ F’, so we exclude this situation.)
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The contact graph CX of X (see [Hagld]) has a vertex for each hyperplane, with two
hyperplanes joined by an edge if no third hyperplane separates them. If FF < X is a convex
subcomplex, then F' is a CAT(0) cube complex whose hyperplanes have the form H n F,
where H is a hyperplane of X, and, by convexity of F', this yields an embedding CF' < CX
of F as a full subgraph.

Given a factor system § on X, we define the factored contact graph CF of cach F € $ as
follows. Begin with CF. For each parallelism class of subcomplexes F’ € §, parallel to a
proper subcomplex of F' that is not a single O—cube, we have CF’ < CF', and we cone off CF’
by adding a vertex vgs to CF and joining each vertex of CF' < CF to vgr. The resulting
factored contact graph CF is uniformly quasiisometric to a tree [BHS14, Proposition 8.24].

Let us now define the maps np : X — 9CF For each F € 5, given x € X, let gp(x) € F
be its gate. There is a nonempty finite set of hyperplanes H of I’ that are not separated
from x by any other hyperplane; these form a nonempty clique in CF, to which we send x.

We then compose with 2¢F < 2€F to yield 7p : X — 2°F sending each point to a clique.
Let FF = F' if F is parallel to a subcomplex of F’, and F 1L F’ if there is a cubical

isometric embedding F' x F' — X (after possibly varying F, F’ in their parallelism classes).

Otherwise, F, F’ are transverse. With these definitions, it is shown in [BHS14l [BHSI5b]

that (X,J) is a hierarchically hyperbolic space.

10.3. Relating the simplicial and HHS boundaries. Fix X with a factor system §;
necessarily, X is uniformly locally finite.

Proof of Theorem [I0 1l We will first exhibit a bijection b: 0, X — 0(X,F). We then define

T = {b=1(O)}, where O varies over all open sets in d(X, ), so as to make b a homeomor-
phism. It then suffices to verify that this topology agrees with the simplicial topology on
each component of d, X'; the “in particular” statement then follows immediately.

Reduction to the single-simplex case: Let m be a maximal simplex of 0, X. By the
definition of the simplicial boundary, m is a simplex at infinity, i.e. it is represented by some
UBS M. Moreover, by Theorem 3.19], we can take M to be the set of hyperplanes
intersecting some combinatorial geodesic ray 7, emanating from the (fixed) basepoint z.
Let Y., be the convex hull of ~,,.

By Lemma 84|, §m = {F 0 Y : F € §} is a factor system. (We emphasize that
S is a set, not a multiset: if F, F’ € § satisfy F'nY,, = F' nY,,, we count this subcomplex
once.) We adopt the following convention: for each F' N Y, € &y, we assume that F' has
been chosen so that F' is &—minimal among all F’ € § with F' 1 Y,, = F n V,,,. (Note that
there is a unique such minimal F: if F n),, = F' A" Y,,, then Fn)Y,, = Fn F' A Y,,, and
FAnF' £ FF.)

Also, if F = F/, then F N Y, © F' A Y, obviously. Conversely, suppose that F'n Y, ©
F' oYy Let F" =gp(F'),s0 F" £ F' and F" £ F. Then F" n Y, = F N Yy, s0 F" = F
by minimality, whence F = F”.

If FF L F’, then convexity of Y, implies (F'x L F') n Yy, = (F 0 YVim) X (F' 0 V), so
(FnYm) L (F' nYm). Conversely, suppose that (F n V) L (F' 0 Y,). For brevity, let
A=Fn)Y, and B =F' N Yy, so that X contains A x B. By Lemma [[0.13] there exist
Fy,Fpe§sothat Ac Fa,Bc Fpand Fq L Fp. Let F)y = F n Fy and F; = F' n Fp.
Then Fy N Yy, = F 0 Yy, and F)y © F, so minimality of F' implies "y = F'; similarly
Fj, = F'. But since Fy 1 Fp and F!y © Fy, F; = Fg, we have F' L F’.

It follows that there is a hieromorphism (Y, §m) — (X, ) defined as follows: the map
Y — X is the inclusion; the map §,, — § is given by F' n V,, — F for each F' N V,,, € T
(where F' is E-minimal in § with the given intersection with )), and for each F' n Y, the
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map C (FnYp) — CF is the inclusion on contact graphs and sends cone vertices to cone
vertices in the obvious way.

We will see below that )V, = Hl o Ym,;, where each V,,, has the property that oC (F n
Vm;) = & for all F e F except for a unique F, € § for which oC (F N Vm,;) consists of a
single point p;. Moreover, Fy L F; j for i # j. Lemma [[0.IT]shows that for each F' n Y, the
map C (FnYp) — CF is a uniform quasiisometric embedding, inducing a boundary map,

i.e. p; may be regarded as a point in dCE; for each i. We thus obtain an injective map
a(ymugm) - a(X,SI) given by

k k
m (Z amu) = Z i Pi-
i=0 i=0

Constructing b: We will observe below that if m,m’ are maximal simplices, then the
associated collections {pl} "o and {pl i—o intersect in a set corresponding precisely to the
set of 0—simplices of m nm/. It follows that the maps constructed above are compatible, i.e.
bm|ymﬁm’ = by | S and that, if m, m’ are disjoint maximal simplices of ¢, X, then b,,, and
b,y have disjoint images. Pasting together the by, thus yields an injection b: 0, X — 0(X, §)

Surjectivity of b: Let {F} ", be a support set in T, choose for each i a pomt pi € 6CE,
and let p = Zle a;p;. For each i, let o; be a geodesic ray in the quasi-tree CF joining
g, (z0) to p;. Let {H!} be a sequence of hyperplanes of X', each crossing E, corresponding
to vertices of o;, ordered so that H! separates Hi ne1 from zg. Any P € § that crosses

infinitely many of these hyperplanes satisfies F; = P, or else some element of § nested into
F; would “kill” the p; direction in 6CE;. Every simplex of 0 (H = 0F ) © 0, X is visible,
from which it is easy to check that there is a unique (up to boundary— equlvalence) minimal
UBS M; containing {H:} and representing a 0-simplex m; of 0, X’ such that {mq,...,my}
span a simplex m. By definition, by, (}}; a;m;) = p

Analysis of components: To prove that each component C of ¢, X', with the simplicial
topology, is embedded in (0, X,7T), we must show that boid : 0, X — 9(X,T) restricts
to an embedding on C, where id : 0, X — (0, X,T) is the identity. Let m be a maximal
simplex of 0, X. Let p = Y}, a;jp; € boid(M) and let N = N,y () 0 d(Vim, Fm) be a basic
neighborhood of p, as defined in Section [LTl Observe that A is completely non-remote,
whence it is clear from the definition that b,'(N) is basic in the simplicial topology on
0 YVm = m, s0 by, is continuous. It follows that b o id is continuous. A similar argument
shows that the restriction of b oid to C' is an open map. To complete the proof, it now
suffices to produce the F; and analyze their factored contact graphs, which we do in the
next several steps.

Visibility of faces of m: Let m be a maximal simplex of d, X and observe that 0, Vi,
is exactly the simplex m. We now verify that each face of m is a visible simplex at infinity.
Let mo, ..., my be the O-simplices of m; represent m; by a minimal UBS M; so that M;
dominates M; when ¢ < j and M = |_|f=0 M;. Recall from Remark [I0.8] that if M;
dominates M; for all 4, j, then each sub-simplex of m is visible.

By projecting 7, to a combinatorial hyperplane on the carrier of some element of My,
we see that M — My, represents a visible codimension—1 face m’ of m, represented by a ray
Y- The convex hull V,,, < V,, of 7, inherits a factor system from ), as above. Hence,
by induction, for ¢ < k, the 0—simplex represented by M; is visible. Thus it suffices to show
that the O—simplex my, represented by My is visible. (In the base case, m is a maximal 0—
simplex, and is visible by maximality.) Suppose, for a contradiction, that my is not visible,
so there exists ¢ < k such that M, fails to dominate My. In particular, £ > 1.
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The UBS M} contains a sequence {M,},>o of pairwise disjoint hyperplanes such that
M,, separates M, for all n > 1. For each n, let M, be the combinatorial hyperplane in
N (M,,) in the same component of X — M,, as M, 1. For each n, let P, = 9nr; (M) be

the projection of M, on MJ . The set of hyperplanes crossed by both My and M,, contains
all but finitely many elements of M;; hence each P, is unbounded and thus belongs to the
factor system §,,,. Moreover, for all N > 0, the intersection ﬂszo P, # . Hence, since P,
has multiplicity A < o0, it must be the case that there exists N such that P, = Py for all
N = n. Thus, when n,n’ > N, the set of elements of M; crossed by M,, coincides with the
set crossed by M,,, for all j <k — 1. Hence each M, dominates My, whence m;, is visible.

Structure of ),,: By Theorem 3.23| and visibility of the m,; established above,
after moving g if necessary, V,, = Hf:o Ym,, where Y, is the convex hull in X of a
combinatorial geodesic ray 7’ at the basepoint x( representing a 0-simplex m; of m. Each
point of m = 0, Yy, can be uniquely written as Zi:O a;m;, where a; = 0 and Zle a; = 1.

For each i, let { H! },,>0 be the set of hyperplanes crossing 4'; this is a minimal UBS and is
numbered according to the order in which 4 crosses the H’. Thus, if n > m, the hyperplane
H} does not separate H! from zq (in fact, either H. n H!, # (J or H! separates H! from
xg). Choose F; € Sm to be C-minimal so that all but finitely many H,’L cross F;. Observe
that F; L Fj for all i # j, and that F; < V,,.

Suppose that m’ is some other maximal simplex and ), = Hflzo ym;. For each i, let
F! € §,v be E-minimal among those factors crossing all but finitely many of the elements
crossing YV, . Suppose that 8CF = GCF ! for some 7 < k,j < k’. Then the set of hyperplanes
crossing YV, , which is boundary— equlvalent to that crossing Fj, is boundary-equivalent to

that crossing Fj and hence that crossing Y./, i.e. m; = m.
J

Orthogonality: Each F; has the form F; = F N Vi, where F € §. While orthogonality
of elements of § implies orthogonality of the corresponding elements of Fm, the converse
need not hold, but we will require that F 1 F for all ¢ # 7, in order to construct points
of 0(X,F). However, finitely many applications of Lemma J below show that for each
i, there exists F; € § such that F; € F, € F and such that Fj | F for all 7 # j.

Factored contact graphs in §,,: For any F € §,,, we have, by convex1ty and [CS11]
Proposition 2.5], that F' = Hl 0 9V, (F), whence CF' decomposes as a join, so CF is obtained

from a join by coning off certain subgraphs. Thus CF is bounded (and oCF = ) unless F
is parallel to a subcomplex of some },,,. We claim that 8CAFZ- consists of exactly one point
p; for each i, and that, for all other F € §,,, we have oCF = .

Observe that CF; coarsely coincides with CY;, the {H},} are partially ordered by the order
in which ~; crosses them, and that CF; is coarsely equal to a maximal chain in this partial
order (i.e. a combinatorial ray o in CF;). By Theorem 2.4 of [Hagl3|, o is unbounded in
CF;, since Fj is &= —minimal, and thus determines a point p; € 8CF Moreover p; is unique,
since CF lies in the 1—mneighborhood of & (CF is obtained from o by adding edges reflecting
intersections of elements of the {H!}).

Hence, if 0 < 5E is unbounded, then 6CAFZ- = {p;}. By E-minimality of F}, no hyperplane
of F; crosses infinitely many {H!}, so hyperplanes of F; are compact. By minimality of the
UBS {H!}, any element of §,, corresponding to a cone-vertex in CAFZ crosses finitely many
hyperplanes. It follows that for all n > 0, there exists N > n such that H: and H!, cannot
be adjacent to the same cone-vertex of CF, when m > N. Hence 0CF; = {pi}.

We have shown that if F' € §,, has unbounded factored contact graph, then F is (up to
parallelism) contained in some Y,,,. If F' intersects only finitely many elements of {H;},
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then F' is compact and thus CF is bounded. If F intersects infinitely many, then it inter-
sects all but finitely many, whence either F' is parallel to F; or CF contains a subgraph,
containing all but finitely many hyperplane-vertices, whose vertices are all adjacent to the
cone-point corresponding to gr(F;); thus CF is bounded. This completes the description of
the boundaries of the factored contact graphs of the elements of F,. O

Lemma 10.11. Let § be a factor system in X, let Y < X be a convex subcomplex, and let
§’ be the factor system in Y consisting of all subcomplexes of the form F' Y, where F' € §.
Let F nY € g, and suppose that if F' € § satisfies ' nY = F n), then F © F’.

Then the following map ¢ : CA(F nY)— CFisa (3,0)—quasiisometric embedding: ¢ is the
inclusion on contact graphs; for each F' nY € §' properly nested in F nY (with F' minimal
with this intersection with ), the cone-point in CA(F N Y) corresponding to F' 'Y is sent
to the cone-point of CX corresponding to F'.

Remark 10.12. Recall from the discussion in the proof of Theorem [[0.1] of the hieromor-
phism (Y, §m) — (X, F) that if Y n Y €& F nY and F, F’ are each T—minimal with the
given intersections with ), then F = F”.

Proof of Lemma[I0.11. Let v,v" be vertices of CA(F N YVm). Let v =wvp,v1,...,0, =0 be a
geodesic sequence in CF from v tov'. If v; 1s a hyperplane vertex, let H; be the corresponding
hyperplane of F' (so H crosses F' n')). If v; is a cone-vertex, let H; be a subcomplex in
§, properly contained in F', that represents the parallelism class corresponding to the cone-
vertex v;. (For i € {0,n}, if H; is a hyperplane, then it crosses ). Otherwise, H; € § is
C-minimal among all U € §p with U nY = H; n ).)

If H; is a cone-vertex, then H;41 are hyperplanes crossing H;. This gives a sequence
Hy, Hy, ..., H, of hyperplanes or factor-system elements in F' such that N'(H;) "N (H;41) #
& when H;, H; 1 are hyperplanes, and H; N H;11 # J when H;.q is a subcomplex in §.

For each i such that H; € §, we have H; © F'. In particular, our minimality assumption
on F ensures that if H; n)Y # J, then H; nY © F' n Y. Otherwise, we would have
H;n)Y = F n)Y while H; © F, contradicting minimality of F'.

For each i with H; a hyperplane, choose a combinatorial geodesic v; — N (H;) joining the
terminal point of v;—1 to a closest point on H;;1 (or N'(H;41) if v;41 is a hyperplane vertex).
Similarly, choose ~; — H; when v; is a cone-vertex. The geodesic v; — Hp joins Hy n' )Y
(or N(Hy) nY to Hy n Hy (or N(Hy) n Hy etc.), and v, — H, (or N'(H,)) is similarly
chosen to end in Y. Let D — F be a minimal-area disc diagram bounded by ~1 - v+ ¥p
and a geodesic of ) joining its endpoints. Moreover, suppose that each of the geodesics,
and indeed the sequence vy, ...,v, and the representative subspaces, are chosen so as to
minimize the area of D among all possible such choices.

Then, arguing exactly as in the proof of Proposition 3.1 of [BHS14], we see that v; - - - v,
can be chosen to be a geodesic since a minimal D cannot contain a dual curve traveling
from ~; to v; for any 4, j. It follows that ~y; - - -7, lies in Y, so each H; that is a hyperplane
either crosses ) or contributes a combinatorial hyperplane to §', while each H; that is a
subcomplex contributes an element to §’; as explained above, for each such H;, we have
H,nY 2 Fn), so H; n) corresponds to a cone-point in 5(F N Y). We thus have a
sequence Hy, ..., H, of (non-E-maximal) elements of § and hyperplanes crossing ), which

determines a path of length between n — 1 and 3(n — 1) in C(F n ). O

Lemma 10.13. Let X be a CAT(0) cube complex with a factor system §. Suppose that A, B
are unbounded convex subcomplexes of X such that there is a cubical isometric embedding
A x B — X extending A,B — X. Then there exist Pa,Pgp € § with P4 1 Pp and
AcC Py, BcC Pg.
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Proof. Let © = A n B. Then A, B are contained in combinatorial hyperplanes H, Hp,
respectively. Indeed, every hyperplane crossing A (including the one whose carrier contains
Hp) crosses every hyperplane crossing B (including the one whose carrier contains H4).
For each hyperplane V' crossing Hp, let V be one of the two associated combinatorial hy-
perplanes and consider gg, (V). Observe that gg, (V') € § since it contains A and is thus
unbounded. Since § has finite multiplicity, there are only finitely many distinct subcom-
plexes gg,(V), as V varies over all hyperplanes whose projection to H,4 contains A; let
P4 € § be their intersection. Define Pp analogously. Then P4, Pp have the desired proper-
ties. (Indeed, a hyperplane H crosses P4 if and only if H crosses every hyperplane V' whose
projection to H 4 contains A; the projection of H to Hp thus contains B, so very hyperplane

crossing Pp crosses H, whence P4 x Pg < X.) O
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