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BOUNDARIES AND AUTOMORPHISMS OF HIERARCHICALLY

HYPERBOLIC SPACES

MATTHEW G. DURHAM, MARK F. HAGEN, AND ALESSANDRO SISTO

Abstract. Hierarchically hyperbolic spaces provide a common framework for studying
mapping class groups of finite type surfaces, Teichmüller space, right-angled Artin groups,
and many other cubical groups. Given such a space X , we build a bordification of X com-
patible with its hierarchically hyperbolic structure. If X is proper, e.g. a hierarchically
hyperbolic group such as the mapping class group, we get a compactification of X ; we also
prove that our construction generalizes the Gromov boundary of a hyperbolic space. In
our first main set of applications, we introduce a notion of geometrical finiteness for hier-
archically hyperbolic subgroups of hierarchically hyperbolic groups in terms of boundary
embeddings. As primary examples of geometrical finiteness, we prove that the natural in-
clusions of finitely generated Veech groups and the Leininger-Reid combination subgroups
extend to continuous embeddings of their Gromov boundaries into the boundary of the
mapping class group, both of which fail to happen with the Thurston compactification of
Teichmüller space. Our second main set of applications are dynamical and structural, built
upon our classification of automorphisms of hierarchically hyperbolic spaces and analysis
of how the various types of automorphisms act on the boundary. We prove a generalization
of the Handel-Mosher “omnibus subgroup theorem” for mapping class groups to all hierar-
chically hyperbolic groups, obtain a new proof of the Caprace-Sageev rank-rigidity theorem
for many CAT(0) cube complexes, and identify the boundary of a hierarchically hyperbolic
group as its Poisson boundary; these results rely on a theorem detecting irreducible axial
elements of a group acting on a hierarchically hyperbolic space (which generalize pseudo-
Anosov elements of the mapping class group and rank-one isometries of a cube complex
not virtually stabilizing a hyperplane).
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Introduction

The class of hierarchically hyperbolic spaces (HHS) was introduced in [BHS14], and given
a streamlined definition in [BHS15b], to provide a common framework for studying cubical
groups and mapping class groups of surfaces. The definition was motivated by the observa-
tion that, under natural hypotheses, a CAT(0) cube complex is equipped with a collection
of projections to hyperbolic spaces obeying rules reminiscent of the hierarchical structure
of mapping class groups and projections to curve graphs introduced by Masur and Minsky
in [MM99, MM00]. The class of HHS includes the aforementioned spaces (mapping class
groups and many CAT(0) cube complexes, including all universal covers of compact special
cube complexes), along with Gromov-hyperbolic spaces, Teichmüller space with any of the
usual metrics, and many others; see [BHS14, BHS15b, BHS15a] for an account of the current
scope of the theory.

Much of the utility of HHS comes from the fact that many features of Gromov-hyperbolic
spaces have natural generalizations in the HHS world. Since one of the most useful objects
associated to a hyperbolic space is its Gromov boundary, we provide here a generalization of
the Gromov boundary to hierarchically hyperbolic spaces. The boundary of a hierarchically
hyperbolic space is inspired by various boundaries associated to the salient examples of HHS,
e.g. the simplicial boundary of a CAT(0) cube complex and the Thurston compactification
of Teichmüller space, projective measured lamination space PMLpSq.

Just as the Gromov boundary does for hyperbolic spaces and groups, the HHS boundary
provides considerable information about the geometry of an HHS and the dynamics of its
automorphisms; our aim in this paper is to explore some of these properties.

Introduction to HHS. We first briefly and softly recall the HHS theory. A hierarchically
hyperbolic space is a pair pX ,Sq equipped with some additional data: X is a quasigeodesic
metric space and S is an index set equipped with a partial order Ď, called nesting, with a
unique maximal element S. There is also an orthogonality relation on S; when S is the set
of essential subsurfaces of a surface S, up to isotopy, orthogonality is just disjointness. We
often call elements of S domains.

Each U P S is equipped with a uniformly hyperbolic space CU and a coarse map πU :

X Ñ CU . There are also relative projections ρUV , which are coarse maps CU Ñ CV defined
unless U, V are orthogonal. In the case where X is the marking complex of the surface S and
S is the set of subsurfaces of S, then the associated hyperbolic spaces are the curve graphs
of these subsurfaces and the projections are subsurface projections. We impose other rules
reminiscent of the hierarchical structure of the mapping class group; see Definition 1.1.

The distance formula is crucial: for any x, y P X , the distance dX px, yq differs, up to
bounded multiplicative and additive error, from the sum of the distances dCU pπU pxq, πU pyqq
as U P S varies over those domains where that distance exceeds some predefined thresh-
old [BHS15b].

Just as quasiconvexity is vital to the study of hyperbolic spaces, hierarchical quasiconvex-
ity is central in the study of HHS. Roughly, Y Ď X is hierarchically quasiconvex if πU pYq
is uniformly quasiconvex for each U P S, and any point in X projecting under πU close to
πUpYq for each U must lie close (in X ) to Y. The fundamental example of a hierarchically
quasiconvex subspaces is the standard product region PU associated to each U P S. Roughly,
the subspace PU consists of those points x P X where πV pxq is close to ρUV for any V P S

that is not orthogonal to, or nested in, V . The factor of PU obtained by fixing, in addition,
the projections to domains orthogonal to U (and allowing movement in domains nested in
U) is denoted FU , and the other factor is EU . A familiar example here is the region of Te-
ichmüller space with the Teichmüller metric where the boundary curves of some subsurface
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U are short: Minsky [Min96] proved that these so-called thin parts are quasiisometric to
products of the Teichmüller spaces of the complementary subsurfaces, one of which is U .

What’s needed from [BHS14, BHS15b]. The paper [BHS15b] is the main foundational paper
in the theory of HHS. In the current paper, we use most of the background material developed
in [BHS15b], with the notable exception of the combination theorems. In particular, we use
the main definition of HHS (which is equivalent to, but much simpler than, the original
definition from [BHS15b]), the realization theorem, the distance formula, and the existence
of hierarchy paths. The fact that mapping class groups are HHG, which is crucial for
our applications to Veech and Leininger-Reid subgroups in Section 5 could be deduced
from [MM99, MM00, BKMM12, Beh06], but is also given a streamlined proof in [BHS15b,
Section 11].

From [BHS14], we need the acylindricity result (Theorem 14.3) and, for the purposes of
Section 10, the HHS structure on CAT(0) cube complexes. We note that the acylindricity
result from [BHS14] is independent of the other HHS results in that paper.

Finally, the recent paper [BHS15a] is completely independent of this one.1

The boundary. Consider an HHS pX ,Sq. Since any two points of X are joined by a hier-
archy path – a uniform quasigeodesic projecting to a uniform unparametrized quasigeodesic
in CU for each U P S (see [BHS15b]) – a natural approach to constructing a boundary is
to imitate the construction of the Gromov boundary, or the visual boundary of a CAT(0)
space: boundary points would be asymptotic classes of “hierarchy rays” emanating from
a fixed basepoint, and one might imagine topologizing this set by defining two boundary
points to be close if the corresponding rays stay close “for a long time”.

The boundary construction is motivated by this intuition. Given a hierarchy ray γ : N Ñ
X , one first observes that the set of U P S for which πU ˝ γ is unbounded is a pairwise-
orthogonal collection – γ either spends a bounded amount of time in each standard product
region, or γ wanders permanently into the (coarse) intersection of several standard product
regions. Accordingly, the underlying set of the boundary BpX ,Sq is the set of formal linear
combinations p “

ř
UPU aUpU , where U Ă S (the support of p) is a pairwise-orthogonal set,

each pU is a point in the Gromov boundary of CU , each aU P p0, 1s, and
ř

U aU “ 1.
Regarding each BCU as a discrete set, the above construction yields a (highly disconnected,

locally infinite) simplicial complex. The “rank-one hierarchy rays” – i.e. the points of BCS –
correspond to isolated 0–simplices, while the standard product regions contribute boundary
subcomplexes isomorphic to simplicial joins. This complex is a kind of “Tits boundary”
for pX ,Sq. The actual boundary we define is related to this complex in much the same
way that the visual boundary of a CAT(0) space is related to the Tits boundary; we define
the boundary BpX ,Sq by imposing a coarser topology, described in Section 2. (When the
context is clear, we denote BpX ,Sq by BX , being mindful that this space depends, as far as
we know, on the particular HHS structure S.)

The resulting space X “ X Y BX is Hausdorff and separable; BX is a closed subset and
X is dense (Proposition 2.17). Moreover, the Gromov boundary BCU embeds in BpX ,Sq, in
the obvious way, for each U P S, by Theorem 4.3. Crucially:

Theorem 3.4 (Compactness) Let pX ,Sq be a hierarchically hyperbolic space with X

proper. Then X is compact.

The definition of BpX ,Sq is given strictly in terms of S and the accompanying hyperbolic
spaces and projections; the standing assumption that pX ,Sq is normalized – each πU is
coarsely surjective – connects the boundary to the space X by ensuring that X is dense in

1The picture at http://www.wescac.net/HHS_infographic.pdf shows the current state of the theory,
indicating the main concepts and results and their interdependencies.

http://www.wescac.net/HHS_infographic.pdf
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X . Even so, it is not clear whether the homeomorphism type of BpX ,Sq depends on the
particular choice of HHS structure:

Question 1. Let pX ,Sq be a hierarchically hyperbolic space and let pX ,S1q be a different
hierarchically hyperbolic structure on the same space. Does the identity X Ñ X extend to a
map X Y BpX ,Sq Ñ X Y BpX ,S1q which restricts to a homeomorphism of boundaries?

A positive answer to Question 1 would stand in contrast to the situation for CAT(0)
spaces. For example, the right-angled Artin group A, presented by a path of length 3,

famously has the property that the universal cover rX of the Salvetti complex can be endowed
with different CAT(0) metrics (obtained by perturbing angles in the 2–cells) with non-

homeomorphic visual boundaries [CK00]. On the other hand, rX admits a hierarchically

hyperbolic structure p rX,Sq coming from the cubical structure of rX (with no dependence
on the CAT(0) metric). Perturbing the CAT(0) metric within its quasiisometry type does
not change the HHS structure (and hence the HHS boundary), so the HHS boundary is in a
sense more “canonical” than the visual boundary in this example (and indeed for all CAT(0)
cube complexes with factor systems, which we discuss in more detail below).

Automorphisms and their actions on the boundary. An automorphism of pX ,Sq is
a bijection g : S Ñ S along with an isometry CU Ñ CgpUq for each U P S which satisfy
certain compatibility conditions. The distance formula ensures that automorphisms induce
uniform quasi-isometries of X , so the group AutpSq of automorphisms uniformly quasi-acts
by (uniform) quasi-isometries on X . The (quasi-)action of AutpSq on X extends to an action
on X restricting to an action by homeomorphisms on BX (Corollary 6.1).

In one of the main cases of interest, X is a Cayley graph of a finitely-generated group G,
and the action of G on itself by left multiplication corresponds to an action on pG,Sq by HHS
automorphisms. In this situation, if the action on S is cofinite, then pG,Sq is a hierarchically
hyperbolic group structure; if a group G admits a hierarchically hyperbolic group structure,
then G is a hierarchically hyperbolic group. The archetypal hierarchically hyperbolic group is
the mapping class group of a connected, oriented surface of finite type [BHS15b, Section 11].
Other examples include many cubical groups [BHS14], many graphs of hierarchically hyper-
bolic groups [BHS15b], and certain quotients of hierarchically hyperbolic groups [BHS15a].
If pG,Sq is a hierarchically hyperbolic group, then the isometric action of G on itself by left
multiplication extends to an action by homeomorphisms on G (Corollary 6.2). We describe
in detail below our results regarding the dynamics and structure of groups of automorphisms.

Embeddings of subspace boundaries and geometrical finiteness. A desirable prop-
erty of a boundary is that inclusions of subspaces that are “convex” in an appropriate sense
induce embeddings of boundaries with closed images. In Section 5, we show that hierarchi-
cally quasiconvex subspaces of X , which admit their own natural HHS structures [BHS15b],
have this property: if Y Ă X is hierarchically quasiconvex, then Y has a limit set in BX
which is homeomorphic to BY with the HHS structure inherited from X . In fact, Theo-
rem 5.6 provides more, by giving natural conditions on maps between HHS ensuring that
they extend continuously to the HHS boundary. This motivates the following definition:

Definition 2 (Geometrical finiteness). We say a hierarchically hyperbolic subgroup H of a
hierarchically hyperbolic group G is geometrically finite if the natural inclusion ι : H ãÑ G

extends continuously to an H-equivariant embedding Bι : BH ãÑ BG.

In what follows, we will be interested in developing this notion and establishing examples
in the context of the mapping class group of a finite type surface.
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Comparison of the mapping class group boundary with PMLpSq. The archetypal
hierarchically hyperbolic group is the mapping class group MCGpSq of a connected, ori-
ented surface S of finite type. The hierarchically hyperbolic structure is provided by results
of [MM99, MM00, BKMM12, Aou13, HPW13, Bow14, PS15, CRS15, Beh06, Man10, Web13]
and is discussed in detail in Section 11 of [BHS15b]. Roughly, S is the set of essential sub-
surfaces of S, up to isotopy, CU is the curve graph of U for each U P S, and projections are
usual subsurface projections.

Traditionally, MCGpSq has been studied via its action on Teichmüller space T pSq with
its Thurston compactification by PMLpSq. This approach has been fruitful especially when
considering subgroups of MCGpSq defined via flat or hyperbolic geometry. Nonetheless, the
MCGpSq action on T pSq is not cocompact and the orbits of many subgroups (in fact, any
with Dehn twists) are distorted in T pSq, which make T pSq imperfect for studying the coarse
geometry of MCGpSq and its subgroups.

The situation is further complicated when one attempts to extend the MCGpSq action
on T pSq to its various boundaries. Teichmüller geodesics are unique and thus geodesic rays
based at a point form a natural visual compactification of T pSq, but Kerckhoff [Ker80] proved
that it is basepoint dependent and thus the MCGpSq action fails to extend continuously.
While Thurston [T`88] defined a compactification via PMLpSq to which the MCGpSq action
does extend continuously, Thurston’s compactification is defined via hyperbolic geometry
and the Teichmüller metric is defined via flat geometry, which leads to an incoherence
between the internal geometry and its asymptotics in PMLpSq [Mas82, Len08, LLR15,
CMW14, BLMR16].

The boundary BpMCGpSq,Sq provides the first compactification of MCGpSq so that the
action of MCGpSq on itself by left multiplication extends to a continuous action on the
boundary with the dynamical properties we discuss below (see also Section 6). While many
of these dynamical properties were originally proven via the MCGpSq-action on T pSq with
its Thurston compactification, many of the pathologies described above vanish in our con-
struction, as we discuss presently.

On geometrically finite subgroups of MCGpSq. Problem 5 of [Ham06] and Section
6 of [Mos06] in Farb’s book [Far06] regard the development of a notion of geometrical
finiteness for subgroups of MCGpSq. Mosher suggests a definition that requires an external
proper hyperbolic space X on which the candidate subgroup acts with a collection of cusp
subgroups in some appropriate sense; geometric finiteness would then require that X and
BX embed quasiisometrically in T pSq and continuously in PMLpSq, respectively. Masur’s
theorem makes it unreasonable to expect a simultaneous continuous embedding X Y BX Ñ
T pSq Y PMLpSq.

We will argue that replacing T pSq YPMLpSq with MCGpSq Y BMCGpSq as in Definition
2 generates a robust theory of geometrical finiteness. In particular, we prove:

Theorem 3. Suppose that H ă MCGpSq is one of the following:

(1) The standard embedding of MCGpY q for some proper subsurface Y Ă S;
(2) Convex cocompact in the sense of [FM02];
(3) A finitely generated Veech group;
(4) A Leininger-Reid combination subgroup [LR06].

Then H is a geometrically finite subgroup of MCGpSq.

Hence geometrical finiteness generalizes convex cocompactness for subgroups of MCGpSq
to a broader class of groups. Theorem 3(a) is proven in Theorem 5.11 and Theorem 3(b) is
Theorem 5.12. We discuss presently the Veech and Leininger-Reid examples in more detail.
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Veech and Leininger-Reid combinations subgroups. For Mosher (see Problem 6.1 of [Mos06]),
the main test cases for a definition of geometrical finiteness for subgroups of mapping class
groups are finitely generated Veech groups and the Leininger-Reid subgroups. It is worth
noting that while the former are explicitly defined via flat geometry and the latter somewhat
less so, the aforementioned coherence pathologies between the Teichmüller geometry and
the Thurston compactification give an obstruction to considering embeddings of natural
boundaries associated to them into PMLpSq. We prove that this obstruction disappears
with BMCGpSq. We now briefly give some background.

Given a holomorphic quadratic differential q on S, there is an associated copy of H2 called
a Teichmüller disk, TDpqq, which is a convex subset of T pSq. The stabilizer of TDpqq in
MCGpSq is Affpqq, those elements with a representative which act by affine homemorphisms
with respect to the flat metric determined by q. A Veech group V is a subgroup of Affpqq
which acts properly on TDpqq; we consider only finitely-generated Veech groups. The visual
boundary of TDpqq is naturally identified by PMLpqq which admits a natural embedding in
PMLpSq that parametrizes the limit set of V in PMLpSq [KL07], but a theorem of Masur
[Mas82] implies that this embedding does not give an everywhere continuous extension
TDpqq Y PMLpqq ãÑ T pSq Y PMLpSq.

In [LR06], Leininger-Reid construct subgroups of MCGpSq which are combinations of
Veech groups; some are surface groups in which all but one conjugacy class is pseudo-
Anosov. The boundary of such a surface subgroup is its limit set in BH2. Problem 3.3 of
[Rei06] asks if there is a continuous, equivariant embedding of this boundary into PMLpSq.

While we do not answer this question directly, we do prove something strictly stronger
for BMCGpSq:

Theorem 5.20 Let H ă MCGpSq be either a finitely generated Veech or Leininger-Reid
subgroup as above. Then the inclusion H ãÑ MCGpSq extends to a continuous H-equivariant
embedding BH ãÑ BMCGpSq with closed image. In particular, H is a geometrically finite
subgroup of MCGpSq.

Other candidates for geometrical finiteness. Perhaps the next best candidates for geometri-
cally finite subgroups of MCGpSq are the various right-angled Artin groups constructed by
Clay-Leininger-Mangahas [CLM12] and Koberda [Kob12]. These subgroups are HHGs and
the former are even known to be quasiisometrically embedded in MCGpSq.

Question 4. Are the Clay-Leininger-Mangahas and Koberda right-angled Artin subgroups
of MCGpSq geometrically finite? Hierarchically quasiconvex?2

The HHS boundary of Teichmüller space and PMLpSq. Slight modifications of the above
hierarchical structures endow the Teichmüller space T pSq, with either the Teichmüller or
Weil-Petersson metrics, with an HHS structure, as explained in [BHS14, BHS15b] using
results of [Bro03, Dur, EMR]; see also [Bow15a, Bow15b] for closely-related results.

Question 5. How is the HHS boundary BT pSq of T pSq, with the Teichmüller metric and
the above HHS structure, related to the projective measured lamination space PMLpSq?

In fact, there is a natural map PMLpSq Ñ BT pSq which collapses certain simplices of
measures on given laminations to points, while being injective on the set of uniquely ergodic
laminations, whose image in BT pSq can be identified with a subset of BCS Ă BT pSq. A
promising strategy is to attempt to use this map, along with a result of Edwards [Edw77,

Dav86], to prove that BT pSq is homeomorphic to PMLpSq, i.e. to S
2ξpSq´1. The missing

ingredient is a positive answer to:

2Since we initially posted this paper, Mousley answered this question negatively in [Mou16].
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Question 6. Does BT pSq have the disjoint discs property?

A metric space M has the disjoint disks property if any two maps D2 Ñ M admit
arbitrarily small perturbations with disjoint image; the above question makes sense since
it is not hard to see, using Proposition 2.17, that BT pSq is metrizable. The difficulty here
involves nonuniquely ergodic laminations, which cause a similar problem to the extensions
discussed above related to the Leininger-Reid subgroups.

Another question, subject to much recent study, is about the limit sets of Teichmüller
geodesics in Thurston’s compactification. The analogous question in our setting is:

Question 7. What are the limit sets of Teichmüller geodesics in BT pSq?

There are now several constructions of geodesics with limits sets that are bigger than a
point [Len08, LLR15, CMW14, BLMR16], but these constructions fundamentally depend
on the fact that filling minimal laminations can admit simplices of measures, which collapse
in BT pSq. The geodesics constructed in [LLR15, CMW14, BLMR16] will have unique limits
BT pSq as their asymptotics with respect to BT pSq are determined by their asymptotics in
the curve graph CS. On the other hand, the situation becomes more opaque for Teichmüller
geodesics with vertical laminations with multiple components. Using work of Rafi [Raf14],
one can determine that the coefficients aY of the components Y Ă S supporting the potential
limits in BT pSq are determined by limits of ratios of the rates of divergence in the various
subsurface curve graphs CY . However, it seems unlikely that these limits of ratios always
exist, suggesting that such geodesics need not have unique limits in BT pSq.

Dynamical and structural results. Our second main collection of applications of the
boundary are about the dynamics of the action on the boundary and the structure of sub-
groups. In Section 6, we study automorphisms of hierarchically hyperbolic spaces:

Classification of automorphisms. Given f P AutpSq, the set Bigpfq of U P S for which
xfy ¨ x (for some basepoint x P X ) projects to an unbounded set in CU is a possibly empty
finite set of pairwise-orthogonal domains preserved by the action of xfy on S. We classify f
according to the nature of Bigpfq. First, if Bigpfq “ H, then f has bounded orbits in each
CU and hence has bounded orbits in X , by Proposition 6.4; in this case, f is elliptic. Second,
if xfy ¨ x projects to a quasi-line in CU for some U P Bigpfq, then xfy ¨ x is a quasi-line in
X , by Proposition 6.12, and f is axial. Otherwise, f is distorted.

If Bigpfq “ tSu, then f is irreducible, and f is reducible otherwise. Perhaps the most
important class of HHS automorphisms are irreducible axial automorphisms. In the map-
ping class group, these are the pseudo-Anosov elements; in a hierarchically hyperbolic cube
complex, these are the rank-one elements that do not virtually preserve hyperplanes [BHS14,
Hag13]. In the case where pG,Sq is a hierarchically hyperbolic group, each irreducible axial
element is Morse – this follows from Theorem 6.15 – but the converse does not hold. The
question of when irreducible axial elements exist is of major interest later.

Dynamics and fixed points. In Section 6.2, we study the dynamics of f P AutpSq on BX .
First, we show that irreducible axial automorphisms act as expected:

Proposition 6.18 (North-south dynamics) If g P AutpSq is irreducible axial, then g has
exactly two fixed points λ`, λ´ P BX . Moreover, for any boundary neighborhoods λ` P U`

and λ´ P U´, there exists an N ą 0 such that gN pBX ´ U´q Ă U`.

In Proposition 6.19 and Proposition 6.20, we show that if f is irreducible distorted, then
f fixes a unique point p P BX , which is an “attracting fixed point”. We also prove analogues
of these results for reducible automorphisms (Propositions 6.22 and 6.25).

We then study hierarchically hyperbolic groups. First, we rule out distortion:
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Theorem 7.1 (Coarse semisimplicity) If pG,Sq is a hierarchically hyperbolic group, then
each g P G is either elliptic or axial; in fact g is undistorted in each element of Bigpgq.

In the event that G contains irreducible axial elements, we have:

Theorem 6.29 (Topological transitivity) Let pG,Sq be hierarchically hyperbolic with an
irreducible axial element and let G be nonelementary. Then any G–orbit in BG is dense.

Below, we will describe when pG,Sq has an irreducible axial element.

Uses of the boundary. We use the boundary, and actions thereon, in numerous ways.

Finding and exploiting irreducible axials. In Section 9, we study irreducible axial elements of
groups of automorphisms of hierarchically hyperbolic spaces. The setting is an HHS pX ,Sq
with X proper and S countable, and we consider a countable subgroup G ď AutpSq. This
holds, for example, when X “ G is an HHG. The main technical statement is:

Propositions 9.4,9.2 (Finding irreducible axials) Suppose that either G acts properly
and coboundedly on X and cofinitely on S, or G acts with unbounded orbits in X and no
fixed point in BCS. Then either G contains an irreducible axial element, or there exists
U P S ´ tUu which is fixed by a finite-index subgroup of G.

These two propositions are proved in tandem. The strategy is to consider probability mea-
sures on G and corresponding G–stationary measures on BX ; the main lemma, Lemma 9.8
shows that, unless G has a finite orbit in BCS or S´tSu, such a measure must be supported
on BCS Ă BX . In particular, if CS is bounded, then there must be a finite orbit in S´ tSu.
We emphasize that, for the above proposition and all of its applications, compactness of the
HHS boundary (i.e. Theorem 3.4) is absolutely vital.

Using the above propositions, we prove:

Theorem 9.15 (HHG Tits alternative) Let pG,Sq be an HHG and let H ď G. Then
H either contains a nonabelian free group or is virtually abelian.

By analyzing supports of global fixed points in the boundary of an HHS, we then prove:

Theorem 9.20 (Omnibus Subgroup Theorem) Let pG,Sq be a hierarchically hyperbolic
group and let H ď G. Then there exists an element g P H with ApHq “ Bigpgq. Moreover,
for any g1 P H and each U P Bigpg1q, there exists V P Bigpgq with U Ď V .

Here, ApHq is the set of domains U on which H has unbounded projection. The theorem
we actually prove is more general than the above, but the version stated here is suffi-
cient to imply the Omnibus Subgroup Theorem for mapping class groups, due to Handel-
Mosher [HM10], which they proved as an umbrella theorem for several subgroup structure
theorems, including the Tits alternative; see also [Man13] for further discussion.

We also obtain a coarse/HHS version of the rank-rigidity conjecture for CAT(0) spaces:

Theorems 9.13,9.14 (Coarse rank-rigidity) Let pX ,Sq be an HHS with X unbounded
and proper and S countable. Let G ď AutpSq be a countable subgroup and suppose that one
of the following holds:

(1) G acts essentially on X with no fixed point in BX ;
(2) G acts properly and coboundedly on X and cofinitely on S.

Then either pX ,Sq is a product HHS with unbounded factors or there exists an axial element
g P G such that Bigpgq consists of a single domain W such that CU is bounded if U K W .

Such an element g is a rank-one automorphism; all of its quasigeodesic axes of any fixed
quality lie in some neighborhood of one another (of radius depending on the quality). The
HHS is a product with unbounded factors if there exists U P S such that X coarsely coincides
with the standard product region PU , and each of EU , FU is unbounded.
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In particular, if X is any of the cube complexes shown in [BHS14] to be hierarchically
hyperbolic (i.e. those admitting “factor-systems”), then our methods allow us to recover the
Caprace-Sageev rank-rigidity theorem from [CS11] for X :

Corollary 9.24 (Rank-rigidity for many cube complexes) Let X be a CAT(0) cube
complex with a factor-system. Let G act on X and suppose that one of the following holds:

(1) X is unbounded and G acts on X properly and cocompactly;
(2) G acts on X with no fixed point in X Y B

△
X .

Then X contains a G–invariant convex subcomplex Y such that either G contains a rank-one
isometry of Y or Y “ A ˆ B, where A and B are unbounded convex subcomplexes.

It is difficult to construct cube complexes without factor-systems that satisfy the remain-
ing hypotheses of this theorem. At least in the cocompact case, we believe that our proof
works without explicitly hypothesizing the existence of a factor system – see Question A
of [BHS15b], which asks whether the presence of a geometric group action on a cube complex
guarantees that a factor system exists (see Remark 9.25).3

Other applications, examples, and questions.

The HHS boundary in the cubical case. If X is a CAT(0) cube complex with a factor-
system F (here F more properly denotes the set of parallelism classes of elements of the
factor system), then the resulting hierarchically hyperbolic structure (which is fundamentally
derived from the hyperplanes of X and how they interact) has a boundary which is, perhaps
unsurprisingly, closely related to the simplicial boundary B

△
X introduced in [Hag13] (which

is derived from how certain infinite families of hyperplanes interact). Specifically:

Theorem 10.1 (Simplicial and HHS boundaries) Let X be a CAT(0) cube complex
with a factor system F, and let pX ,Fq be the associated hierarchically hyperbolic structure.
There is a topology T on the simplicial boundary B

△
X so that:

(1) There is a homeomorphism b : pB
△
X ,T q Ñ BpX ,Fq,

(2) for each component C of the simplicial complex B
△
X , the inclusion C ãÑ pB

△
X ,T q

is an embedding.

In particular, if F,F1 are factor systems on X , then BpX ,Fq is homeomorphic to BpX ,F1q.

This theorem highlights the relationship between the question of when factor systems
exist, and when X is visible in the sense that every simplex of the simplicial boundary
corresponds to a geodesic ray in X ; this is discussed in Remark 10.9.

Detecting splittings and cubulations from the boundary. It is not difficult to show, from the
definitions and Stallings’ theorem on ends of groups [Sta72], that if pG,Sq is a hierarchically
hyperbolic group, then BpG,Sq is disconnected if and only if G splits over a finite subgroup.

Question 8. Can the JSJ splitting of G over slender subgroups (see [FP06, DS99, RS97])
be detected by examining separating spheres in BpG,Sq, as is the case for hyperbolic groups
and splittings over two-ended subgroups [Bow98]?

One can also consider producing actions of hierarchically hyperbolic groups on CAT(0)
cube complexes other than trees. As usual, this divides into two separate issues, namely
detecting a profusion of codimension–1 subgroups and then choosing a finite collection suffi-
cient to produce an action on a cube complex with good finiteness properties. It appears as
though BpG,Sq can be used to produce a proper action on a cube complex from a sufficiently
rich collection of hierarchically quasiconvex codimension–1 subgroups by a method exactly

3After we initially posted this paper, Hagen and Susse showed that every CAT(0) cube complex with a
geometric group action admits a factor system and is thus hierarchically hyperbolic [HS16].
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analogous to that used to cubulate various hyperbolic groups in [BW13]. The main differ-
ence is that G does not act as a uniform convergence group on BpG,Sq; one must replace
the space of triples of distinct boundary points by the space of triples pp, q, rq P BG such
that any two of p, q, r are antipodal, i.e. joined by a bi-infinite hierarchy path.

Question 9. Let pG,Sq be a hierarchically hyperbolic group. Give conditions on G ensuring
that for any antipodal p, q P BG, there exists a hierarchically quasiconvex codimension–1
subgroup H so that p, q are in distinct components of BgH for some g P G.

We have not included a detailed discussion of the above “boundary cubulation for HHG”
technique in the present paper since there are not yet any applications; these could be
provided by an answer to Question 9.

Poisson boundaries and C˚–simplicity. In Section 9.8.1, we show that the boundary of an
HHG is a topological model for the Poisson boundary:

Theorem 9.26 (Poisson boundary) Let pG,Sq be an HHG with diam CS “ 8, µ be
a nonelementary probability measure on G with finite entropy and finite first logarithmic
moment, and ν the resulting µ-stationary measure on BG. Then pBG, νq is the Poisson
boundary for pG,µq.

In fact, BCS is a model for the Poisson boundary [BHS14], but BpG,Sq has the advantage
of being compact, while in general BCS is not compact. The space BG is a G–boundary, i.e.
a compactum on which G acts minimally and proximally. Moreover:

Proposition 10. The action of G on BG is topologically free, i.e. for each g P G´ t1u, the
set of p P BX with gp ‰ p is dense in BX .

Proof. Let g P G ´ t1u, let q P BG, and let U be a neighborhood of q. Suppose for a
contradiction that g fixes U pointwise. By Proposition 9.4, G contains an irreducible axial
element, so by Proposition 6.28, BCS is dense in BG, whence, since G is non-elementary, g
fixes infinitely many distinct points of BCS. If g is reducible axial, then Lemma 6.24 yields
a contradiction, since g cannot fix any point in BCS by the lemma. If g is irreducible axial,
then g fixes exactly two points in BCS, again a contradiction. Otherwise, g is elliptic and
hence has finite order and we are done by hypothesis. �

By a result of Kalantar-Kennedy [KK14, Theorem 1.5], the above proposition gives a new
proof that a nonelementary HHG G with BCS unbounded is C˚–simple (i.e. the reduced
C˚–algebra of G is simple) provided finite-order elements have finite fixed point set in BCS.
However, G is known to be C˚–simple under these circumstances, since G is acylindrically
hyperbolic [BHS14] and has no finite normal subgroup [DGO11].

In light of the HHG structure on cubulated groups discussed above, Theorem 9.26 should
be compared to the results of [NS13], in which Nevo-Sageev construct the Poisson boundary
for a cubical group using the Roller boundary of the cube complex.

Outline of this paper. In Section 1, we review hierarchically hyperbolic spaces. In Sec-
tion 2, we define the HHS boundary. Section 3 is devoted to the proof that proper HHS have
compact boundaries, and in Section 4, we show that the HHS boundary of a hyperbolic HHS
is homeomorphic to the Gromov boundary. In Section 5, we discuss continuous extensions of
maps between HHS to the boundary, and consider this phenomenon in the context of Veech
and Leininger-Reid subgroups of the mapping class group. Automorphisms of hierarchically
hyperbolic structures induce homeomorphisms of the boundary; in Section 6, we classify
automorphisms and study fixed sets and dynamics of the actions of automorphisms on the
boundary. In particular, in Section 7, we show that cyclic subgroups of hierarchically hyper-
bolic groups are undistorted. Section 8 is a brief technical discussion of essential HHS and
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actions, supporting Section 9, in which we prove the coarse rank rigidity theorem and some
of its consequences. In Section 10, we consider CAT(0) cube complexes with HHS structures
coming from [BHS14], relating the HHS boundary to the simplicial boundary from [Hag13].

Acknowledgments. M.F.H. is grateful to Dan Guralnik and Alessandra Iozzi for a dis-
cussion clarifying the situation now described in Remark 10.8 and to Dave Futer and Brian
Rushton for a discussion about some alternative topologies on the boundary of a cube com-
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suggestion related to Section 5. We also thank the organizers of the Young Geometric Group
Theory IV meeting, where initial discussions about this project took place. We are also very
grateful to Sarah Mousley, Jacob Russell, and the anonymous referee for numerous helpful
comments and corrections.

1. Background

1.1. Hierarchically hyperbolic spaces. We begin by recalling the definition of a hierar-
chically hyperbolic space, introduced in [BHS14] and axiomatized in a more efficient fashion
in [BHS15b] as follows. We begin by defining a hierarchically hyperbolic space. We will
work in the context of a quasigeodesic space, X , i.e., a metric space where any two points
can be connected by a uniform-quality quasigeodesic.

Definition 1.1 (Hierarchically hyperbolic space). The q–quasigeodesic space pX , dX q is a
hierarchically hyperbolic space if there exists δ ě 0, an index set S, whose elements we call
domains, and a set tCW : W P Su of δ–hyperbolic spaces pCU, dU q, such that the following
conditions are satisfied:

(1) (Projections.) There is a set tπW : X Ñ 2CW | W P Su of projections sending
points in X to sets of diameter bounded by some ξ ě 0 in the various CW P S.
Moreover, there exists K so that each πW is pK,Kq–coarsely Lipschitz.

(2) (Nesting.) S is equipped with a partial order Ď, and either S “ H or S contains
a unique Ď–maximal element; when V Ď W , we say V is nested in W . We require
that W Ď W for all W P S. For each W P S, we denote by SW the set of V P S

such that V Ď W . Moreover, for all V,W P S with V Ĺ W there is a specified subset
ρVW Ă CW with diamCW pρVW q ď ξ. There is also a projection ρWV : CW Ñ 2CV . (The

notation is justified by viewing ρVW as a coarsely constant map CV Ñ 2CW .)
(3) (Orthogonality.) S has a symmetric and anti-reflexive relation called orthogo-

nality : we write V K W when V,W are orthogonal. Also, whenever V Ď W and
W K U , we require that V K U . We require that for each T P S and each U P ST for
which tV P ST : V K Uu ‰ H, there exists W P ST ´ tT u, so that whenever V K U

and V Ď T , we have V Ď W . Finally, if V K W , then V,W are not Ď–comparable.
(4) (Transversality and consistency.) If V,W P S are not orthogonal and neither is

nested in the other, then we say V,W are transverse, denoted V&W . There exists
κ0 ě 0 such that if V&W , then there are sets ρVW Ď CW and ρWV Ď CV each of
diameter at most ξ and satisfying:

min
 
dW pπW pxq, ρVW q, dV pπV pxq, ρWV q

(
ď κ0

for all x P X .

mathoverflow.net
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For V,W P S satisfying V Ď W and for all x P X :

min
 
dW pπW pxq, ρVW q,diamCV pπV pxq Y ρWV pπW pxqqq

(
ď κ0.

The preceding two inequalities are the consistency inequalities for points in X . Fi-
nally, if U Ď V , then dW pρUW , ρ

V
W q ď κ0 whenever W P S satisfies either V Ĺ W or

V &W and W M U .
(5) (Finite complexity.) There exists n ě 0, the complexity of X (with respect to S),

so that any set of pairwise–Ď–comparable elements has cardinality at most n.
(6) (Large links.) There exist λ ě 1 and E ě maxtξ, κ0u such that the following

holds. Let W P S and let x, x1 P X . Let N “ λd
W

pπW pxq, πW px1qq ` λ. Then there
exists tTiui“1,...,tNu Ď SW ´ tW u such that for all T P SW ´ tW u, either T P STi

for some i, or dT pπT pxq, πT px1qq ă E. Also, dW pπW pxq, ρTi

W q ď N for each i.
(7) (Bounded geodesic image.) For all W P S, all V P SW ´ tW u, and all geodesics

γ of CW , either diamCV pρWV pγqq ď E or γ X NEpρVW q ‰ H.
(8) (Partial Realization.) There exists a constant α with the following property. Let

tVju be a family of pairwise orthogonal elements of S, and let pj P πVj
pX q Ď CVj.

Then there exists x P X so that:
‚ dVj

px, pjq ď α for all j,

‚ for each j and each V P S with Vj Ď V , we have dV px, ρ
Vj

V q ď α, and

‚ if W&Vj for some j, then dW px, ρ
Vj

W q ď α.
(9) (Uniqueness.) For each κ ě 0, there exists θu “ θupκq such that if x, y P X and

dpx, yq ě θu, then there exists V P S such that dV px, yq ě κ.

We often refer to S, together with the nesting and orthogonality relations, the projections,
and the hierarchy paths, as a hierarchically hyperbolic structure for the space X .

Notation 1.2. Given U P S, we often suppress the projection map πU when writing
distances in CU : given x, y P X and p P CU we write dU px, yq for dU pπU pxq, πU pyqq and
dU px, pq for dU pπU pxq, pq. To measure distance between a pair of sets, we take the infimal
distance between the two sets. Given A Ă X and U P S we let πU pAq denote YaPAπU paq.

Remark 1.3 (Summary of constants). Each hierarchically hyperbolic space pX ,Sq is asso-
ciated with a collection of constants often, as above, denoted δ, ξ, n, κ0, E, θu,K, where:

(1) CU is δ–hyperbolic for each U P S,
(2) each πU has image of diameter at most ξ and each πU is pK,Kq–coarsely Lipschitz,

and each ρUV has (image of) diameter at most ξ,
(3) for each x P X , the tuple pπU pxqqUPS is κ0–consistent,
(4) E is the constant from the bounded geodesic image axiom.

Whenever working in a fixed hierarchically hyperbolic space, we use the above notation
freely. We can, and shall, assume that E ě q,E ě δ,E ě ξ,E ě κ0, E ě K, and E ě α.

Lemma 1.4 (“Finite dimension”). Let pX ,Sq be a hierarchically hyperbolic space of com-
plexity n and let U1, . . . , Uk P S be pairwise-orthogonal. Then k ď n.

Proof. Definition 1.1.(3) provides W1 P S, not Ď–maximal, so that U2, . . . , Uk Ď W1. Using
Definition 1.1 inductively yields a sequence Wk´1 Ĺ Wk´2 Ĺ . . . Ĺ W1 Ď S, with S Ď–
maximal, so that Ui´1, . . . , Uk Ď Wi for 1 ď i ď k´1. Hence k ď n by Definition 1.1.(5). �

The next lemma is a simple consequence of the axioms and also appears in [BHS15a]:

Lemma 1.5. Let U, V,W P S satisfy U K V , and U, V & W , and W Ď U, V . Then
dW pρUW , ρ

V
W q ď 2E.
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Proof. Our assumptions imply that U Ĺ W or U&W , and the same is true for V . Applying
partial realization yields a point x P X so that dT px, ρUT q, dT px, ρVT q ď E whenever T Ď U, V

and T & U, V . The claim follows from the triangle inequality. �

Definition 1.6. For D ě 1, a path γ in X is a D–hierarchy path if

(1) γ is a pD,Dq-quasi-geodesic,
(2) for each W P S, πW ˝γ is an unparametrized pD,Dq–quasi-geodesic. An unbounded

hierarchy path r0,8q Ñ X is a hierarchy ray.

The following theorems are proved in [BHS15b]:

Theorem 1.7 (Realization theorem). Let pX ,Sq be hierarchically hyperbolic. Then for each

κ there exists θe, θu such that the following holds. Let ~b P
ś

WPS 2CW have each coordinate
correspond to a subset of CW of diameter at most κ; for each W , let bW denote the CW–

coordinate of ~b. Suppose that whenever V &W we have

min
 
dW pbW , ρ

V
W q, dV pbV , ρ

W
V q

(
ď κ

and whenever V Ď W we have

min
 
dW pbW , ρ

V
W q,diamCV pbV Y ρWV pbW qq

(
ď κ.

Then the set of all x P X so that dW pbW , πW pxqq ď θe for all CW P S is non-empty and has
diameter at most θu.

Theorem 1.8 (Existence of Hierarchy Paths). Let pX ,Sq be hierarchically hyperbolic. Then
there exists D0 so that any x, y P X are joined by a D0-hierarchy path.

Theorem 1.9 (Distance Formula). Let pX,Sq be hierarchically hyperbolic. Then there exists
s0 ě ξ such that for all s ě s0 there exist constants K,C such that for all x, y P X ,

dX px, yq —pK,Cq

ÿ

WPS

 
tdW pπW pxq, πW pyqqu

(
s
.

The notation
 

tAu
(
B

denotes the quantity which is A if A ě B and 0 otherwise.

1.2. Hieromorphisms, automorphisms, and hierarchically hyperbolic groups. Mor-
phisms in the category of hierarchically hyperbolic spaces were defined in [BHS15b], along
with the related notion of a hierarchically hyperbolic group; we recall these definitions here.

Definition 1.10 (Hieromorphism). Let pX ,Sq and pX 1,S1q be hierarchically hyperbolic
structures on the spaces X ,X 1 respectively. A hieromorphism pf, πpfq, tρpf, Uq : U Ñ
πpfqpUq | U P Suq : pX ,Sq Ñ pX 1,S1q consists of a map f : X Ñ X 1, a map πpfq : S Ñ S1

preserving nesting, transversality, and orthogonality, and a set tρpf, Uq : U Ñ πpfqpUq |
U P Su of quasiisometric embeddings with uniform constants such that the following two
diagrams coarsely commute for all nonorthogonal U, V P S:

X X 1

CU CπpfqpUq

//
f

��

πU
��
ππpfqpUq

//
ρpf,Uq

and

CU CπpfqpUq

CV CπpfqpV q

//
ρpf,Uq

��
ρUV ��

ρ
πpfqpUq
πpfqpV q

//
ρpf,V q

where ρUV : CU Ñ CV is the map from Definition 1.1.
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Definition 1.11 (Automorphism of an HHS, automorphism group). A hieromorphism f :

pX ,Sq Ñ pX ,Sq is an automorphism if πpfq : S Ñ S is a bijection and ρpf, Uq : CU Ñ
CπpfqpUq is an isometry for each U P S. When the context is clear, we will continue to use
f to denote f , πpfq, and ρpf, Uq.

Observe that if f, f 1 are automorphisms of pX ,Sq, then f ˝ f 1 : X Ñ X is also an
automorphism: compose the maps S Ñ S, and compose isometries of the hyperbolic spaces
in the obvious way. Declare automorphisms f, f 1 equivalent if πpfq “ πpf 1q and ρpf, Uq “
ρpf 1, Uq for all U P S. Note that f, f 1 : X Ñ X uniformly coarsely coincide in this case.

Denote by AutpSq the set of equivalence classes of automorphisms, so AutpSq is a group
with the obvious multiplication. If rf s P AutpSq, then rf s´1 is represented by the quasi-
inverse of f associated to πpfq´1 and tρpf, Uq´1 : U P Su.

Observe that AutpSq quasi-acts on X by uniform quasi-isometries. We will sometimes
abuse language and refer to individual automorphisms as elements of AutpSq, and refer to
the “action” of AutpSq on X . By an action of a group G on pX ,Sq, we mean a homomor-
phism G Ñ AutpSq. “Coarse” properties of an action, like properness and coboundedness,
make sense in this context.

Definition 1.12 (Equivariant). Let f : pX ,Sq Ñ pX 1,S1q be a hieromorphism, G,G1 ď
AutpSq,AutpS1q, and φ : G Ñ G1 a homomorphism. Then f is φ–equivariant if

S S1

S S1

//
f

��

g
��
φpgq

//
f

and

CU CfpUq

CgU CφpgqfpUq

//
f

��

g
��

φpgq

//
f

(coarsely) commute for all g P G and U P S. This implies that φpgqfpxq — fpgxq for all
x P X and g P G. If φ is an isomorphism and f is φ–equivariant, then f is G–equivariant.

Definition 1.13 (Hierarchically hyperbolic group). A finitely generated group G is hi-
erarchically hyperbolic if there exists a hierarchically hyperbolic space pX ,Sq such that
G ď AutpSq, the action on X is proper and cobounded, and G acts on S with finitely many
orbits. In this case we can assume X “ G (with any fixed word-metric) and that the action
G Ñ AutpSq sends each g P G to an automorphism whose underlying map G Ñ G is left
multiplication by g. In this case, we say that pG,Sq is hierarchically hyperbolic.

1.3. Standard product regions. The notion of a standard product region in a hierarchi-
cally hyperbolic space, introduced in [BHS15b], plays an important role in several places, so
we recall the definition here. Let pX ,Sq be a hierarchically hyperbolic space and let U P S.
Let SU be the set of V P S with V Ď U (in particular, U P SU is the unique Ď–maximal
element). Let SK

U be the set of V P S such that V K U , together with some Ď–minimal
A P S such that all such V Ď A.

Fix κ ě κ0 and let FU be the space of κ–consistent tuples in
ś

V PSU
2CV whose co-

ordinates are diameter–ď ξ sets. Similarly, let EU be the set of κ–consistent tuples inś
V PSK

U´tAu 2
CV whose coordinates are diameter–ď ξ sets. In fact, pFU ,SU q and pEU ,S

K
U q

are hierarchically hyperbolic spaces (the hyperbolic space associated to A is imApEU q), and
there are hieromorphisms (see [BHS15b] or Definition 1.10), inducing quasiisometric em-
beddings, FU , EU Ñ X , extending to a coarsely-defined map FU ˆ EU Ñ X whose image
is hierarchically quasiconvex in the sense of [BHS15b] (or see below). Specifically, each tu-

ple ~b P FU is sent to the tuple that coincides with ~b on SU , and has coordinate ρUV for
all V P S ´ tUu such that V&U or U Ď V , and is fixed at some base element of EU on
SK

U ´ tAu. The map EU Ñ X is defined analogously. The spaces FU , EU are the standard
nesting factor and the standard orthogonality factor, respectively, associated to U . The
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maps are the standard hieromorphisms associated to U , and the image PU of FU ˆ EU is a
standard product region. Where it will not cause confusion, we sometimes denote by EU , FU

the images of the corresponding standard hieromorphisms.

Remark 1.14 (Automorphisms of product regions). Let pX ,Sq be a hierarchically hyper-
bolic space and let U P S. Recall that pFU ,SU q is a hierarchically hyperbolic space, where
the hyperbolic spaces and projections implicit in the hierarchically hyperbolic structure are
exactly those inherited from S. Recall that pEU ,S

K
U q is a hierarchically hyperbolic space,

where CV is as in pX ,Sq except when V “ A is the Ď–maximal element. The hieromor-
phism pEU ,S

K
U q Ñ pX ,Sq is determined by the choice of A P S that is Ď–minimal among

all those containing each V with V K U , which we take as the Ď–maximal element of SK
U .

Let AU be the group of automorphisms g of S such that g ¨ U “ U . Then there are
restriction homomorphisms θU , θ

K
U : AU Ñ AutpSU q,AutpSK

U q defined as follows. Given
g P AU , let θU pgq act like g on SU and like g on each CV with V Ď U .

Define θK analogously to give an automorphism of SK
U ´tAu restricting the action of g on

S, and fixing A. When defining g : imApEU q Ñ imApEU q, we draw attention to two cases,
which it will be important to distinguish in Section 9:

‚ There exist infinitely many Ai P S that are Ď–minimal with the property that V Ď

Ai whenever V K U . The minimality assumption implies that these Ai are pairwise
non-nested, so, using Lemma 1.4 and the consistency axiom, we see that πAi

pEU q
has diameter bounded independently of Ai (in fact, just in terms of E); thus, when
building the HHS pEU ,S

K
U q, we can take the hyperbolic space imApEU q associated

to the maximal element A to be a single point, and define g : imApEU q Ñ imApEU q
in the obvious way. This conclusion holds, more generally, if there are two transverse
Ď–minimal “containers” Ai, Aj for the domains orthogonal to U .

‚ The set tAiu of domains that are Ď–minimal with the property that V Ď Ai whenever
V K U is a pairwise-orthogonal set. In this case, there are at most n such Ai, where
n is the complexity, by Lemma 1.4. Again, we choose A P tAiu arbitrarily and define
the HHS structure on pEU ,S

K
U q using A as the Ď–maximal element, with associated

hyperbolic space imApEU q. Now, if there exists h P AutpSq so that hA “ Ai

for some i, then imAi
pEU q is uniformly quasi-isometric to imApEU q. In particular,

g : imApEU q Ñ imApEU q can be defined so that the restriction homomorphism θK
U

makes sense.

Note that, if f P AU and x P PU Ă X , then dFUˆEU
pθU pfqprU pxqq, rU pfpxqqq is uniformly

bounded, where rU : PU –q.i. FU ˆ EU Ñ FU is coarse projection to the first factor, and a
similar statement holds for θK

U and projection to EU .
Finally, recall that the standard product region PU is defined to be the image of FU ˆEU

under the product of the hieromorphisms pFU ,SU q, pEU ,S
K
U q Ñ pX ,Sq. This map is

coarsely defined, but it is convenient to fix maps FU ˆ EU Ñ X (realizing those hiero-
morphisms) so that PgU “ gPU for all U P S and g P AutpSq. Similarly, the image of FgU

coincides with gFU , etc. The set tPU : U P Su is AutpSq–invariant.

1.4. Normalized hierarchically hyperbolic spaces and hierarchical quasiconvexity.
Hierarchically hyperbolic spaces, in the sense of Definition 1.1, need not coarsely surject to
the associated hyperbolic spaces, but in almost all cases of interest, they do. Accordingly:

Definition 1.15 (Normalized HHS). The HHS pX ,Sq is normalized if there exists C such
that for all U P S, we have CU “ NCU pπU pX qq.

Proposition 1.16. Let pX ,Sq be a hierarchically hyperbolic space. Then X admits a
normalized hierarchically hyperbolic structure pX ,S1q with a hieromorphism f : pX ,S1q Ñ
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pX ,Sq, where f : X Ñ X is the identity and f : S1 Ñ S is a bijection. Moreover, if
G ď AutpSq, then there is a monomorphism G Ñ AutpS1q making f equivariant.

Proof. Let S1 “ S, and retain the same nesting, orthogonality, and transversality relations.
For each U P S1, the associated hyperbolic space CnormU is chosen to be uniformly quasiiso-
metric to the uniformly quasiconvex subset πU pX q of CU . The projection πU : X Ñ CnormU

is, up to composition with a uniform quasiisometry, unchanged (and therefore continues to
be coarsely Lipschitz). Let pU : CU Ñ CnormU be the composition of the coarse closest-
point projection CU Ñ πU pX q, composed with the uniform quasiisometry πU pX q Ñ CnormU .
Then for all U, V with U&V or U Ď V , define the relative projection CnormU Ñ CnormV to
be the composition of pU ˝ρUV : πU pX q Ñ CnormV with the quasiisometry CnormU Ñ πU pX q.
The remaining assertions are a matter of checking definitions. �

Recall from [BHS15b] that the subspace Y of pX ,Sq is hierarchically quasiconvex if there
exists k0 ě 0 such that πU pYq is k0–quasiconvex in CU for all U P S and, if for all κ ě κ0,

each κ–consistent tuple ~b P
ś

UPS CU with U–coordinate in πU pYq for all U has the property
that any associated realization point x P X lies at distance from Y depending only on κ.

In the interest of staying in the class of normalized hierarchically hyperbolic spaces, we
will always work with a normalized hierarchically hyperbolic structure on Y, namely the one
provided by Proposition 1.16. Moreover, we will (abusively) eschew the notation CnormU

and use the same notation for πU pYq and its thickening; in other words, we will regard
πUpYq as a genuine (uniformly) hyperbolic geodesic space.

Finally, we recall the following notion from [BHS15b, Definition 5.3, Lemma 5.4]. Let
Y Ă X be a hierarchically quasiconvex subspace. Then there is a coarsely Lipschitz map
gY : X Ñ Y (the coarse Lipschitz constants depend only on the constants from Definition 1.1
and the constants implicit in the definition of hierarchical quasiconvexity) with the following
property: for each U P S and x P X , the projection πU pgYpxqq uniformly coarsely coincides
with the coarse closest-point projection of πUpxq to the quasiconvex subspace πU pYq. The
map gY is the gate map associated to Y.

2. Definition of the boundary

Fix a hierarchically hyperbolic space pX ,Sq. For each S P S, denote by BCS the Gromov
boundary, i.e. the space of equivalence classes of sequences pxn P CSq, where pxnq and pynq
are equivalent if for some (hence any) fixed basepoint x P CS, we have pxn, ynqx Ñ 8. In
particular, BCS need not be compact if CS is not proper. The topology is as usual.

Remark 2.1 (Extending the Gromov product). For U P S, any p, q P CU Y BCU are joined
to u P CU by p1, 20δq–quasigeodesics, enabling extension of the Gromov product to BCU .

2.1. Supports and boundary points. We first define BX “ BpX ,Sq as a set.

Definition 2.2 (Support set, boundary point). A support set S Ă S is a set with Si K Sj
for all Si, Sj P S. Given a support set S, a boundary point with support S is a formal
sum p “

ř
SPS a

p
SpS, where each pS P BCS, and a

p
S ą 0, and

ř
SPS a

p
S “ 1. Such sums are

necessarily finite, by Lemma 1.4. We denote the support S of p by Suppppq.

Definition 2.3 (Boundary). The boundary BpX ,Sq of pX ,Sq is the set of boundary points.

Notation 2.4. When the specific HHS structure is clear, we write BX to mean BpX ,Sq.

2.2. Topologizing BX . We topologize BX using the visual topologies on the Gromov
boundaries of elements of tCS : S P Su. The main challenge is to incorporate these topolo-
gies into a coherent topology on the whole boundary, allowing boundary points supported
on nonorthogonal domains to interact. This requires some preliminary definitions.
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Definition 2.5 (Remote point). Let S Ă S be a support set. A point p P BX is remote
(with respect to S, or with respect to some q P BX with support S) if:

(1) Suppppq X S “ H, and
(2) for all S P S, there exists T P Suppppq so that S and T are not orthogonal.

Denote by Brem
S

X the set of all remote points with respect to S.

For each S P S, let BpCSq be the set of all bounded sets in CS. If S Ă S is a support

set, we denote by S
K

the set of all U P S such that U K S for all S P S.

Definition 2.6 (Boundary projection). Let S Ă S be a support set. For each q P Brem
S

X ,

let Sq be the union of S and the set of domains T P S
K

such that T is not orthogonal to WT

for some WT P Supppqq. Define a boundary projection BπSpqq P
ś

SPSq
CS as follows. Let

q “
ř

TPT a
p
T qT be a remote point with respect to S. For each S P Sq, let TS P Supppqq be

chosen so that S and TS are not orthogonal. Define the S–coordinate
`
BπSpqq

˘
S

of BπSpqq
as follows:

(1) If TS Ď S or TS&S, then
`
BπSpqq

˘
S

“ ρTS

S ;

(2) otherwise, S Ď TS . Choose a p1, 20δq–quasigeodesic ray γ in CTS joining ρSTS
to qTS

.

By the bounded geodesic image axiom, there exists x P γ such that ρTS

S is coarsely

constant on the subray of γ beginning at x. Let
`
BπSpqq

˘
S

“ ρTS

S pxq.

Lemma 2.7. The map BπS is coarsely independent of the choice of tTSuSPS.

Proof. Suppose that TS, T
1
S P T are chosen so that TS , T

1
S are not orthogonal to S and

suppose that S Ď TS , T
1
S . In other words, either TS Ď S or TS&S and the same is true

for T 1
S . By partial realization (Definition 1.1.(8)), there therefore exists y P X so that

dSpρTS

S , yq, dSpρ
T 1
S

S , yq ď E, whence ρTS

S and ρ
T 1
S

S coarsely coincide. If S Ď TS , then S K T 1
S

since TS K T 1
S ; this contradicts the defining property of T 1

S . Hence, in all allowable situations,

ρTS

S coarsely coincides with ρ
T 1
S

S ; the claim follows. �

Fix a basepoint x0 P X . We are now ready to define a neighborhood basis for each
p “

ř
SPS a

p
SpS , where pS P CS for all S P Suppppq “ S. For each S P S, choose a cone-

topology neighborhood US of pS in CS Y BCS, and choose ǫ ą 0. For convenience, given
q P BX , we let aqT “ 0 when T P S ´ Supppqq.

We define the basic set NtUSu,ǫppq as the union of a remote part, a non-remote part, and
an interior part, as follows:

Definition 2.8 (Remote part). The remote part is:

N rem
tUSu,ǫppq “

$
&
%q P Brem

S
X

ˇ̌
ˇ@S P S, pBπSpqqqS P US , and @S P Sq, S

1 P S,

ˇ̌
ˇ̌ dSpx0, pBπSpqqqSq

dS1px0, pBπSpqqqS1q
´
a
p
S

a
p
S1

ˇ̌
ˇ̌ ă ǫ and

ÿ

TPS
K

a
q
T ă ǫ

,
.
- .

Definition 2.9 (Non-remote part). Given p, q P BX , let A “ Suppppq X Supppqq. The
non-remote part is:

N non
tUSu,ǫppq “

$
&
%q “

ÿ

T

a
q
T qT P BX ´ Brem

S
X

ˇ̌
ˇ

ÿ

V PSupppqq´A

a
q
V ă ǫ, @T P A : |aqT ´ a

p
T | ă ǫ, qT P UT

,
.
- .
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Definition 2.10 (Interior part). The interior part is:

N int
tUSu,ǫppq “

"
x P X

ˇ̌
ˇ @S, S1 P S,@T P S

K
: πSpxq P US ,

ˇ̌
ˇ̌ aS
aS1

´
dSpx0, xq

dS1px0, xq

ˇ̌
ˇ̌ ă ǫ,

dT px0, xq

dSpx0, xq
ă ǫ

*
.

Definition 2.11 (Topology on X Y BX ). For each p P BX , with Suppppq “ S, and tUS :

S P Su, ǫ ą 0 as above, let:

NtUSu,ǫppq “ N rem
tUSu,ǫppq Y N non

tUSu,ǫppq Y N int
tUSu,ǫppq.

We declare the set of all such NtUSu,ǫppq to form a neighborhood basis at p. Also, we include
in the topology on X Y BX the open sets in X . This topology does not depend on x0.

Remark 2.12. The NtUSu,ǫppq need not be open; a priori, they may have empty interior!

The following is an obvious consequence of the definitions:

Proposition 2.13. For all U P S, the inclusion BCU ãÑ BX is an embedding.

Proposition 2.17 gives basic properties of BX ; first we need a definition and some lemmas.

Definition 2.14 (Basically Hausdorff). Let H be a topological space and let B be a neigh-
borhood basis. Then pH,Bq is basically Hausdorff if for all distinct h, h1 P H, there exist
disjoint B,B1 P B with h P B,h1 P B1.

Lemma 2.15. Let pX ,Sq be hierarchically hyperbolic and let X “ X Y BpX ,Sq. Then,
equipped with the neighborhood basis declared above, X is basically Hausdorff.

Proof. Let p, q P X be distinct. The statement is obvious when p or q is in X , so assume
that p, q P BX . Fix a basepoint x0 P X .

For each U P Suppppq, choose a neighborhood Y p
U of p in CU Y BCU that does not contain

pBπSuppppqpqqqU , provided it is defined. For each T P Supppqq, choose a neighborhood Y
q
T

of q in CT Y BCT that does not intersect N1000E`ωptπT px0quq and, when it is defined,
N1000E`ωppBπSupppqqppqqT q, where ω ě 0 is to be determined; also choose Y q

T so that Y p
T X

Y
q
T “ H when T P Suppppq X Supppqq, unless pT “ qT , in which case we choose Y p

T “ Y
q
T .

Fix ǫ ą 0, to be determined. Let N ppq “ NtY p
Uu,ǫppq and N pqq “ NtY q

V u,ǫpqq.

Finally, for any w, v P BX , let Supppwqv “ Supppwq Y pSupppwqK ´ SupppvqKq.
We need an auxiliary claim:

Claim 1. Let x, p, q P BX . Suppose there exist Wp,Wq P Supppxq and U P Suppppqx, V P
Supppqqx so that Wp & U and Wp ‰ U , and Wq & V and Wq ‰ V . Then there exists
y P PWp X PWq Ă X such that pBπSuppppqpxqqU 100E–coarsely coincides with πU pyq, and
pBπSupppqqpxqqV 100E–coarsely coincides with πV pyq.

(PWp is the standard product region associated to Wp, defined in Section 1.3.)

Proof of Claim 1. If Wp&U or Wp Ď U , and Wq&V or Wq Ď V , then any y P PWp X PWq

suffices. If U Ĺ Wp, use partial realization to see that, given a p1, 20δq–quasigeodesic ray γ
in CWp with endpoint xWp , we can choose a sequence pynq in PWp XPWq projecting uniformly
close to an unbounded sequence in γ. This provides the desired y. �

Suppose that x P N ppq X N pqq. We consider the following cases:

(1) x P BX is p–remote and q–remote. First of all, notice that by definition of remote,
for any U P Suppppq there exists Wp as in Claim 1, and similarly for V P Supppqq.
We now consider the following subcases.
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(a) There exists U P Suppppq X Supppqq with pU ‰ qU . Then we would have that
pBπSuppppqpxqqU is contained in both Y p

U and Y q
U , which are disjoint, a contradic-

tion.
(b) There exists U P Suppppq X Supppqq with pU “ qU but apU ‰ a

q
U . Let U “

SuppppqXSupppqq. For each V P U we have that the ratio
dV px0,pBπSuppppqpxqqV q

dU px0,pBπSuppppqpxqqU q is

ǫ–close to both apV {apU and aqV {aqU . Hence, if there exists V P U so that apV {apU ‰
a
q
V {aqU , we can choose ǫ small enough to give a contradiction. Otherwise, since

the coefficients sum to 1, the supports of p and q do not coincide, and we deal
with this in the next subcases.

(c) Up to swapping p and q, there exists V P Supppqq ´ Suppppq, and there exists
U P Suppppq not orthogonal to V . If U&V , then by our choice of N ppq,N pqq, we
have dU py, ρVU q ą E, dV py, ρUV q ą E for y as in Claim 1, contradicting consistency.
If U Ĺ V or V Ĺ U , then we reach a similar contradiction of consistency.

(d) Now assume that the previous case does not apply and, up to swapping p and
q, there exists V P pSupppqq ´ Suppppqq X SuppppqK. Suppose we also have
Suppppq Ď Supppqq Y SupppqqK but Suppppq X SupppqqK ‰ H, since otherwise
either (1a) or (1b) holds. Let U P Suppppq ´ Supppqq. By remoteness of x, U P
SupppqqK ´ SupppxqK, so U P Supppqqx. Hence the definition of q–remoteness
gives

ˇ̌
ˇ̌dU px0, pBπSupppqqpxqqU q

dV px0, pBπSupppqqpxqqV q
´
a
q
U

a
q
V

ˇ̌
ˇ̌ ă ǫ.

Similarly, we have V P Suppppqx, so the definition of p–remoteness gives:

ˇ̌
ˇ̌dV px0, pBπSuppppqpxqqV q

dU px0, pBπSuppppqpxqqU q
´
a
p
V

a
p
U

ˇ̌
ˇ̌ ă ǫ.

Now, since V R Suppppq, U R Supppqq, we have apV “ a
q
U “ 0, so, we may take y

to be the point in X provided by Claim 1, and hence we have dV py,x0q
dU py,x0q ă 2ǫ and

dU py,x0q
dV py,x0q ă 2ǫ, provided ω in Claim 1 was chosen sufficiently large in terms of ǫ

and E. This is a contradiction.
(2) x P X : In this case, x can play the role of y in the above arguments.
(3) x P BX is p–non-remote and q–non-remote: In this case, first choose ǫ P p0, 1{2q

smaller than |apW ´ a
q
W |{10 for each W P Suppppq X Supppqq. The definition of the

non-remote part now ensures that x cannot exist.
(4) x P BX is p–remote and q–non-remote: In this case, there exists U P Suppppq, V P

Supppqq and Wp,Wq P Supppxq so that Wp is distinct from and non-orthogonal to

U while Wp “ V or Wp K V . If for each such Wq we have Wq P SupppqqK, then by
choosing ǫ ă 1, we have that

ř
TPSupppxq a

x
T ă 1, a contradiction. Thus we may take

Wq “ V P Supppqq.
Now, choose y P PWp so that pBπSuppppqpxqqU 100E–coarsely coincides with πU pyq.

If U “ Wq, then our choice of N ppq,N pqq ensures that x cannot lie in both. Suppose

that U&Wq. Then πU pyq, ρ
Wq

U , ρ
Wp

U all 10E–coarsely coincide and lie at distance 50E

from the required neighborhood of pU , so x R N ppq. When U Ĺ Wq or Wq Ĺ U , a
similar argument shows that x R N ppq X N pqq.
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Hence it remains to consider the case where Wq K U . By definition, |axWq
´a

q
Wq

| ă

ǫ. On the other hand, we can assume Wq P SuppppqK, for otherwise we could re-
choose U and Wq to be in one of the above cases. Thus, by definition, axWq

ă ǫ. This

yields a contradiction provided we choose, say, ǫ P
Ş

TPSupppqq

´
0,

a
q
T

10

¯
.

Hence our choice of N ppq,N pqq ensures N ppq X N pqq “ H, as required. l

Lemma 2.16. X is Hausdorff.

Proof. In light of Lemma 2.15, it suffices to show that for all p P BX , with p “
ř

TPSuppppq aT pT ,

all ǫ ą 0, and all collections tUT : T P Suppppqu with each UT a neighborhood of pT in
CT Y BCT , the corresponding basic set NtUT u,ǫppq has nonempty interior.

The topology of basic convergence: Given a sequence tpnu with each pn P X , we say
that pn basically converges to p P BX if for all ǫ ą 0 and all choices of tUT u as above, we
have pn P NtUT u,ǫppq for all but finitely many n P N. Similarly, tpnu basically converges to
p P X if, for all ǫ ą 0, we have pn P Nǫppq for all sufficiently large n.

Define a topology on X as follows: the set A Ă X is declared to be closed if a P A

whenever there is a sequence tanu so that an P A for all n and an basically converges to a.
Denote by M the space X endowed with this topology.

Nonempty interior of basic sets: Let N “ NtUT u,ǫppq be a basic set as above. We

claim that p P IntpN q. Otherwise, there exists a sequence tpnu in X ´ N that basically
converges to p. This is a contradiction since basic convergence to p needs tpnu to enter N .

Equivalence of the topologies: To complete the proof that basic sets in X have
nonempty interior (with respect to the original topology), and thereby complete the proof
of the lemma, it suffices to show that X is homeomorphic to M.

Now, a set A Ď X is closed in X (i.e. has open complement) if and only if, for each
p P X ´ A, we can choose ǫ ą 0 and neighborhoods tUT : T P Suppppqu so that NtUT u,ǫppq
is disjoint from A. But this is equivalent to the following: for all basically convergent tanu
with each an P A, the (basic) limit a lies in A. This is in turn equivalent to the assertion
that A is closed in M. �

Proposition 2.17. Let pX ,Sq be hierarchically hyperbolic, and let X “ X Y BpX ,Sq.

(1) X is Hausdorff and, if X is separable (e.g. if it is proper), then X is separable.
(2) BX is closed in X ,
(3) X is dense in X .

Proof. The “Hausdorff” part of Assertion (1) follows from Lemma 2.16. Separability of X
follows from density of the metric space X in X , i.e. part (3). Assertion (2) is obvious: no
bounded neighborhood of an interior point contains a boundary point, so no sequence of
boundary points converges to an interior point.

It remains to prove assertion (3). Pick a neighborhood NtUSu,ǫppq of p “
ř

SPSuppppq a
p
SpS P

BX , with pS P BCS for S P Suppppq. For each Si P Suppppq “ tS1, . . . , Sdu, fix a uniform
quasigeodesic ray γi in CS from πSpx0q to pS.

First, suppose that d “ 1. Then for each t, there exists xt1 such that πS1
pxt1q coarsely

coincides with γ1papS1
¨ tq and, in view of the quasiisometric embedding FS1

ˆ ES1
Ñ X

described in Subsection 1.3, the point xt1 can be chosen so that πT pxt1q coarsely equals
πT px0q for each T K S1. (Here we have used that pX ,Sq is normalized.)

Now suppose d ě 2. By induction, for all t, there exists xtd´1 P ESd
such that for all

i ď d ´ 1, the projection πSi
pxtd´1q coarsely coincides with γipa

p
Si

¨ tq, and also πT pxtd´1q

coarsely coincides with πT px0q for each T orthogonal to each Si. In view of the quasiisometric
embedding FSd

ˆESd
Ñ X , there exists a point xtd so that gESd

pxtdq coarsely coincides with
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xtd´1 and πSd
pxtdq coarsely coincides with γdpapSd

¨ tq. (Here, gESd
is the gate map defined

at the end of Section 1.) For each sufficiently large t, the point xtd lies in NtUSi
u,ǫppq, as

required. �

Remark 2.18. By regarding each BCU , with U P S, as a discrete set, we can endow BpX ,Sq
with an alternate topology as a simplicial complex, as follows. For each U P S and each
p P BCU , we have a 0–simplex, and the 0–simplices p0, . . . , pk P BCU0, . . . , BCUk span a
k–simplex if Ui K Uj for 0 ď i ă j ď k. There is an obvious bijection from the resulting
simplicial complex to BpX ,Sq, which is an embedding on each simplex.

3. Compactness for proper HHS

In this section, we will prove that proper HHS have compact HHS boundaries.

3.1. Preliminary lemmas.

Definition 3.1. Let pX,Sq be hierarchically hyperbolic. The level ℓU of U P S is defined
inductively as follows. If U is Ď-minimal, then ℓU “ 1. We inductively define ℓU “ k ` 1 if
k is the maximal integer such that there exists V Ď U with ℓV “ k and V ‰ U .

The following is a slightly modified version of Lemma 2.5 in [BHS15b].

Lemma 3.2. Let pX,Sq be hierarchically hyperbolic. Then there exists N with the following
property. Let x, y P X and let tSiui“1,...,N Ď S be so that dCSi

px, yq ě 50E for each
i “ 1, . . . , N . Then there exists S P S and i so that Si Ĺ S and dCSpx, yq ě 100E.
Moreover, for each T P S such that each Si Ď T , we can choose S Ď T .

Proof. The proof is by induction on the level k of a Ď-minimal S P S into which each Si is
nested. The base case k “ 1 is empty.

Suppose that the statement holds for a given N “ Npkq when the level of S as above
is at most k. Suppose instead that |tSiu| ě Npk ` 1q (where Npk ` 1q is a constant much
larger than Npkq that will be determined shortly) and there exists a Ď-minimal S P S of
level k ` 1 into which each Si is nested. There are two cases.

If dCSpx, yq ě 100E, then we are done. If not, then the large link axiom (Definition 1.1.(6))
implies that there exists K “ Kp100Eq and T1, . . . , TK , each properly nested into S (and
hence of level less than k ` 1), so that any Si is nested into some Tj . In particular, if
Npk` 1q ě KNpkq, there exists j so that at least Npkq elements of tSiu are nested into Tj.
By the induction hypothesis, we are done.

Note that the proof still works replacing S with ST when each Si Ď T . In this case, we
can take S Ď T and the Ti produced by the large link axiom will also have Ti Ď S Ď T for
each i, as required for the second statement. �

Lemma 3.3. Let pX,Sq be hierarchically hyperbolic. Then for every hierarchy ray γ there
exists S P S so that πSpγq is unbounded. Moreover, if T P S has the property that
tdiamCT 1pγq : T 1 Ď T u is unbounded, then there exists S Ď T so that πSpγq is unbounded.

Proof. The proof of the “moreover” part is a minor variation; we prove the first assertion
and indicate parenthetically how to adapt the proof.

By the distance formula (Theorem 1.9) and the fact that γ is a quasi-geodesic, there exists
an increasing sequence tniu of natural numbers such that for each positive integer i, there
exists S1

i P S so that dCS1
i
pγpniq, γpni`1qq ě 100E. (For the purposes of the “moreover”

part, we choose S1
i nested into T .) Since γ is a hierarchy path, it makes coarsely monotonic

progress in CU for each U P S, and thus for each t ě 0 we have

dCU pγp0q, γptqq ě 50E ¨ |ti : ni ď t, S1
i “ Uu|.
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Let S Ă S be the collection of domains in which γ makes significant progress; that is,
S is the set of all S P S so that there exists tS ě 0 so that for any t ě tS we have
dCSpγp0q, γptqq ě 50E. (In the proof of the “moreover” part, we further require that S is
nested into T .) If |S| ă 8, then we are done by the above inequality, so assume |S| “ 8.

Let S P S be Ď-minimal with the property that there are infinitely many S1 P S nested
into S. (In the proof of the “moreover” part, S is nested into T .) Suppose for a contradiction
that diamSpπSpγqq “ D ă 8.

Denote by Sj the set of all level-j elements of S nested into S, and let k be maximal with
the property that Sk is infinite. Note that this assumption and finite complexity imply thatŤ

k1ąk S
k1

is finite. To derive a contradiction, we will use the large link axiom and Lemma

3.2 to construct an infinite sequence of distinct Si P
Ť

k1ąk S
k1

.
By the large link axiom (Definition 1.1.(6)), there exists K “ KpDq so that, for any t,

there exist T t
1, . . . , T

t
K properly nested into S, such that if X P S has X Ď S and tX ď t,

then X Ď T t
j for some j. If we take t0 large enough, we can apply Lemma 3.2 to a sufficiently

large subset of Sk, all of whose elements are nested into some T t0
j , and we get some S0 of

level k0 ą k, so that dCS0
pγp0q, γptqq ě 100E for t ě t0. Note that Lemma 3.2 allows us to

take S0 Ď T t0
j , so that S0 Ď S and thus S0 P Sk0 . By minimality of S, there are finitely

many elements of Sk nested into S0. We can now choose t1 ą t0 and apply Lemma 3.2 to
a sufficiently large subset of Sk all whose elements are nested into some T t1

j but not nested

into S0, and get another element S1 P Sk1 , for some k1 ą k, which is properly nested into
S. We can then proceed inductively and construct infinitely many distinct elements Si Ď S

of level greater than k, giving us our contradiction. �

3.2. Compactness. We are ready to prove:

Theorem 3.4. Let pX ,Sq be hierarchically hyperbolic, and let X “ X Y BpX ,Sq. If X is
proper, then X is compact.

Proof. It suffices to show that X is sequentially compact since it is separable by Proposition
2.17. We will first show that any internal sequence txnu Ă X subconverges to some point
in X . Then we will show this suffices for the theorem.

Internal sequences subconverge: Let txnu Ă X be a sequence of interior points. For
each n, let γn be a uniformly Lipschitz hierarchy path between x0 and xn, whose existence
is guaranteed by Theorem 1.8. Since X is proper, either the sequence xn subconverges to
an interior point and we are done, or we can assume that the sequence of hierarchy paths
γn converges to a hierarchy ray, γ8.

Lemma 3.3 implies there exists T P S such that πT ˝ γ8 is unbounded. The collection
tTiu

k
i“1 for which this is true must be a collection of pairwise-orthogonal elements by the

consistency inequalities (Definition 1.1.(4)). For each Ti, the quasigeodesic ray πTi
˝γ8 Ă CTi

represents a point pTi
P BCTi. Set T “ tTiu

k
i“1.

We now consider two cases depending on the behavior of the sequence txnu in T
K
. First,

suppose lim infn suptdCT px0, xnq : T P T
K

u ă 8. Up to passing to a further subsequence of
txnu, we have well-defined limits for 1 ď i, j ď k

ri,j “ lim
n

dCTi
px0, xnq

dCTj
px0, xnq

P r0,8s,

which determine coefficients tapi P r0, 1su such that api {apj “ ri,j and
ř
a
p
i “ 1. It is straight-

forward to check that txnu eventually lies in the interior part of any NtUTi
u,ǫppq, implying

that txnu subconverges to p “
ř

TPT a
p
T pT .
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Now suppose that, up to passing to a subsequence, lim infn suptdCT px0, xnq : T P T
K

u “
8. Consider the sequence tynu “ tgET

pxnqu of gates in the orthogonal complement of T .

Since
´
ET ,ST

K

¯
is an HHS with complexity strictly less than that of pX ,Sq, by induction

on the complexity of pX ,Sq, the sequence tynu subconverges to q P BX , where Supppqq “

tTiu
k1

i“k`1 and Ti K Tj whenever i ď k ă j. Since
´
ET ,ST

K

¯
Ă pX ,Sq is hierarchically

quasiconvex, we can take q P BET . For each j ą k, let qTj
P BCTj , so that q is a linear

combination of the qTj
. As before, up to passing to a further subsequence, for any 1 ď i, j ď

k1, we can define

ri,j “ lim
n

dCTi
px0, xnq

dCTj
px0, xnq

P r0,8s,

which determine coefficients tapTi
uki“1 Y taqTj

uk
1

j“k`1 such that

‚ arTi
{ar

1

Tj
“ ri,j, when r, r1 P tp, qu and arTi

, ar
1

Tj
are defined, and

‚
řk

i“1 a
p
Ti

`
řk1

j“k`1 a
q
Tj

“ 1.

If some arTi
“ 0 for r P tp, qu, we disregard Ti. We now claim that txnu (sub)converges to

p “
kÿ

i“1

a
p
Ti
pTi

`
k1ÿ

i“k`1

a
q
Ti
qTi
.

Pick a neighborhood NtUTi
u,ǫppq of p. For large enough n, xn P NtUTi

u,ǫppq because:

‚ πTi
pxnq P UTi

for i ď k since pπTi
pxnq|pTi

qπTi
px0q Ñ 8,

‚ πTi
pxnq P UTi

for i ą k since πTi
pxnq coarsely equals πTi

pynq and yn Ñ q,

‚

ˇ̌
ˇ̌a

r
Tj

ar
1

Ti

´
dTj

px0,xnq

dTi
px0,xnq

ˇ̌
ˇ̌ ă ǫ by definition, when r, r1 P tp, qu and arTi

, ar
1

Tj
are defined, and

‚ dT px0,xnq
dTi

px0,xnq ă ǫ for T P
´

tTiu
k1

i“1

¯K
and any 1 ď i ď k1, as we now show.

Let T P
´

tTiu
k1

i“1

¯K
and choose i so that arTi

‰ 0, for r P tp, qu. Observe that

dT px0, xnq

dTi
px0, xnq

“
dT px0, xnq

dTk`1
px0, xnq

¨
dTk`1

px0, xnq

dTi
px0, xnq

.

The first term on the right-hand side can be made arbitrarily small by increasing n since
dT px0, xnq (resp. dTk`1

px0, xnq) coarsely coincides with dT px0, ynq (resp. dTk`1
px0, ynq) and

tynu converges to q. Since the second term converges to rk`1,i ă 8, this proves the claim
and completes the internal sequence case.

Reduction to the internal sequence case: Recall the definition of the boundary
projection, Definition 2.8). By passing to a subsequence if necessary, it suffices to consider
any boundary sequence tznu Ă BX , where zn “

ř
SPSupppznq a

zn
S p

n
S for each n.

We first find txnu Ă X with the properties (1)–(7) below, and then verify that tznu
subconverges to the limit of txnu:

(1) dX px0, xnq ě n,
(2) pπSpxnq|pnSq

πSpx0q ě n for each S P Supppznq (we remind the reader that the notation

p‚|‚q‚ denotes the Gromov product with respect to the subscripted basepoint),

(3)
ˇ̌
ˇ a

n
S

an
S1

´ dSpx0,xnq
dS1 px0,xnq

ˇ̌
ˇ ă 1{n for any distinct S, S1 P Supppznq,

(4) For any T P pSupppznqqK and S P Supppznq, we have dT px0,xnq
dSpx0,xnq ă 1{n.

(5) For all n and Sn P Supppznq, if T&Sn or Sn Ď T , then dT pρS
n

T , xnq ă K, for some
uniform K ą 0. Moreover, for all such T , we have dT px0, xnq ď dSnpx0, xnq.
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(6) txnu converges to p “
ř

TPSuppppq a
p
T pT P BX with the following property: if there

are infinitely many n for which zn P BremX (with respect to Suppppq), then there are
infinitely many remote zn such that the following holds for some fixed T P Suppppq:
there exists Sn

T P Supppznq so that Sn
T&T or Sn

T Ĺ T , or T Ĺ Sn
T but dSn

T
pρTSn

T
, x0q ď

100K 1E, for some constant K 1 ě 1 depending on tznu and p but not on n. Moreover,
for all such T , we have dCT px0, xnq ď dCSnpx0, xnq.

(7) txnu converges to p “
ř

TPSuppppq a
p
T pT P BX with the following property: if there

are infinitely many n for which zn P BremX (with respect to Suppppq), then there
are infinitely many remote zn such that dT ppBπSuppppqpznqqT , xnq ď K2 for some
K2 independent of n and all T P Suppppqzn . Moreover, for all such T , we have
dCT px0, xnq ď dCSnpx0, xnq.

To see that such an internal sequence exists, choose a sequence txnu so that xn P P for
all n, where:

P “ im

¨
˝ ź

SPSupppznq

FS Ñ X

˛
‚;

the sequence txnu satisfies (1)-(4) (which can be done since they are component-wise con-
ditions); and

min
SPSupppznq

dX pgFS
pxnq, x0q{dX pgFS

px0q, x0q Ñ 8

as n Ñ 8. Here we fix, for each n, a basepoint ppSqSPSupppznq and let FS “ FS ˆtpPS1qS1‰Su.
(Recall from [BHS15b, Remark 5.12] that, whenever U1, . . . , Uk P S are pairwise or-

thogonal, we have a standard quasi-isometric embedding
śk

i“1 FUi
Ñ X whose image is

hierarchically quasiconvex and which is, for each i ď k, the restriction of the usual map
FUi

ˆEUi
Ñ X .)

We can verify condition (5) by examining the product regions
ś

SPSupppznq FS Ñ X . Let

T&Sn or Sn Ĺ T for Sn P Supppznq. Since xn coarsely lies in
ś

SPSupppznq FS , it follows that

diamT pρSn

T Y πT pFSnqq — 1 and dT pπT pFSnq, xnq — 1. We thus have, for some uniform C,

dT px0, xnq ď CdX

¨
˝x0,

ź

SPSupppznq

FS

˛
‚` C.

For sufficiently large n, our choice of txnu ensures that dSnpx0, xnq ě Cd

´
x0,

ś
SPSupppznq FS

¯
`

C, verifying the “moreover” part of assertion (5).
Let txnu satisfy (1)–(5). We now prove that there is a subsequence of txnu satisfying (6).
By replacing txnu with a subsequence (and replacing tznu with the corresponding subse-

quence of tznu), we can apply the proof that internal sequences subsequentially converge to
conclude txnu converges to p “

ř
TPSuppppq a

p
T pT P BX .

Consider the set G of n P N so that zn is remote with respect to p. If G is finite, then (6)
holds vacuously. Otherwise, by replacing G with an infinite subset, we find T P Suppppq so
that for all n P G, there exists Sn P Supppznq with either T&Sn or Sn Ĺ T or T Ĺ Sn.

First consider the case where tSn : n P Gu is infinite. By passing to a subsequence if
necessary, and then applying finite complexity, Lemma 1.4, and Ramsey’s theorem, we can
assume that Sn&Sm when n ‰ m. Let GT Ď N be the set of n P G such that T Ĺ Sn. Then
for all m,n P GT , we have dSmpρTSm , ρS

n

Smq ď E by the consistency inequalities. Hence, again

by the consistency inequalities and the triangle inequality, we have dSnpρTSn , x0q ď 2E for
all but at most one element of GT . Indeed, if dSnpρTSn , x0q ą 2E, then dSnpρS

m

Sn , x0q ą E for

any m P GT ´ tnu, so by consistency dSmpρS
n

Sm , x0q ď E; the claim follows from the triangle
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inequality since dSmpρTSm , ρS
n

Smq ď E. Hence, by replacing tznu with a subsequence, for all

T P Suppppq with T Ĺ Sn, we have dSnpρTSn , x0q ď 100K 1E. Letting Sn
T “ Sn for n P G,

this establishes assertion (6) when tSn : n P Gu is infinite.
When tSn : n P Gu is finite, we can assume that Sn “ Sm for all m,n by passing to a

subsequence. Hence, there exists S P S so that for all n P G, and all U P Supppznq, either
U “ S or U K T . Fix T and S as above, and replace pznq with a subsequence so that for
each n P G, we have S P Supppznq. Then, for each n P G, set Sn

T “ S and observe that

either S Ď T, S&T , or T Ď S. In the latter case, take K 1 “ dSpρTS , x0q, which depends on p
and tznu but not on n. This completes the proof of (6).

We now deduce condition (7) from (1)–(6). Assume G is infinite, so that by (6), there
exists T 1 P Suppppq so that, after replacing G with an infinite subset if necessary, we have
for each n P G some Sn

T 1 P Supppznq so that dSn
T 1

pρTSn
T 1
, x0q ď 100K 1E. Let T P Suppppqzn .

First suppose that T Ĺ Sn
T 1. Then since T K T 1 or T “ T 1, Lemma 1.5 implies that

dSn
T 1

pρTSn
T 1
, x0q ď 200K 1E. It follows from (2) that pπSn

T 1
pxnq|pnSn

T 1
qρT

Sn
T 1

Ñ 8 as n Ñ 8 so

that, by discarding finitely many n and applying the bounded geodesic image axiom, we
have dT ppBπSuppppqpznqqT , xnq ď E for all n P G. In the remaining cases, where T&Sn

T 1 or
Sn
T 1 Ĺ T , then we reach the same conclusion, using (5) instead of (6). This completes the

proof of condition (7).
Subconvergence of tznu: Fix a neighborhood N “ NtUSu,ǫppq of p; we must check that for

infinitely many values of n, we have zn P N . For each n, either zn P BremX (recall that this
means that Supppznq X Suppppq “ H and for all T P Suppppq, there exists S P Supppznq
with T & S) or zn P BX ´ BremX (so that either Supppznq X Suppppq ‰ H or there exists
T P Suppppq with T K S for all S P Supppznq).

The non-remote case: We will consider the non-remote case first. Recall that zn “ř
SPSupppznq a

zn
S p

n
S . We must check the following conditions:

(a) For each S P Suppppq X Supppznq, and infinitely many n, we have pnS P US.
(b) For each S P Suppppq X Supppznq and infinitely many n, we have anS Ñ a

p
S .

(c) The sum
ř

TPSuppppq´Supppznq a
p
T ă K 1ǫ for infinitely many n and some uniform K 1.

Up to passing to a subsequence, (a) follows from (2) and the fact that xn Ñ p.
For (b), we have three cases. If Suppppq X Supppznq “ H, then this holds vacuously.

If Suppppq X Supppznq has multiple elements, then this follows from (3) and the fact that
xn Ñ p. If SuppppqXSupppznq “ tSu, then this follows from (3) and (c), proved momentarily.

To see (c), first observe that Suppppq ´ Supppznq Ă pSupppznqqK by non-remoteness. Let
T P Suppppq ´ Supppznq and S P Suppppq X Supppznq; note that such an S P Suppppq X
Supppznq exists, otherwise one of xn Ñ p or (4) is contradicted. By definition of xn Ñ p,

ˇ̌
ˇ̌a

p
T

a
p
S

´
dT px0, xnq

dSpx0, xnq

ˇ̌
ˇ̌ ă ǫ.

It follows from (4) that dT px0,xnq
dSpx0,xnq ă 1

n
. Since each a

p
S ď 1, it follows that

ÿ

TPSuppppq´Supppznq

a
p
T ă ξpX q

ˆ
ǫ`

1

n

˙
ď 2ξpX qǫ,

completing the proof of (c) and thus the non-remote case.
The remote case: We must check the following conditions:

(i) For any T P Suppppq, and infinitely many n, we have
`
BπSuppppqpznq

˘
T

P UT .
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(ii) For infinitely many n and any T P Suppppqzn , T
1 P Suppppq, we have

ˇ̌
ˇ̌ dT px0, pBπSuppppqpznqqT q

dT 1 px0, pBπSuppppqpznqqT 1 q
´
a
p
T

a
p
T 1

ˇ̌
ˇ̌ ă ǫ.

(iii) We have
ř

TPSuppppqKXSupppznq a
zn
T ă Kǫ for some uniform K.

For any T P Suppppq and each n, choose Sn
T P Supppznq so that T and Sn

T are not
orthogonal. If G is infinite, then we may pass to a subsequence so that Sn

T and T are always
non-orthogonal: that is, T Ĺ Sn

T , or T&Sn
T , or Sn

T Ĺ T .
We now show that assertion (i) holds for infinitely many n; the proof divides into three

cases according to the above possibilities, which influence the definition of pBπSuppppqpznqqT .

First, if Sn
T&T , then pBπSuppppqpznqqT “ ρ

Sn
T

T . In this case, (i) follows immediately from
conditions (2) and (5) in the definition of txnu. The same is true if Sn

T Ĺ T . If T Ď Sn
T ,

then (i) follows from (2), (7), and the triangle inequality.
Assertion (ii), in the case when T, T 1 P Suppppq, follows from (7). In fact, since txnu

converges to p, we have ˇ̌
ˇ̌ dT px0, xnq

dT 1px0, xnq
´
a
p
T

a
p
T 1

ˇ̌
ˇ̌ Ñ 0, p˚q

and dT px0, xnq Ñ 8, dT 1px0, xnq Ñ 8. By (7), we have that dT px0, xnq coarsely coincides
with dT px0, pBπSuppppqpznqqT q, and similarly for T 1. Hence, p˚q implies that the ratio in
Assertion (ii) satisfies the required inequality. If T P Suppppqzn ´ Suppppq, then we have

to verify
ˇ̌
ˇ dT px0,pBπSuppppqpznqqT q

dT 1 px0,pBπSuppppqpznqqT 1 q

ˇ̌
ˇ Ñ 0. We still know p˚q (with

a
p
T

a
p

T 1
replaced by 0) and

dT 1px0, xnq Ñ 8. If dT px0, xnq does not diverge, we are done. If it does, we can approximate
dT px0, pBπSuppppqpznqqT q by dT px0, xnq and we can conclude as above.

It remains to verify assertion (iii). For each n, let T n P pSuppppqqK XSupppznq and choose
Sn P Supppznq ´ pSuppppqqK. Fix P P Suppppq so that, after passing to a subsequence, P is
not orthogonal to any of the Sn. By either (5) or (7), we have dCSnpx0, xnq{dCP px0, xnq ď 1,
while dCP px0, xnq{dCTnpx0, xnq ă ǫ since xn Ñ p. Hence aznTn{aznSn ď ǫ ` 1

n
, by (3), and

the desired inequality follows since the number of terms in the sum is bounded by ξpX q,
as in the non-remote case. This completes the proof that tznu subconverges to p, and thus
completes the proof that BX is compact. �

4. The HHS boundary of a Gromov hyperbolic space

In this section, we prove that the HHS boundary of a hyperbolic space is its Gromov
boundary, regardless of the chosen HHS structure.

Lemma 4.1. Let pX ,Sq be hierarchically hyperbolic. If X is hyperbolic, then there exists
C ą 0 such that if U, V P S and U K V , then either diam CU ă C or diam CV ă C.

Proof. Recall from [BHS15b] that if U K V , then there exists a quasiisometric embedding
FU ˆ FV ãÑ X . Hyperbolicity uniformly bounds the diameter of one of the factors. �

Lemma 4.2. Let pX ,Sq be hierarchically hyperbolic and X hyperbolic. If γ : r0,8q Ñ X is
a hierarchy ray with γp0q “ x0, then there exists a unique U P S with πU ˝ γ : r0,8q Ñ CU

a parametrized quasigeodesic ray. In particular, diamCV pγq ă 8 for all V P S with V ‰ U .

Proof. By Lemma 3.3, there exists U P CS such that diamCU pγq is unbounded. Let V P S

be such that V ‰ U ; by Lemma 4.1, there are three cases: V Ď U , U Ď V , and V&U .
Let tM P r0,8q be such that dCU pγp0q, γptqq ą E2 for t ě tM . If U Ď V , then by the con-

sistency inequality, dV pγptq, ρVU pγp0qqq ă E for all t ą tM . If V Ď U , then dCV pγptq, ρUV q ă E
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for all t ą tM . Similarly, if U&V , then dCV pγptq, ρVU q ă E for all t ą tM by the transverse
case of the consistency inequality. Thus, in each case, diamCV pγq ă 8. �

Theorem 4.3. Let pX ,Sq be hierarchically hyperbolic and suppose that X is hyperbolic. Let

X
Gr

“ X Y BGrX , where BGrX is the Gromov boundary of X , and let X “ X Y BX . Then

the identity map X Ñ X extends uniquely to a homeomorphism X
Gr

Ñ X .

Proof. Lemma 4.1 gives BX “
š

UPS BCU and Lemma 4.2 gives |Suppppq| “ 1 for all p P BX .

Fix x0 P X and let p P BGrX . Let γp : r0, 1q Ñ X
Gr

be a geodesic from x0 to p. For any
n P N, let γn : r0, nq Ñ X be a hierarchy path between x0 and γppnq. Since X is hyperbolic,
each γn uniformly fellow-travels γp and thus γ “ limn γn is a hierarchy ray from x0 to p. The
ray γ is independent of the choice of pγnq and is thus uniquely determined by p. By Lemma
4.2, there exists a unique U P S such that diamCU pγq is an unbounded quasigeodesic ray.
By hyperbolicity of CU , there exists q P BCU such that πCU pγq limits to q.

The above discussion yields a well-defined map φGr : BGrX Ñ BX given by φGrppq “ q.

Define φ : X
Gr

Ñ X by φ|X “ idX and φ|
X

Gr “ φGr. We claim that φ is a homeomorphism.

Bijectivity: The map φ is clearly bijective on X . Let p, q P BGrX and suppose that
p ‰ q. Then there exist geodesic rays γp, γq : r0,8s Ñ X with rγps “ p, rγqs “ q, and
γpp0q “ γqp0q “ x0. Since p ‰ q, hyperbolicity of X implies that dX pγpptq, γqptqq Ñ 8.

By Lemma 4.2, γp and γq have unique domains Up and Uq, respectively, to which they have
unbounded projections. If Up ‰ Uq, we are done. Otherwise, Up “ Uq “ U , and Lemma 4.2,
the distance formula, and the triangle inequality imply that dU pγpptq, γqptqq Ñ 8, whence
φppq ‰ φpqq, by definition. Thus φ is injective; surjectivity of φ follows from Theorem 1.7.

Basic sets in X : For convenience, we describe basic sets N ppq, for p P BpX ,Sq, in our
current simple situation. Observe that Suppppq consists of a single S P S, while Brem

SuppppqX

consists of those q P BpX ,Sq with Supppqq “ tT u with T ‰ S. It is automatic that T is not
orthogonal to S: if T K S, then Lemma 4.1 implies only one of CS or CT can be unbounded
and thus have nonempty Gromov boundary. It follows that Supppqq X pSuppppqqK “ H.

Choosing ǫ ą 0 and p P US Ă CS Y BCS, a remote neighborhood of p in X is:

N rem
US ,ǫ

ppq “

#
q P

ğ

S‰T

BCT
ˇ̌
ˇρTS P US

+
.

Meanwhile, the nonremote part of the boundary is just BCS, so

N non
US ,ǫ

ppq “ US.

Finally, the interior part is:

N int
US ,ǫ

ppq “

"
x P X

ˇ̌
ˇπSpxq P US ,

dT px0, xq

dSpx0, xq
ă ǫ @T K S

*
.

The above descriptions will be useful in proving that φ is a homeomorphism.
Continuity of φ, φ´1: Choose p P BpX ,Sq, supported on S P S, a neighborhood US of

p P BCS, and ǫ ą 0. We may assume that

US “
!
y P CS Y BCS

ˇ̌
ˇDppnq : pn Ñ p, lim inf

n
py | πSppnqqπSpx0q ą r

)

for some r ě 0. Choose q P BGrX so that φpqq “ p. For each r1 ě 0, let

Upq, r1q “
!
y P X Y BGrX

ˇ̌
ˇpy|qqx0

ě r1
)
.

Recall that sets of this type yield a neighborhood basis in X
Gr

.
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We exhibit r1 ě 0, depending on p, r, ǫ and the distance formula constants, such that

φ
`
Upq, r1q

˘
Ď NUS ,ǫppq.

Indeed, if y P Upq, r1q X BGrX , and r1 is sufficiently large, then any geodesic ray or
segment representing rπS ˝ γys has an initial segment of length at least r lying 2δ-close to
the corresponding segment for p. This implies that φpyq P US, which is exactly the non-
remote part of NUS ,ǫppq (regardless of the choice of ǫ). If y P Upq, r1q is an interior point,
and r1 is sufficiently large, then similarly πSpxq P US .

If T K S, then, by Lemma 4.1, there exists a uniform C ą 0 such that dT px0, yq ď C.
Moreover, choosing r1 sufficiently large compared to r, C, and the constants in the distance
formula, we have dSpx0, yq ě C{ǫ. Hence either y is interior or y P BCS, and so

φpUpq, r1qq Ď N non
US ,ǫ

ppq Y N int
US ,ǫ

ppq.

Continuity follows easily: Given an open set O Ď X , let q P φ´1pOq. Then, since O

is open, it contains a neighborhood N of φpqq. The preceding discussion shows that q
lies in some neighborhood U which in turn lies in φ´1pN q Ă φ´1pOq, so φ´1pOq is open.
Continuity of φ´1 is proved similarly. �

5. Extending hieromorphisms to the boundary

Hieromorphisms need not extend continuously to the boundary, but under additional
hypotheses on the quasi-isometries implicit in the hieromorphism, such extensions do exist.
However, the class of hieromorphisms that extend continuously to the boundary is contained
in a larger class of maps with this property, and, given the examples we study later in this
section, it is in our interest to focus on this larger class of maps.

Definition 5.1 (Slanted hieromorphism). Let pX ,Sq, pX 1,S1q be hierarchically hyperbolic
spaces. A slanted hieromorphism f : pX ,Sq Ñ pX 1,S1q consists of:

(1) a map f : X Ñ X 1;

(2) a map πpfq : S Ñ 2S
1

such that πpfqpUq is a collection of pairwise-orthogonal
elements of S1 for each U P S;

(3) for each U P S, a map ρpf, Uq : CU Ñ
ś

V PπpfqpUq CV

such that:

(I) if U, V P S satisfy U Ĺ V , then for each W 1 P πpfqpV q, there exists W P πpfqpUq
with W Ĺ W 1, and for every W P πpfqpUq there exists (a unique) W 1 P πpfqpV q with
W Ĺ W 1;

(II) if U, V P S satisfy U K V , then W K W 1 for all distinct W P πpfqpUq,W 1 P πpfqpV q;
(III) if U, V P S satisfy U&V , then for all W P πpfqpUq, there exists W 1 P πpfqpV q with

W&W 1 and vice versa;
(IV) each ρpf, Uq is a (uniform) quasiisometric embedding (where ΠWPπpfqpUqCW );
(V) for all U P S, the following diagram (uniformly) coarsely commutes:

X X 1

CU ΠWPπpfqpUqCW

//
f

��

πU
��
ΠWPπpfqpUqπW

//
ρpf,Uq

(VI) if U, V P S satisfy U Ĺ V or U&V , then

CU ΠWPπpfqpUqCW

CV ΠW 1PπpfqpV qCW
1

//
ρpf,Uq

��

ρUV ��
g

//
ρpf,V q



BOUNDARIES OF HHS 29

uniformly coarsely commutes, where g is a coarsely constant map so that: if U Ĺ V ,
then for each W 1 P πpfqpV q, the W 1–coordinate of g is ρWW 1 for some (hence any, by
Lemma 1.5) W P πpfqpUq with W Ĺ W 1, and if U&V , then for each W 1 P πpfqpV q,
the W 1–coordinate of g is ρWW 1 for some (hence any) W P πpfqpUq with W&W 1;

(VII) if V Ĺ U , then

CU ΠWPπpfqpUqCW

CV ΠW 1PπpfqpV qCW
1

//
ρpf,Uq

��

ρUV ��
h

//
ρpf,V q

uniformly coarsely commutes, where the map h is defined as follows: given pxW 1qW 1PπpfqpUq,

for each W P πpfqpV q, the W–coordinate of hppxW 1qq is ρW
2

W pxW 2q, where W 2 is the
unique element of πpfqpUq with W Ĺ W 2.

Remark 5.2 (Hieromorphisms are slanted hieromorphisms). Any hieromorphism f is a
slanted hieromorphism in which |πpfqpUq| “ 1 for all U P S.

Remark 5.3. There is presumably a still more general version of Definition 5.1 encompass-
ing morphisms f : pX ,Sq Ñ pX 1,S1q where f : X Ñ X 1 is a map, f : 2S Ñ 2S

1
sends

pairwise-orthogonal sets to pairwise-orthogonal sets, and f sends appropriate products of
hyperbolic spaces to products of hyperbolic spaces. Simple examples like rotation in E

2

require such a definition in order to be regarded as maps of hierarchically hyperbolic spaces.

Definition 5.4 (Coarse similarity). Let M,M 1 be metric spaces. Then f : M Ñ M 1 is a
pλ, ǫq–coarse similarity if there exist λ ą 0, ǫ ě 0 such that for all p, q P M ,

λdM pp, qq ´ ǫ ď dM 1pfppq, fpqqq ď λdM pp, qq ` ǫ.

Definition 5.5 (Extensible slanted hieromorphism). Let f : pX ,Sq Ñ pX 1,S1q be a slanted
hieromorphism. Then f is extensible if there exist 0 ă λ1 ď λ2 and K ă 8 such that:

(1) πpfq : S Ñ 2S
1
is injective;

(2) for all V P S1, either there is U P S with V P πpfqpUq or diamCV pπV pfpX qqq ď K;
(3) for all U P S and W P πpfqpUq, the composition

CU
ρpf,Uq
ÝÑ

ź

V PπpfqpUq

CV Ñ CW

is a pλ, λ1q–coarse similarity, where the second map is the canonical projection and
λ P rλ1, λ2s (λ can depend on U, V ) and λ1 ě 0.

Theorem 5.6 (Extending slanted hieromorphisms to the boundary). Let pX ,Sq and pX 1,S1q
be hierarchically hyperbolic structures on the spaces X ,X 1 respectively. Suppose that f : pX ,Sq Ñ
pX 1,S1q is an extensible slanted hieromorphism. Then there is a map f̄ : X Ñ X 1 such that

(1) f̄ |X “ f ;
(2) f̄ |BX is injective;

(3) for all fppq P BX 1 and basic neighborhoods fppq P N of X
1
, the set f̄´1pN q contains

a basic neighborhood of p P X , i.e., f̄ is continuous at each point in BX ;

In particular, if X is proper, then f̄ |BX is an embedding with closed image and, if f is an
embedding, then f̄ : X Ñ X 1 is an embedding whose image is closed.

Proof. For convenience, when the domains of the various maps are understood, we shall
denote each map f : X Ñ X 1, πpfq : S Ñ 2S

1
, and ρpf, Uq : CU Ñ ΠWPπpfqpUqCW by f .

Boundary maps on hyperbolic domains: Let U P S. To each sequence pxnq in CU ,
associate the sequence pfpxnqqn in ΠWPCπpfqpUqCW . For eachW P πpfqpUq, let wnpW q P CW
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be the W–coordinate of fpxnq. Fix a basepoint x P CU and pW “ πW pρpf, Uqpxqq P CW for
each W P πpfqpUq.

Suppose that pxnqn represents a point in BCU , i.e. pxi|xjqx Ñ 8 as i, j Ñ 8. Since ρpf, Uq
is a uniform quasiisometric embedding, we have for each W P πpfqpUq that pwipW q|wjpW qqpW Ñ
8 as i, j Ñ 8. Hence wipW q converges to a point ppW q P BCW .

For each W P πpfqpUq, choose αW P p0, 1s so that

αW

αW 1
“ lim

n

dW ppW , wnpW qq

dW 1ppW 1 , wnpW 1qq

for all W,W 1 P πpfqpW q, which exists because of the coarse similarity assumption. Then
define p P ‹WPCπpfqpUqBCW to be the linear combination

ř
WPπpfqpUq αW pW . The assignment

f̄Uppxnqq “ p thus provides a map f̄U : CU Y BCU Ñ ΠWPCπpfqpUqCW Y ‹WPCπpfqpUqCW

extending the map ρpf, Uq.
For any U P S, the map f̄U defined above is injective since the composition of f with any

of the canonical projections ΠWPπpfqpUqCW Ñ CW is a uniform quasiisometric embedding,
and quasiisometric embeddings coarsely preserve Gromov products.

Definition of f̄ : Let p P BX , so that p “
ř

UPSuppppq βUpU , where pU P BCU for

each U , each βU P p0, 1s, and
ř

U βU “ 1. For each U P Suppppq, we defined f̄U ppU q “ř
WPπpfqpUq α

U
W qW above, where qW P BCW and

ř
W αU

W “ 1. Let

f̄ppq “
ÿ

UPSuppppq

ÿ

WPπpfqpUq

βUα
U
W ¨ qW ,

which is a point in BX 1 since
ř

U

ř
W βUα

U
W “ 1 and since

Ť
UPSuppppq πpfqpUq is a pairwise-

orthogonal set by Definition 5.1 since f is a slanted hieromorphism.
Injectivity of f̄ |BX : Injectivity of f̄ |BX follows from injectivity of f̄U on each BCU,U P S

together with injectivity of πpfq and the fact that each f̄U : CU Ñ ΠWPπpfqpUqCW is “fully

supported” in the sense that each αU
W ą 0.

Continuity at boundary points: First consider p P BX . By Proposition 2.17, there
exists pxnq in X such that xn Ñ p as n Ñ 8. We check that fpxnq converges to f̄ppq.

Fix a basepoint x P X , so that p “
ř

UPSuppppq aUpU where
ř

U aU “ 1, each aU ą 0, and

for all U,U 1 P Suppppq,
ˇ̌
ˇ̌ dU px, xnq

dU 1px, xnq
´
aU

aU 1

ˇ̌
ˇ̌ Ñ 0 and

dV px, xnq

dU px, xnq
Ñ 0

whenever U P Suppppq and V P SuppppqK, and finally πU pxnq Ñ pU for all U P Suppppq.
Consider the sequence pwnq “ pfpxnqq. For each U P Suppppq and W P πpfqpUq, let

cW : ΠV PπpfqpUqCV Ñ CW be the canonical projection. By hypothesis, for each such W we
have |dW pfpxq, wnq ´λW dU px, xnq| ď λ1

W , where λW P rλ1, λ2s and λ1
W ě 0. Hence for each

U P Suppppq and W P πpfqpUq, we have that πW pwnq “ cW ˝ f̄pπU pxnqq Ñ cW ˝ f̄ppU q and
f̄pπU pxnqq Ñ

ř
WPπpfqpUq βUαW cW ¨ f̄ppU q as required. Moreover, if V P S1 does not belong

to πpfq, then dV pfpxq, wnq is uniformly bounded by Definition 5.5(2).
Finally, if V P S´Suppppq, then dV px, xnq is dominated by dU px, xnq for any U P Suppppq.

Hence, for such V , we have that dW pfpxq, fpxnqq is dominated by dZpfpxq, fpxnqq whenever
W P πpfqpV q and Z P πpfqpUq for some U P Suppppq, since each ρpf, Uq is a uniform
quasiisometric embedding. Thus fpxnq converges to f̄ppq.

More generally, given any sequence pzkq in X converging to p P BX, we can use the
ideas in the proof of Theorem 3.4 to build a sequence of internal sequences pxk,iq, so that
limi xk,i “ zk for each k. Namely, for each k, we can take a sequence pxk,iq Ñ zk (if zk P X ,
then we choose xk,i “ zk to be constant), and then we choose Nk ą 0 large enough so that if
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n ą Nk, then the sequence pxk,nq will satisfy conditions (1)–(7) from the proof of Theorem
3.4. This will force that limi xk,i “ zk, and then since limk zk “ p, the above conditions will
force limk xk,n “ p.

Now since limn xk,n “ p and limi xk,i “ zk, the internal case above implies limn f̄pxk,nq “
f̄ppq and limi f̄pxk,iq “ zk. Together, these imply that limk f̄pzkq “ f̄ppq. Thus f̄ is
continuous at boundary points.

When X is proper: Assertion (3) combines with Theorem 3.4 and Proposition 2.17.(1)
to imply that f̄ is an embedding; compactness of BX implies that its image is closed. If
in addition, f is an embedding, then f̄ : X Ñ X 1 is an embedding, since assertion (3)
again combines with Proposition 2.17.(1) and Theorem 3.4 to imply that f̄ is a continuous
injection from a compact space to a Hausdorff space. �

Remark 5.7. Theorem 5.6 holds under slightly more general conditions: condition (3) of
Definition 5.5 need only be imposed on U P S in cases where either there exists V P S with
U K V or |πpfqpUq| ą 1 or both. For any U with empty orthogonal complement and for
which πpfqpUq “ tV u for some V P S1, it suffices to require that ρpf, Uq : CU Ñ CV is a
uniform quasiisometric embedding.

5.1. Limit sets of hierarchically quasiconvex sets. Let pX ,Sq be a proper hierarchi-
cally hyperbolic space and let Y Ď X be hierarchically quasiconvex. Let ΛY be the set
of boundary points p “

ř
UPSuppppq aUpU P BX such that for all U P Suppppq, there is a

sequence pnU P πU pYq converging to pU .

Proposition 5.8 (Hierarchically quasiconvex subspaces have limit sets). Y YΛY is a closed
subset of X , and Y is dense in Y YΛY. Hence Y has an HHS structure so that Y YΛY “ Y.

Proof. This is a definition chase and an application of Proposition 2.17. �

Remark 5.9. When πU |Y is either surjective or uniformly bounded for each U , Theorem 5.6,
together with the HHS structure on Y inherited from X , implies that ΛY is homeomorphic
to the HHS boundary BY. This holds in particular for the main examples of hierarchically
quasiconvex subspaces that we use, namely product regions:

Remark 5.10 (Boundaries of standard product regions). Let U P S, and recall from
Section 1.3 that there is a quasiisometric embedding FU ˆEU Ñ X coming from the standard
hieromorphisms. By definition, BFU consists of exactly those

ř
V aV pV P BX where the

support set tV u consists entirely of elements of SU , while BEU consists of linear combinations
of the same form, but with each V P SK

U . In particular, under the map FU ˆEU Ñ X , we see
that the images of BpFU ˆ te1uq, BpFU ˆ te2uq Ñ BX are identical. Moreover, the subspace
BFU Ă BX is closed. Finally, BPU Ă X is a closed subset homeomorphic to BFU ‹ BEU ,
where ‹ denotes the spherical join.

5.2. Geometrically finite subgroups of mapping class groups. In this subsection, we
will show that certain interesting subgroups of mapping class groups have a well-defined
limit set in the boundary. Before doing so, we give a quick sketch of relevant facts about
mapping class groups and Teichmüller spaces. For more details about the HHG structure of
the mapping class group, the reader is referred to [BHS15b, Section 11].

Fix a finite type surface S. The mapping class group MCGpSq of S acts properly and
cocompactly on the marking graph MpSq of S [MM00]. The vertices of the marking graph,
called markings, are isotopy classes of certain collections of curves on S (pants decomposition
together with certain transverse curves). MCGpSq and MpSq are quasiisometric via the orbit
map, and we will identify MCGpSq with an orbit in MpSq from now on. The mapping class
group can be given a hierarchically hyperbolic structure by considering the collection S

of all its (isotopy classes of essential) subsurfaces and associating to each Y P S its curve
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graph CY , a graph whose vertices are isotopy classes of essential simple closed curves on
Y , except when Y is an annulus (a case that will be more subtle to deal with later, and
which we will hence explain in more detail here). When Y is an annulus, CY has vertices
the isotopy classes of arcs connecting the two boundary components, and two such vertices
are adjacent if they can be represented by disjoint arcs. The maps πY : MCGpSq Ñ 2CY are
called subsurface projections and, when Y is not an annulus, they are defined more or less
by intersecting the curves in the marking with Y . When Y is an annulus πY is defined in
the following way. Let Ŷ be the annular cover of S where the core of the annulus lifts to a
simple closed curve. There is a natural compactification Y of Ŷ which is a closed annulus,
and that can be identified with Y . Given a marking m, lift to Ŷ all the curves in m, except
possibly the (only) one which is isotopic to the core of Y . Each such lift can be compactified
to an arc in Y , and we can finally define πY pmq to be the collection of all such arcs that
connect distinct boundary components of Y .

We now comment briefly on Teichmüller space T pSq endowed with the Teichmüller metric.
A point on Teichmüller space corresponds to a hyperbolic metric on S, and we can hence
consider the systole map Sys : T pSq Ñ 2CS that maps points in Teichmüller space to the
shortest curves in the corresponding hyperbolic metric. The set of systoles is non-empty
and pairwise disjoint, thus giving a bounded subset of CS.

5.2.1. Subsurface mapping class groups. For any nonpants subsurface Y Ă S there is a
natural embedding ιY : MCGpY q ãÑ MCGpSq which takes any mapping class fY P MCGpY q
to a mapping class f P MCGpSq so that f |Y ” Y and f |SzY ” idSzY ; if Y is an annulus, we
take MCGpY q to be the cyclic subgroup generated by the Dehn (half) twist about the core
of Y .

We can also see this map in terms of markings: For each component X Ă SzY (including
annuli with core curves in BY ), fix a marking µX P MpXq; if X is an annulus, then µX P CX.
Define a map ιY : MpY q Ñ MpSq by

ιY pµY q “ µY \
ž

αPBY

α \
ž

XPSzY

µX

for any marking µY P MpY q.
The map ιY extends to a hieromorphism in the obvious way and it follows from the

distance formula that it is a quasiisometric embedding. Moreover, since diamZpιY pMpY qqq
is uniformly bounded for each Z P SzSY and ιY is surjective for each W P SY , it is easy
to see that ιY pMpY qq is a hierarchically quasiconvex subspace of MpSq. Hence we have by
Proposition 5.8:

Theorem 5.11. For any nonpants subsurface Y Ă S, the natural inclusion ιY : MCGpY q ãÑ
MCGpSq equivariantly extends to a continuous embedding BιY : BMCGpY q ãÑ BMCGpSq.

5.3. Convex cocompactness subgroups. Convex cocompact subgroups of mapping class
groups are a much-studied class of hyperbolic subgroups of mapping class groups, mainly
because they are precisely the class of subgroups of MCGpSq whose corresponding surface
subgroup extensions are hyperbolic. Importantly, they satisfy several strong equivalent
characterizations, which we state in the following theorem-definition with parts due variously
to Farb-Mosher [FM02], Hamenstädt [Ham05], Kent-Leininger [KL08], and the first author
with Taylor [DT15]:

Theorem 5.12. A subgroup H ă MCGpSq is convex cocompact if it satisfies any of the
following equivalent conditions:

(1) Any orbit of H in T pSq is quasiconvex;
(2) Any orbit of H in CS is quasiisometrically embedded;
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(3) Any orbit of H in MpSq is quasiisometrically embedded and has uniformly bounded
subsurface projections;

(4) H is a stable subgroup of MCGpSq;
(5) The corresponding extension ΓH of π1pSq is Gromov hyperbolic.

The following is a corollary of Proposition 5.8 and Theorems 4.3 and 5.12:

Corollary 5.13. If H ă MCGpSq is a convex cocompact subgroup of MCGpSq, then the
inclusion map H ãÑ MCGpSq H-equivariantly extends to a continuous embedding BGrH ãÑ
BMCGpSq.

Proof. It follows immediately from properties (2) and (3) of Theorem 5.12 that H is a
hierarchically quasiconvex subgroup of MCGpSq. Since H is hyperbolic, Theorem 4.3 implies
that the boundary of the induced HHS structure on H inside of MCGpSq is homeomorphic
to BGrH. The result then follows from Proposition 5.8. �

In the rest of the section, we will consider finitely generated Veech subgroups and the
Leininger-Reid combination subgroups of MCGpSq, which are generally not hierarchically
quasiconvex. Recall that for both classes of groups, their actions on T pSq do not extend
continuously everywhere to embeddings of their boundaries into PMLpSq. The main goal
of the remainder of this section is to prove that such an extension does exist for both classes
of groups into BMCGpSq.

5.3.1. Veech subgroups. The construction of Veech and Leininger-Reid subgroups involves
holomorphic quadratic differentials. We will not work with them directly, so we do not
need to define them, but we will rather work with the q–metric associated to a holomorphic
quadratic differential q on the surface S. This is a singular flat metric on S which is locally
isometric to R

2 except at finitely many points called singularities.
Given a holomorphic quadratic differential q on S, there exists a convex subset TDpqq Ă

T pSq with TDpqq – H
2 called a Teichmüller disk. Let Aff`pqq denote the affine group

of q. Following [LR06], we call any subgroup Gpqq ď Aff`pqq ď MCGpSq, with Gpqq
acting properly on TDpqq, a Veech subgroup, except that we will also ask that Gpqq be
finitely generated. Veech subgroups have the property that every element of Gpqq is either
pseudo-Anosov or a multitwist about some annular decomposition A of q [Vee89], where
this annular decomposition comes from a finite measured foliation with only closed leaves
naturally associated to q.

Consider the Veech subgroup G “ Gpqq ď MCGpSq. Let XG be the orbit of G of a
fixed marking µ in the marking graph MpSq. Given a multitwist g P G with annular
decomposition Ag “ tα1, . . . , αngu, let

πg : XG Ñ
ź

1ďiďng

Cαi

be given by πgpνq “ pπα1
pνq, . . . , παng

pνqq for ν P XG. If g “ T k1
α1

¨ ¨ ¨ T
kng
αng

, let

Lg “ xgy ¨ πgpµq Ă
ź

1ďiďng

Cαi.

Note that Lg – R, and in fact Lg is the projection of the g-orbit of µ and thus coarsely the
line in R

ng with slope pk1, . . . kng q, where we identify the origin of Rng with the projection of
µ. For each Lg, let πLg :

ś
1ďiďng

Cαi Ñ Lg be the standard projection onto Lg, considered

as a subspace of Rng identified as above.
We now define an HHS structure pG,SGq on G as follows:
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(Domains) : S is the unique nest-maximal domain in SG, and for every primitive multitwist
g P G with corresponding annular decomposition Ag “ tαg,1, . . . αg,ngu, we include
a domain Ug P SG.

(The spaces) : To S, we associate πSpG ¨ µq Ă CS and to each Ug, we set CUg “ Lg and declare
Ug Ď S for each g; moreover, we specify that Ug&Ug1 for each primitive g ‰ g1.

(Projections) : πS : XG Ñ CS is the standard projection; for each Ug, we define πUg : XG Ñ Lg

by πUgpνq “ πLgpπgpνqq for each ν P XG.

(Relative projections) : Given U, V P SG, we define ρUV : CU Ñ CV by:

(U Ď V ) : In this case V “ S and U “ Ug for some primitive g, then ρVU “ πLg ˝ πg.
(U&V ) : If U “ Ug and V “ Ug1 , then

ρ
Ug

Ug1
“ πUg1 pxgy ¨ µq.

Lemma 5.14. If G is finitely generated, then pG,SGq is an HHS structure on G, and
G ă AutpSGq.

Proof. We need to prove that pG,SGq satisfies the axioms; since it clearly satisfies pro-
jections, nesting, orthogonality, and finite complexity, it suffices to prove it satisfies the
consistency, large link, bounded geodesic image, partial realization, and uniqueness axioms.
Hyperbolicity of the associated spaces uses Lemma 5.15 (the only part for which we need
finite generation of G).

There is no nontrivial orthogonality, so partial realization holds by construction. Bounded
geodesic image holds by the bounded geodesic image axiom in pMCGpSq,Sq and the defi-
nition of ρSUg

. The consistency and large link axioms hold for a similar reason. Uniqueness

follows from uniqueness in pMCGpSq,Sq together with Lemma 5.16. �

Lemma 5.15. The projection πSpG ¨ µq is quasiconvex in CS.

Proof. Consider the action of G on the corresponding Teichmüller disk TDpqq. Since the
action is proper, this makes G a finitely generated Fuchsian group. Hence, G is geometrically
finite [Mar67], so that it acts with cofinite volume on a convex subspace CG Ď TDpqq.
Consider now the image of CG and TDpqq in CS. Since geodesics in T pSq map to quasi-
geodesics in CS [MM99] and CG is a convex subspace of T pSq, it follows that πSpCGq is
quasiconvex in CS.

Now, it is not hard to see that πSpCGq coarsely coincides with πSpG ¨ µq. In fact, CG

contains a G–equivariant collection of horodisks so that the action on the complement C 1
G is

cocompact, and cocompactness implies that πSpG¨µq coarsely coincides with the image in CS

of C 1
G. Moreover, each horodisk is stabilized by a multitwist, and the corresponding curves

are short in all hyperbolic metrics corresponding to points in the horodisk. This implies
that the whole horodisk maps to a uniformly bounded subset of CS under the systole map,
namely a neighborhood of the aforementioned curves. To sum up, the projection of the
Teichmüller disk to CS is quasiconvex and coarsely coincides with the projection of C 1

G,
which in turn coarsely coincides with the projection of G ¨ µ, and we are done. �

Lemma 5.16. There exists V ą 0 such that for any U P S´tSu, either diamU pπU pG¨µqq ď
V or U “ αi P Ag for some annular decomposition Ag. In the latter case, πU is (uniformly)
coarsely surjective.

Proof. Let U Ĺ S be a subsurface and let ∆ Ă U be its spine, which is obtained by puling
tight BU with respect to the q-metric, so that vertices of ∆ are singular points and edges
are saddle connections (i.e. geodesics connecting singularities and intersecting the singular
set only at the endpoints). There exists a natural retraction r : U Ñ ∆ and for each edge e
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of ∆, let δe “ r´1pmeq, where me is the midpoint of e. Each δe is either a curve or an arc
in pU, BUq. We now divide into three cases.
U is non-annular: In this case, ∆ has a degree–3 vertex v. Suppose that µ has a base

curve α that traverses each saddle connection in ∆ at most once. Then v has some incident
edge e so that δe is disjoint from α. Now, for any g P Aff`pqq, we have that g ¨∆ is the spine
of g ¨ U , with vertices that are singular points and edges saddle connections. In particular,
g ¨ α is a curve using each saddle connection of ∆ at most once, so dACU pα, g ¨ αq ď 3,
where ACU denotes the arc-and-curve graph of U . Since there is a 2-Lipschitz retraction
ACpUq Ñ CU [MM00][Lemma 2.2], it follows that diamU pG ¨ µq is uniformly bounded.

Since Gpqq preserves the set of all singularities, saddle connections, and geodesic repre-
sentatives of curves, we are done provided we choose the marking µ in such a way that each
of its base curves traverses each saddle connection at most once.
U P Ag for some g: Let g P Gpqq be a multitwist about curves α1, . . . , αn, so that

g “
śn

i“1 T
ki
αi

, where ki P Z ´ t0u. Hence πU is ki–surjective (where U “ αi). Indeed,

πUpg ¨ µq “ πU pT ki
αi

¨ µq, and the ki are uniformly bounded since the action of Gpqq on
the corresponding Teichmüller disc is geometrically finite, and thus there are finitely many
conjugacy classes of multitwists in Gpqq; see the proof of Lemma 5.15.
U an annulus and U R Ag for any g: The spine ∆ of U contains at least one singularity,

and the angle at the singularity is greater than π on both sides. Let pU be the annular cover

of S corresponding to U . The lift p∆ of ∆ disconnects pU into two connected components,

and we will refer to the closure of each such connected component as a side of p∆. Consider

a singularity along p∆ and a saddle connection entering the singularity. Then, for any side

of p∆ there exists a unique geodesic ray emanating from the given singularity, forming an

angle of π with the given saddle connection and contained in the given side of p∆. We let

tαiu be the open arcs in pU that can be formed by concatenating two such rays lying in

opposite sides of p∆. It is readily seen that any two αi have intersection number at most 1.
The bound on the diameter of the projection onto CU now follows from the fact that any
arc in the subsurface projection onto CU of some curve in S can be represented either by

a geodesic transverse to a saddle connection in p∆, which is easily seen to be disjoint from
some αi, or a geodesic containing one of the singularities, which is easily seen to intersect
an appropriate αi containing that singularity at most once. �

Lemma 5.17. There exists a G–equivariant extensible slanted hieromorphism pG,SGq Ñ
pMCGpSq,Sq.

Proof. At the level of spaces, the map G Ñ MCGpSq is the inclusion. Define πpfq : SG Ñ 2S

as follows: let πpfqpSq “ tSu, and for each primitive multitwist g, let πpfqpUgq “ Ag, where
Ag is the set of pairwise-disjoint annuli corresponding to the multicurve supporting g. This
is G–equivariant since hAg “ Ahgh´1 for each multitwist g and each h P G.

The map ρpf, Sq : CS Ñ CS is the identity. For each primitive multitwist g “ T k1
α1

¨ ¨ ¨T
kng
αng

,

the map ρpf, Uq : Lg Ñ
ś

i Cαi was specified above. Observe that the composition of this
map with any of the canonical projections to Cαi is a coarse similarity with multiplicative
constants determined by tk1, . . . , kngu. These constants are uniformly bounded since there
are finitely many conjugacy classes of multitwists in Gpqq. �

Combining Lemma 5.17 and Theorem 5.6, Remark 5.7, and Theorem 4.3 yields:

Corollary 5.18. For any Veech subgroup G ă MCGpSq, the inclusion G Ñ MCGpSq
extends continuously to an equivariant embedding BGrG Ñ BMCGpSq with closed image.

Remark 5.19. Corollary 5.18 does not follow from Proposition 5.8 because the Veech
subgroup G is not hierarchically quasiconvex in MCGpSq whenever it contains a multitwist
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supported on a multicurve with more than one component; indeed, in this case there are
realization points in MCGpSq whose images in each curve graph lie in the image of G, but
which are arbitrarily far from G.

5.3.2. Leininger-Reid surface subgroups. We now turn to the Leininger-Reid surface sub-
groups constructed in [LR06, Theorem 6.1]. Again, we show that these are non-hierarchically
quasiconvex subgroups of MCGpSq that nonetheless have well-defined limit sets in BMCGpSq.
The setup is as follows:

(1) Let q1, . . . , qn be holomorphic quadratic differentials, with A0 P CS the core of the
annular decomposition of each qi such that each complementary component has
negative Euler characteristic;

(2) Suppose G0 “ G0pqiq for all i ď n;
(3) Suppose h P MCGpSq centralizes G0 and is pure and pseudo-Anosov on all compo-

nents of S ´A0.

Then, for

H “ Gpq1q ˚G0
hk2Gpq2qh´k2 ˚G0

¨ ¨ ¨ ˚G0
hknGpqnqh´kn ,

the map H Ñ MCGpSq is an embedding, whenever N “ mint|ki ´ kj | : i, j P t1, . . . , nu, i ‰
ju (where we set k1 “ 0) is large enough. Moreover, every element of impH Ñ MCGpSqq
(which we denote by H) is either pseudo-Anosov or conjugate into an elliptic or parabolic
subgroup of some hkiGpqiqh

´ki . In particular, the Gpqiq can be chosen so that H fails to be
hierarchically quasiconvex for the reason explained in Remark 5.19.

In the remainder of this section, we prove:

Theorem 5.20. The inclusion H Ñ MCGpSq extends continuously to an equivariant em-
bedding BH Ñ BMCGpSq with closed image.

Proof. This follows from Theorem 5.6, Remark 5.7, and Proposition 5.25 below. �

Our goal is now to state and prove Proposition 5.25, which says that the inclusion of H
into MCGpSq is a slanted hieromorphism. We need control over various projections, which
we achieve in the following preliminary lemmas.

Lemma 5.21. There exists a constant Q so that, for any i and any k, πSphkGpqiqh
´kq is

Q–quasiconvex.

Proof. Apply quasiconvexity of the πSpGpqiqq and boundedness of tπSp1, hkqukPZ. �

Denote by Y the set of connected components in S of the complement of the annuli in
the annular decomposition of the multitwists in G0.

Lemma 5.22. There exists K so that for any Y transverse to some Y0 P Y we have
dY pρY0

Y , 1q ď K.

Proof. This is because ρY0

Y coarsely coincides with πY pPY0
q, and the fact that πY is coarsely

Lipschitz (note that there are finitely many Y0). �

Lemma 5.23. For each g P Gpqiq ´ G0 for some i and each Y P Y, there exists Y 1 P Y so
that g ¨ Y 1 is transverse to Y .

Proof. This is a restatement of [LR06, Lemma 4.1]. �

Lemma 5.24. There exists C,M with the following property. For any g “ g1h
m1 . . . gkh

mk

with gi P Gpqjpiqq ´G0 and |mi| ě M for each i ď k, we have dY0
p1, gq ď C for each Y0 P Y.
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Proof. Let K be as in Lemma 5.22. Proceed by induction on k, for C to be determined. If
k “ 0, there is nothing to prove.

Suppose k ě 1. Fix Y0 P Y and let Y “ g1Y
1 with Y 1 P Y chosen via Lemma 5.23 so that

Y 1&Y0. By induction, dY pg1h
m1 , gq “ dY 1p1, g2h

m2 . . . gkh
mkq ď C, since hY “ Y for any

Y P Y by hypothesis so that g1h
m1 ¨ Y 1 “ g1 ¨ Y 1 “ Y .

By Lemma 5.16, dY p1, g1q is uniformly bounded by some V . Hence dY p1, gq ě dY pg1, g1h
m1q´

C ´ V “ dY 1p1, hm1q ´ C ´ V . If |m1| is large enough, then this quantity is larger than
K ` 10E. Since Y0&Y , consistency implies that we have dY0

pρYY0
, gq ď E. Also,

dY0
pρYY0

, 1q ď dY0
pρYY0

, g1q ` V “ d
g´1
1 Y0

pρY
1

g´1
1 Y0

, 1q ` V ď V `K,

hence dY0
p1, gq ď 2E ` V `K. Thus we set C “ 2E ` V `K, which determines M . �

Proposition 5.25. The subgroup H ď MCGpSq admits a hierarchically hyperbolic space
structure pH,SHq so that there is an extensible slanted hieromorphism pH,SH q Ñ pMCGpSq,Sq
induced by the inclusion H ãÑ MCGpSq.

Proof. We follow a very similar procedure to that used for individual Veech subgroups. In
particular, SH is defined exactly as SG was, except that there is now a domain Ug for each
primitive multitwist in H. To verify that this yields an HHS structure, we must check that:

(1) πSpHq is quasiconvex.
(2) πU pHq is uniformly bounded unless U P Ag for some g P H.

Once the properties above are proven, arguing exactly as in the proof of Lemma 5.14 and
Lemma 5.17 yields the desired slanted hieromorphism and completes the proof.

We now set conventions and notations that we use throughout the proof. When some
g “ g1 . . . gk P H with gi P hkjpiqGpqjpiqqh

´kjpiq ´ G0 is any fixed element of H, we denote
pl “ πSpg1 . . . glq (with p0 “ πSp1q), and let γl be a geodesic in CS from pl´1 to pl, so that the
concatenation of the γl is a path from πSp1q to πSpgq. Furthermore, notice that we can write
g “ hm0g1

1h
m1 . . . g1

kh
mk for some g1

i P Gpqjpiqq ´ G0 (more specifically, g1
i “ h´kjpiqgih

kjpiq),
and that |ml| for l ă k is bounded below by N (recall that this is the minimal value of
|ki ´ kj | for i ‰ j). We set hl “ hm0g1

1h
m1 . . . g1

l.
In the following claim, we study geodesics connecting πSp1q to πSpgq for arbitrary g P G.

The claim easily implies that geodesics from πSp1q to πSpgq stay close to πSpHq for any
g P H because each γl is contained in a coset of some hkjpiqGpqjpiqqh

´kjpiq and such cosets are
uniformly quasiconvex byLemma 5.21. Hence, the claim proves that πSpHq is quasiconvex,
which is item 1 above.

Claim 2. There exists a constant R with the following property. For any g P H, the
Hausdorff distance between

Ť
l γl and rπSp1q, πSpgqs is bounded by R, where rπSp1q, πSpgqs

is any geodesic in CS from πSp1q to πSpgq. Moreover, for any Y P Y we have that
dhlY p1, hlq, dhlY pg, hlh

mlq ď C.

Proof. We first show
Ť

l γl is uniformly close to rπSp1q, πSpgqs.
It suffices to show that the endpoints of all γl lie within controlled distance of rπSp1q, πSpgqs.

Any such endpoint x coarsely coincides with both πSphlq and πSphlh
mlq, for some l (since

tπSphmqumPZ is a bounded set). Pick any Y P Y, and set Z “ hl ¨ Y . By Lemma 5.24
we have dZphlh

ml , gq ď C and dZp1, hlq ď C. Hence, if ml is large enough, we get
dZp1, gq ě dY p1, hmlq ´ 2C ě 100E. Notice that by bounded geodesic image ρZS needs
to be within 10E of geodesics from πSphlq and πSphlh

mlq, which both coarsely coincide with
the endpoint x we are interested in. If geodesics from πSp1q to πSpgq did not pass close to x
we could then conclude that they do not pass close to ρZS , which would imply by bounded
geodesic image that dZp1, gq ď 5E. But this is not the case, and hence we get a bound on
the distance from x to rπSp1q, πSpgqs, as required.



BOUNDARIES OF HHS 38

Let us now prove that points on rπSp1q, πSpgqs are close to
Ť

l γl. Suppose by contradiction
that there exists x P rπSp1q, πSpgqs with dSpx,

Ť
l γlq ě 2C`1. Let x1, x2 P rπSp1q, πSpgqs lie

on distinct sides of x (in the natural order of rπSp1q, πSpgqs), with x1 closer to πSp1q than x,
and satisfy dSpxi, xq “ C ` 1. Then any y P

Ť
γl lies in NCprπSp1q, x1sq Y NCprx2, πSpgqsq.

However, the two neighborhoods are disjoint and the connected set
Ť
γl contains points in

both, a contradiction. �

Let us now take U P S ´ tSu and g P H with dU p1, gq ě 100E. We need to show that
either U belongs to some Ag1 or dU p1, gq is bounded independently of U, g.

We proved in the claim that, for any Y P Y, the projections of 1 and g on hl ¨ Y coarsely
coincide with the projections of hl and hlh

ml respectively, and hence that dhl¨Y p1, gq ą 100E

if |ml| ě N is large enough. Since ml can take finitely many values, we therefore get the
desired bound whenever U is of the form hl ¨ Y . We now assume that U is neither belongs
to some Ag1 nor it is of the form hl ¨ Y . Hence, for any l there exists Y so that hl ¨ Y&U

overlap, and hence are comparable in the partial order ĺ; see Proposition 2.8 of [BHS15b].
Another fact about ĺ is that whenever Y, Y 1 P Y and l are so that hl ¨Y&hl`1 ¨Y 1, we have

hl ¨ Y ĺ hl`1 ¨ Y 1, again provided |ml| ě N is large enough. In fact, ρ
hl`1Y

1

hlY
“ hl`1ρ

Y
h´1
l`1

hlY 1

coarsely coincides with πhl¨Y phl`1q (Lemma 5.22), which in turn coarsely coincides with
πhl¨Y phlh

mlq by Lemma 5.16 since hl`1 “ hlh
mlg1

l`1. Finally, πhl¨Y phlh
mlq coarsely coincides

with πhl¨Y pgq by what we said above.
By looking at a predecessor and a successor of U , we then see that the projections of

1, g onto U coarsely coincide with those of hl ¨ Y, hl`1 ¨ Y 1 for some l and Y, Y 1. But these
latter projections coarsely coincide with those of hl and hlh

mlg1
l`1. The projections of hl

and hlh
ml are uniformly close by boundedness of ml, while the projections of hlh

ml and
hlh

mlg1
l`1 are uniformly close by Lemma 5.16. This concludes the proof. l

6. Automorphisms of HHS and their actions on the boundary

The most important special case of an extensible hieromorphism is an automorphism of
pX ,Sq. For any automorphism f : pX ,Sq Ñ pX ,Sq, each isometry f : CU Ñ CpfpUqq

extends to a homeomorphism f̂ : BCU Ñ BCpfpUqq, yielding an application of Theorem 5.6:

Corollary 6.1 (Extensions of automorphisms to the boundary). Any f P AutpSq extends
to a bijection X Ñ X which restricts to a homeomorphism on BX .

Proof. Let f : pX ,Sq Ñ pX ,Sq be an automorphism. Let p P BX , with p “
řn

i“1 a
p
Ti
pTi

,

where the Ti are pairwise orthogonal and pTi
P BCTi. Define a map f̂ : BX Ñ BX by

f̂ppq “
nÿ

i“1

a
p
Ti
f̂ppTi

q,

where f̂ : BCTi Ñ BCpfpTiqq is induced by f : CTi Ñ CTi. Let f : X Ñ X be the extension

of f which is f̂ on BX ; extend f´1 similarly. Since f is an automorphism, f is clearly a

bijection. Continuity of f, f
´1

on the boundary follows from Theorem 5.6. �

When pG,Sq is a hierarchically hyperbolic group, BG is defined. In general, if X ,X 1 are
hierarchically hyperbolic with respect to the same collection S, then there is a quasiisometry
X Ñ X 1 extending to the identity on the boundary. Indeed, the definition of BX depends
only on S and the attendant hyperbolic spaces.

Corollary 6.2. Let pG,Sq be a hierarchically hyperbolic group. Then the action of G on
itself by left multiplication extends to an action of G on G by homeomorphisms.

Section 6.1 is devoted to automorphisms, whose fixed points in BX we study in Section 6.2.
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6.1. Classification of HHS automorphisms. In this subsection, we will classify HHS
automorphisms by their actions on S. Let g P AutpSq and fix a basepoint X P X . Set

Bigpgq “ tU P S|diamCU pxgy ¨ Xq is unboundedu.

Observe that g ¨ U P Bigpgq if U P Bigpgq, since g : CU Ñ CpgUq is an isometry.

Lemma 6.3. There exists M “ MpSq ą 0 so that for all g P AutpSq and U P Bigpgq, we
have gM ¨ U “ U .

Proof. Consider the orbit xgy ¨ U in S.

If there exists n ě 1 so that gn ¨U Ĺ U , then gkn ¨U Ĺ gpk´1qn ¨U Ĺ ¨ ¨ ¨ Ĺ gn ¨U Ĺ U for
all k ě 1, so we either contradict finite complexity (if xgy ¨ U is infinite) or the fact that Ď

is a partial order (if xgy ¨ U is finite). Hence gn ¨ U Ĺ U unless n “ 0. Similarly, U Ĺ gnU

unless n “ 0.
Next, consider the case where U P Bigpgq and gn ¨ U&U for some n ě 1. Then since

U P Bigpgq, we can choose arbitrarily large m P N so that dU pX, gm ¨ Xq ą T “ 100E `
dU pg´1 ¨ X,Xq ` fpmq, where f : N Ñ N is increasing. Hence dgnU pgm`1 ¨ X, g ¨ Xq ą T ,

since g : CU Ñ CgU is an isometry. The triangle inequality shows that dgnU pgM ¨ X,Xq ą
T ´ 2dgU pX, gn ¨ Xq “ 100E ` fpmq. By considering at least two such values of m, we see
that consistency is contradicted (specifically, we contradict Lemma 2.3 of [BHS15b]).

It follows that if U P Bigpgq, then, for all n P Z, either gn ¨ U “ U or gn ¨ U K U . Hence
xgy ¨ U is a pairwise-orthogonal collection. Hence there exists a global M , depending only
on the complexity and Lemma 1.4, so that gM ¨U “ U for each U P Bigpgq, establishing the
first assertion. �

Proposition 6.4. The automorphism g P AutpSq is elliptic if and only if Bigpgq “ H.

Proof. If xgy ¨X is bounded, then Bigpgq “ H since projections are coarsely Lipschitz.
Conversely, suppose that Bigpgq “ H. We will show that there exists D “ Dpgq so that

diamV pπV pxgy ¨Xqq ď D for all V P S. From this and the distance formula (Theorem 1.9),
it follows that g is elliptic. Hence suppose that no such D exists.

We need two facts:

(I) For each N ě 0, there exists P “ P pN,Sq so that for all U P S and h P AutpSq,
either some positive power of h fixes U or tU, g ¨ U, . . . , gP ¨ Uu contains a set of N
pairwise-transverse elements. Indeed, as in the proof of Lemma 6.3, for any p, the
elements of tU, g ¨ U, . . . , gp´1 ¨ Uu are pairwise Ď–incomparable, and any pairwise-
orthogonal subset has cardinality bounded by the complexity χ of S. Hence, if p
exceeds the Ramsey number Rampχ ` 1, Nq, we have by Ramsey’s theorem that
tU, g ¨U, . . . , gp´1 ¨Uu contains a set of N pairwise-transverse elements, so we can take
P “ Rampχ ` 1, Nq ´ 1.

(II) For each C ě 0 there exists Q P N with the following property. Let x, y P X and
suppose tViuiPI satisfies dVi

px, yq ą E for all i, and that |I| ě Q. Then there exists
V P S so that Vi Ĺ V for some i P I, and dV px, yq ą C. This is a slight strengthening
of Lemma 3.2; this exact statement is [BHS15a, Lemma 1.8].

Recall that χ denotes the complexity – i.e. the maximum level – in S, so that S is the
unique element of level χ. Since Bigpgq “ H but there are arbitrarily large projections, by
assumption, there exists a level ℓ ă χ and a constant R ă 8 so that:

‚ diamU pπU pxgy ¨ Xqq ď R when U has level greater than ℓ;
‚ for each D ă 8, there exists U P S, of level ℓ, with diamU pπU pxgy ¨Xqq ą D.

Let U P S be chosen so that dU pX, gn ¨ Uq ą :R, where :R is a constant to be determined.
We can and shall assume that our U has been chosen at level ℓ, and we emphasize that such
a U can be chosen so as to make :R arbitrarily large.
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Let Q “ QpRq be the constant provided by setting C “ R in fact (II) and let P “
Rampχ ` 1, Qq. Fact (I) provides U1, . . . , UQ P tU, g ¨ U, . . . , gP ¨ Uu so that Ui&Uj when

i ‰ j. Now, for 1 ď j ď Q, we have dUj
pX, gn ¨ Xq ě :R ´ 100KEQ. So, provided :R —

which can be chosen independently of R and hence of Q — satisfies :R ą 100KEQ ` 10E,
fact (II) provides T P S so that Uj Ĺ T for some j and so that dT pX, gn ¨ Xq ą R. Now,
since Uj is a translate of U and AutpSq preserves the levels, the level of Uj is ℓ, and hence
T has level strictly greater than ℓ, which is a contradiction since dT pX, gn ¨ Xq ą R. �

Remark 6.5. In the case where X is proper, there is a quick proof of Proposition 6.4 relying
on the more powerful tools from Section 9.

Lemma 6.6. Let g P AutpSq. Then there exists D “ Dpg,Eq so that diamU pπU pxgy ¨Xqq ď
D for all U P S ´ Bigpgq.

Proof. Let Bigpgq “ tUiuiPI . Note that it suffices to prove the lemma for some positive
power of g, so by Lemma 6.3, we may assume that g ¨ Ui “ Ui for all i P I.

If Bigpgq “ H, then g is elliptic by Proposition 6.4, from which the lemma follows
immediately: for each V P S, we have diamV pπV pxgy ¨ Xqq ď K diamX pxgy ¨ Xq, which
is bounded independently of V .

Next, suppose that Bigpgq ‰ H and S R Bigpgq (as usual, S P S is the unique Ď–maximal
element). Then, for each i P I, the element Ui is maximal in an HHS pFUi

,SUi
q admitting

a g–equivariant hieromorphism to pX ,Sq. Since Ui ‰ S, the complexity of pFUi
,SUi

q
is strictly lower than that of pX ,Sq, so it follows by induction that diamV pπV pxgy ¨ Xqq
is bounded independently of V when V Ď Ui. Indeed, in the base case, when the com-
plexity is 1, X is itself a hyperbolic space and the lemma follows from the usual ellip-
tic/parabolic/loxodromic classification of isometries of hyperbolic spaces [Gro87].

Now, let T be the set of all U P S so that U Ď Ui for some i P I. Observe that
T is g–invariant and downward-closed under nesting. Then Proposition 2.4 of [BHS15a]

provides an HHS p pXT,S´Tq with the same associated nesting and orthogonality relations,
hyperbolic spaces, and projections. Since T was g–invariant, g descends to an automorphism

of p pXT,S´Tq so that the action of g on S´T is the restriction of the original action on S

and, for each V P S´T, the isometry CV Ñ CgV is the original one. Now g has Bigpgq “ H

with respect to p pXT,S ´ Tq and hence we are done by the proof of Proposition 6.4.
The preceding two analyses prove the lemma except in the case where S P Bigpgq. Hence,

suppose S P Bigpgq, so that g acts either loxodromically or parabolically on CS. In this case,
we cannot induct on complexity, so we argue directly using consistency, bounded geodesic
image, and simple properties of isometries of hyperbolic spaces.

If U P S ´ tSu, then U Ĺ S, and ρUS Ă CS is a well-defined diameter–ď E subset.
First suppose that g acts loxodromically on CS. Then there exists N “ Npgq so that ď N

elements of πSpxgy ¨ Xq lie in the 100E–neighborhood of ρUS . Let tgi ¨ Xun
1

i“n be the points
in xgy ¨ X Ă X projecting into N S

100EpρUS q Ă CS, so that n1 ´ n ď N . Then for all i, j P Z,
consistency and bounded geodesic image imply that

dU pgi ¨ X, gj ¨Xq ď E ` max
nďk,kďn1

dSpgk ¨X, gk
1

¨Xq

ď E ` max
0ďk,k1ďN

KdX pgk ¨ X, gk
1

¨ Xq `K,

which is independent of U (here K is the coarse Lispchitz constant from Definition 1.1).
Next, suppose that g acts parabolically on CS. By definition, xgy ¨ X has a unique limit

point in the Gromov boundary of CS, so there is an increasing function f : N Ñ N so that
pgn ¨ πSpXq|gm ¨ πSpXqqπSpXq ą fpkq whenever mint|m|, |n|u ě k. In particular, there exists
k, independent of U , so that no CS–geodesic from πSpgn ¨Xq to πSpgm ¨Xq passes 100E–close
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to ρUS provided |m| ě k and |n| ě k. We now argue exactly as in the loxodromic case to
bound diamU pπU pxgy ¨ Xqq independently of U . This completes the proof. �

Lemma 6.7. For any distinct U, V P Bigpgq, we have U K V .

Proof. Lemma 6.3 shows that by passing to a uniformly bounded power, if necessary (which
does not affect the big-set), we can assume that gU “ U and gV “ V . Hence g acts
as an isometry of both of the (not necessarily proper) hyperbolic spaces CU, CV . Since
U, V P Bigpgq, the isometry g cannot be elliptic on either CU or CV . Hence, by e.g. [Gro87,
Section 8.1], g is either parabolic or loxodromic on CU and CV .

If U Ĺ V or U&V , then ρUV is a uniformly bounded subset of CV , and, since gn ¨ ρUV —

ρ
gnU
gnV “ ρUV for all n P Z, we have that xgy–orbits in CV are bounded, contradicting that

U P Bigpgq. �

Definition 6.8 (Elliptic). An automorphism g P AutpSq is elliptic if some (hence any)
orbit of xgy in X is bounded.

Definition 6.9 (Axial). An automorphism g P AutpSq is axial if some (hence any) orbit of
xgy in X is quasiisometrically embedded.

Definition 6.10 (Distorted). An element g P AutpSq is distorted if it is not elliptic or axial.

Example 6.11 (Distorted automorphisms in familiar examples). Let S be a surface of finite
type and α a simple closed curve. In MCGpSq, the subgroup xταy generated by the Dehn
twist about α is quasiisometrically embedded [FLM01], but in pT pSq, dT q, the orbit of τα
is distorted. In fact, MCGpSq has no distorted automorphisms, as is the case for cube
complexes with factor systems, since cubical automorphisms are combinatorially semisimple
[Hag07]. In Theorem 7.1 below, we prove that HHGs have no distorted elements. A simple
example of an HHS with a distorted automorphism is obtained by gluing a combinatorial
horoball to Z; this encapsulates the difference between the HHS structures of MCGpSq and
pT pSq, dT q, where annular curve graphs are replaced by horoballs over annular curve graphs.

Proposition 6.12. The automorphism g P AutpSq is axial if and only if there exists U P
Bigpgq such that n Ñ gn ¨ πU pXq is a quasiisometric embedding Z Ñ CU for any X P X .

Proof. Suppose that there exists U P Bigpgq so that n Ñ gn ¨ πU pXq is a quasi-isometric
embedding. Then the distance formula (Theorem 1.9) yields a lower bound on dX pgm ¨X, gn ¨
Xq which is (at least) linear in |m´ n|, i.e. g is axial.

Conversely, suppose that g is axial. Lemma 6.7 bounds the number of U P Bigpgq by the
complexity of S. Lemma 6.6 ensures that diamV pπV pxgy ¨ Xqq is bounded independently
of V for V R Bigpgq. Since g acts axially on X , the distance formula (Theorem 1.9) now
implies that there exists at least one U P Bigpgq such that g acts axially on CU . �

The next proposition is an immediate consequence of Propositions 6.4 and 6.12:

Proposition 6.13. The automorphism g P AutpSq is distorted if and only if there exists
U P Bigpgq such that xgy ¨ πUpXq is unbounded, but, for all U P Bigpgq, we have

dCU pX, gn ¨Xq “ opnq.

Definition 6.14 (Reducible). The automorphism g P AutpSq is irreducible if Bigpgq “ tSu,
where S P S is the unique Ď–maximal element. Otherwise, S R Bigpgq and g is reducible.

Finally, we have the following strong characterization of irreducible axials:

Theorem 6.15. Let G ď AutpSq act properly and coboundedly on the hierarchically hyper-
bolic space pX ,Sq. Suppose that g P G is irreducible axial. Then g is Morse.
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Proof. By [BHS14, Corollary 14.4], G acts acylindrically on CS, where S is Ď–maximal in
S, while g acts hyperbolically on CS. By [Sis11, Proposition 3.8], g is weakly contracting for
the path system consisting of all geodesics in CS, so g is Morse, by [Sis11, Lemma 2.9]. �

Remark 6.16 (Reducible Morse elements). The converse of Theorem 6.15 does not hold,
as can be seen be examining a Morse element of an appropriately-chosen right-angled Artin
group whose support does not include all generators.

6.2. Dynamics of action on the boundary. In the remainder of this section, we impose
the standing assumption that X is proper. We will analyze the action of an infinite-order
automorphism g on BpX ,Sq, according to whether g is irreducible or reducible and according
to whether g is axial or distorted.

6.2.1. Irreducible automorphisms.

Lemma 6.17. Let the irreducible g P AutpSq fix some λ P BX . Then Supppλq “ tSu.

Proof. Suppose U P Supppλq ´ tSu. Since g is irreducible, its orbit in CS is unbounded. In

particular, this means that the orbit of ρUS is unbounded. By definition, g ¨ ρUS — ρ
g¨U
S and

thus U could not be fixed by g, completing the proof. �

Proposition 6.18 (Irreducible axials act with north-south dynamics). If g P AutpSq is ir-
reducible axial, then g has exactly two fixed points λ`, λ´ P BX . Moreover, for any boundary
neighborhoods λ` P U` and λ´ P U´, there exists an N ą 0 such that gN pBX ´ U´q Ă U`.

Proof. Let g P AutpSq be irreducible axial. For the rest of the proof, fix a basepoint X P X .
Existence of λ`, λ´ P BX : For any n, let Xn “ gn ¨ X. We will show that pXnq

converges to some point in BX ; a similar argument will show that pX´nq converges to some
other point, and then we will prove they are distinct. By compactness (Theorem 3.4),
there exists a subsequence pXnk

q Ă pXnq which converges to some point λ` P BX . By
irreducibility of g, we must have that λ` P BCS Ă BX . By irreducibility and the definition
of convergence, we have that πCSpXnk

q Ñ λ` P BCS. Axiality of g then implies that, for any
other subsequence pXnl

q Ă pXnq, the Gromov product pXnk
,Xnl

qX Ñ 8 in CS as k, l Ñ 8.
This implies that πCSpXnq Ñ λ` P BCS, which implies that Xn Ñ λ` P BX .

Similarly, we define X´n Ñ λ´ P BX . Observe that pπCSpXnq, πCSpX´nqqπCSpXq is uni-

formly bounded by Proposition 6.12, implying that λ` ‰ λ´. Since g stabilizes the orbit, it
obviously fixes λ` and λ´. Note that λ`, λ´ are independent of our choice of X P X .

Uniqueness of λ`, λ´ P BX : By Lemma 6.17, any point λ P BX fixed by g has Supppλq “
S. If g fixes three points in BX , then it fixes three points in BCS. As such, g coarsely fixes
the coarse median of those points, producing a bounded orbit, a contradiction.

North-south dynamics on BX : Fix boundary neighborhoods λ` P U` and λ´ P U´

with U` X U´ “ H.

Claim 1. For any p P BX ´ tλ´u, pgnppqq does not converge to λ´.

Proof of Claim 1. If Suppppq ‰ tSu, then pgnppqq cannot converge to a point in BX sup-
ported on S, as g does not alter the coefficients of the pieces of p supported on proper
subdomains. In particular, since Supppλ´q “ tSu, as shown above, pgnppqq cannot converge
to λ´. Thus we may assume that Suppppq “ tSu.

Let rX, ps be a hierarchy ray in X . Since Suppppq “ tSu, rX, ps projects to a D-
quasigeodesic, rX, psS Ă CS. Let rX,λ´s be the orbit pg´npXqq, which is a quasigeodesic
with quality depending on g.

Consider m P CS, the coarse median of pλ´, p,Xq. By hyperbolicity, there exist points
Y P rX, psS , Z P rX,λ´s sufficiently far out along rX, psS and rX,λ´s such that any geodesic
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between Y,Z, rY,Zs, comes uniformly close to m, independent of Y and Z; in particular, the
coarse median of pX,Y,Zq is uniformly close to m. Moreover, there is a uniform constant
δ1 ą 0 (depending on D, g, and the hyperbolicity constant, δ ą 0) such that each of
rY,Zs, rX,Y s, and rX,Zs is δ1-close to m.

Let mY,Z P rY,Zs and mX,Z P rX,Zs be points δ1-close to m. Then there exists a uniform
δ2 ą 0 such that rmY,Z , Zs and rmX,Z , Zs must δ2-fellow travel. By axiality, there exists
N ą 0 such that, for all n ą N , gnpmX,Zq is between X and gnpXq along the quasigeodesic
axis of g in CS. This implies that the coarse median of pX, gnpY q, gnpZqq is uniformly close
to X. Thus pgnppq, λ´qX is uniformly bounded and pgnppqq cannot converge to λ´ in BCS
and thus not in BX as well. �

Since the limit of pgnppqq is a fixed point, uniqueness of λ´, λ` and Claim 1 imply that
gnppq Ñ λ` for any p P BX ´ tλ´u.

Now consider the function f : BX ´U´ Ñ N, where fppq is the least power Np such that
gNpppq P U`. Since λ` and λ´ are the unique fixed points of g, such a power exists, otherwise
the sequence pgnppqq Ă BX would subconverge to another fixed point. Since BX is compact
(Theorem 3.4) the function f attains a maximum, Nf . By definition, gNf pBX ´ U´q Ă U`,
completing the proof. l

We now treat the irreducible distorted case:

Proposition 6.19 (Irreducible distorteds act parabolically). If g P AutpSq is irreducible
distorted, then g has exactly one fixed point λg P BX , and gn ¨ X, g´n ¨ X Ñ λg for any

X P X .

Proof. Let S P S be the unique Ď–maximal element, so that gS “ S and g : CS Ñ CS is
an isometry. By the definition of irreducibility, Bigpgq “ tSu, so g has unbounded orbits
in the δ–hyperbolic space CS. We now apply the classification of isometries of hyperbolic
spaces, as summarised in [CdCMT15, Section 3], emphasizing that these results do not rely
on properness of the space in question.

First, by Proposition 3.2 of [CdCMT15] and the fact that xgy ¨ πXpXq (which coarsely
coincides with πSpxgy ¨ Xq) is distorted – i.e. not quasiconvex – in CS, we have that the
action of xgy on CS is not lineal or focal. By Lemma 3.3, the action of xgy on CS is not
of general type. Hence the action is horocyclic, i.e. the limit set of xgy on BCS consists of
exactly one point λg with gλg “ λg. Moreover, Proposition 3.1 of [CdCMT15] implies
that every λ ‰ λg in BCS has infinite xgy–orbit. We also denote by λg the image of this
limit point under the usual (AutpSq–equivariant) embedding BCS Ñ BX . We thus have
a fixed point λg P BX for g. Now, suppose that λ P BX is fixed by g. By Lemma 6.17,
λ P BCS Ă BX . If λ ‰ λg, then (as a point of BCS), λ cannot be fixed by g, so λg is the
unique fixed point in BX .

Finally, if p P BX ´λg, then gn ¨p Ñ λg, for it subconverges to some point by compactness

of X (Theorem 3.4), which is fixed by g and thus must be λg by uniqueness. �

Proposition 6.20. Let g P AutpSq be irreducible distorted and fix λg P BX . For any
neighborhood U Ă BX of λg, there exists N ą 0 such that if p P BX ´ U , then gN ¨ p P U .

Proof. Fix a neighborhood λg P U Ă BX and let p P BX ´ U . Let F : X Ñ N be the map

which takes each p P X to the minimal n P N such that gn ¨ p P U ; note that F is defined by
Proposition 6.19. We prove that F is bounded.

Assume not; then there exists a sequence ppiq Ă BX such that F ppiq “ ni Ñ 8 as i Ñ 8.
By compactness of X , the sequence ppiq accumulates on some point µ P BX . If Nµ “ F pµq,
then gNµ ¨ µ P U . Choose an open neighborhood gNµ ¨ µ P V Ă U .
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By passing to a subsequence if necessary, we may assume pi Ñ µ and continuity of the
action of g on BX implies that gNµ ¨pi Ñ gNµ ¨µ. In particular, this implies that the sequence
pgNµ ¨ piq eventually lies in V Ă U , a contradiction. �

6.2.2. Reducible automorphisms. We now turn to non-elliptic reducible automorphisms. As
before, we assume X is proper, g P AutpSq has infinite order and is thus axial or distorted,
and Bigpgq ‰ H denotes the set of (pairwise–orthogonal) U P S where diamCU pxgy¨Xq “ 8.

If g is reducible, then Bigpgq “ tAiu \ tBju, where g acts axially on CAi and distortedly
on CBj for all i, j and Ai, Bj ‰ S for all i, j. Proposition 6.12 implies that g is axial if and
only if tAiu ‰ H; otherwise g is distorted.

We must be careful with nontrivial finite orbits in S. To that end, recall that by
Lemma 6.3 there exists M “ MpSq ą 0 such that gM fixes Bigpgq pointwise. The proof
of that lemma shows that gM in fact fixes tAiu and tBiu pointwise, since we cannot have
g ¨Ai “ Bj for any i, j. Let h “ gM , and note that Bigphq “ Bigpgq. Note that we can choose
M so that any pairwise-orthogonal subset of S stabilized by h is fixed by h pointwise.

Lemma 6.21. Let V P S and suppose that V Ď U or V&U , for some U P Bigpgq. Suppose
also that p P BX is fixed by g. Then V R Suppppq.

Proof. By hypothesis, h ¨ p “ p. Observe that xhy ¨ ρVU is unbounded. Since U P Bigpgq, we

have that h ¨ ρVU “ ρh¨V
U and h ¨ U is infinite, implying U R Suppppq, as required. �

We denote by S
k a k–sphere and by D

k a k–ball. Given spaces X,Y , we denote by X ‹Y
their join. For each i, j, let Fi “ FAi

, F 1
j “ FBj

be the standard factors associated to Ai, Bj,

so that there is a quasiconvex hieromorphism
ś

i Fi ˆ
ś

j F
1
j Ñ X , inducing an embedding

‹iBFi Ñ ‹jBF
1
j Ñ BX whose image is a closed g–invariant subset which we denote Epgq.

(Note: The image of
ś

i Fi ˆ
ś

j F
1
j need not be g–invariant, but since g stabilizes each

standard product region F 1
j ˆ EBj

, the subspaces gFi, Fi are parallel, and thus have the

same boundary.)
For each i, the action of h “ gM on PFi

– Fi ˆ EAi
induces an action of h on Fi by

applying the restriction homomorphism θAi
: StabAutpSqpAiq Ñ AutpSAi

q. For each Ai, let
hi be the image of h under this homomorphism, and let hj be the image of h under the
corresponding restriction homomorphism for Bj.

The following proposition says that, up to taking a power, a reducible automorphism can
be decomposed into irreducible automorphisms on subdomains:

Proposition 6.22. If g is non-elliptic reducible and h “ gM , then the following hold:

(1) For each i, hi is an irreducible axial automorphism of Fi which fixes a unique pair
of points λi,`, λi,´ P BCAi and acts with north-south dynamics on BCAi;

(2) For each j, hj is an irreducible distorted automorphism of F 1
j and fixes a unique

point λhj
P BCBj .

Hence, g stabilizes (and h fixes pointwise) a nonempty subspace Spgq ‹ Cpgq Ď BX , where

Spgq “ H or Spgq – S
|tAiu|´1 and Cpgq “ H or Cpgq – D

|tBju|. Moreover, for all n ą 0, gn

does not fix any point in Epgq ´ Spgq ‹ Cpgq.

Proof. For each i, hi acts on CAi axially by the assumption on g and irreducibly by con-
struction. Hence, Proposition 6.18 implies that hi fixes two points λi,`, λi,´ P BCAi and
acts with north-south dynamics on BCAi. Similarly, for each j, hj acts on CBj distortedly
by assumption and irreducibly by construction. Proposition 6.19 then implies that hj fixes
a unique point λhj

P BCBj .
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If tAiu ‰ H, then each Ai contributes a pair of points λi,`, λi,´ P BCAi fixed by h, which
we can think of as a copy of S

0, namely S
0
i . Moreover, h clearly fixes the join of these

spheres, ‹iS
0
i – S

|tAiu|´1 “ Spgq, as required.
Similarly, if tBiu ‰ H, then each Bj contributes a point λhj

P BCBj fixed by h, and h

fixes the join of these points, ‹jλhj
– D

|tBju| “ Cpgq, as required.
Since h fixes these Spgq and Cpgq, h clearly fixes Spgq ‹ Cpgq. Now, if gn fixes a point

λ P Epgq, then hn “ pgnqM fixes λ. If λ “
ř

i aipi `
ř

j bjqj, where pi P BFi and qi P BF 1
j ,

then the uniqueness of the λi,`, λi,´, λhj
implies that, for ai ‰ 0, bj ‰ 0, we must have

pi “ λi,` or pi “ λi,´ and qj “ λhj
. �

Remark 6.23. Set Comppgq “ tp P BX |Suppppq Ă tAi, BjuK
i,ju and let Fixphq Ă BX be the

set of fixed points of h. It is not difficult to show that Fixphq Ď Spgq ‹Cpgq ‹ Comppgq, but
proper containment can happen.

Lemma 6.24. Let U P Bigpgq and U Ď V . For all p P BX such that gnppq “ p for some
n ą 0, we have V R Suppppq.

Proof. It suffices to prove the lemma for h “ gM . Suppose for a contradiction that V P
Suppppq. Since U P Bigphq, diamV pxhy ¨ ρUV q is uniformly bounded. Take any sequence

Xk Ñ p in X ; note that this implies Xk Ñ pV in CV . Thus, there exists K ą 0 such that
dV pXk, ρ

U
V q ą 100E if k ě K.

Since h is unbounded on CU , there exists N ą 0 depending only on K such that
dU pXk, h

npXkqq ą 100E if n ě N and k ě K. If γ is a hierarchy path between Xk

and hnpXkq in X , then the bounded geodesic image axiom (Definition 1.1.(7)) implies that
πV pγq X NEpρUV q ‰ H. In particular, this implies that dV pXk, h

npXkqq ą 100E. Thus, for
any n ą N , we have that pXk, h

npXkqqρUV
is uniformly bounded as k Ñ 8, which implies

that no power of h could fix p, a contradiction. �

Proposition 6.25. Let p P BX be such that gM ppq “ p for some M ą 0. Then

p P Spgq ‹ Cpgq ‹

˜
č

i

BEAi
X
č

j

BEBj

¸
.

Proof. Lemmas 6.21 and 6.24 imply

Suppppq Ă
ď

i,j

`
SAi

Y SBj
Y
`
tAiu

K X tBjuK
˘˘
,

which, together with Proposition 6.22 and g–invariance of Bigpgq, gives the claim. �

6.3. Dynamics on boundaries of HHG. Fix a hierarchically hyperbolic group pG,Sq.

Definition 6.26 (Stable boundary points). A point p P BG is a stable boundary point if p
is a fixed point of some irreducible axial element of AutpSq.

The next lemma states that irreducible axials have cobounded orbits.

Lemma 6.27. Let g P G be an irreducible axial. Then given any X P X , there exists N ą 0

such that diamCU pxgy ¨Xq ă N for any U P S ´ tSu.

Proof. If not, then there exists a sequence of domains Un P S such that diamCUnpxgy ¨xq ě n

for each n. Since g is irreducible axial, xgy ¨X projects to a uniform quasigeodesic in CS.
By the bounded geodesic image axiom and hyperbolicity of CS, for each n ą 100E,

there exists a sequence pknq Ă Z such that ρUn

S P NEprgkn ¨ X, gkn`1 ¨ Xsq Ă CS, where

rgkn ¨X, gkn`1 ¨Xs is any geodesic between gkn ¨X and gkn`1 ¨X in CS. Moreover, since xgy¨X
is a uniform quasigeodesic in CS, it follows that dUnpgkn ¨X, gkn`1 ¨Xq — diamUnpxgy¨Xq ě n.
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It follows that there exists a sequence of domains U 1
n “ g´kn ¨ Un P S with ρ

U 1
n

S P
NEprX, g ¨Xsq and dU 1

n
pX, g ¨Xq — diamU 1

n
pxgy ¨Xq ě n, which is impossible by the distance

formula. This completes the proof. �

Proposition 6.28. If G has an irreducible axial element, then the set of stable boundary
points is dense in BG.

Proof. Let p P BG be any point and let λ P BG be a stable boundary point for some
irreducible axial g P G. Choose X P X and let γn “ rX, gn ¨ Xs be a D-hierarchy path
between X and gn ¨ X. Let γ “ rX,λs be the limiting D-hierarchy ray as n Ñ 8. Since
γn Ñ γ uniformly on compact sets and xgy ¨ X is uniformly cobounded by Lemma 6.27, it
follows that γ is uniformly cobounded.

By coboundedness of the action of G and density of the interior (Proposition 2.17), there
exists a sequence pgnq Ă G and N ą 0 such that gnpXq Ñ p and thus gn ¨ λ Ñ p. Since G
acts on itself by automorphisms, we have that gn ¨ rX,λs projects to an infinite quasigeodesic
in CS, implying that gn ¨ λ P BCS Ă BG, which completes the proof. �

Theorem 6.29 (Topological transitivity of the G-action on BG). Let pG,Sq be a hierarchi-
cally hyperbolic group with G not virtually cyclic and containing an irreducible axial element.
For any p P BG, G ¨ p is dense in BG.

Proof. Let U Ď BG be an open set. By Proposition 6.28, there exists an irreducible axial
g P G with stable boundary points λg,`, λg,´ P BG, one of which is contained in U . Suppose
that λg,` P U and λg,´ ‰ p. Then since BG is Hausdorff, it follows from Proposition 6.18
that some power of g moves p into U , as required. Hence either we are done, or for every
irreducible axial g with λg,` P U , we have λg,´ “ p.

Now, suppose that there exists q P BG´U Y tpu. Then, by Proposition 6.28, and the fact
that BG is Hausdorff, we may argue as above, using Proposition 6.18, that some irreducible
axial element takes p arbitrarily close to q, and thus that some power of g takes a translate
of p into U , as required, unless p is a stable point for every irreducible axial element of G.
But then G does not contain two independent irreducible axial elements whence, since G
acts acylindrically on CS by [BHS14, Theorem 14.3], a theorem of Osin (see Theorem 9.3
below) implies that G is virtually cyclic. �

Corollary 6.30. If pG,Sq is an HHG with an irreducible axial, then BCS is dense in BG.

Remark 6.31. In Section 9, we investigate the question of when groups of HHS automor-
phisms contain irreducible axial elements. In that section, we consider a more general class,
so-called “rank-one” elements, of which irreducible axial elements are the main examples.

7. Coarse semisimplicity in hierarchically hyperbolic groups

Theorem 7.1. If pG,Sq is a hierarchically hyperbolic group, then each g P G is either elliptic
or axial, and πUpxgyq is a quasiisometrically embedded copy of Z for each U P Bigpgq.

Proof of Theorem 7.1. This follows from Lemma 7.3 and Lemma 7.4 below. �

Our main tool here is the following result of Bowditch:

Lemma 7.2 (Lemma 2.2 of [Bow08]). If G acts acylindrically by isometries on a hyperbolic
space M , then each element of G acts either elliptically or loxodomically on M .

Lemma 7.2 and [BHS14, Theorem 14.3] combine to yield:

Lemma 7.3. If g P G is irreducible, then g is either elliptic or axial.
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Recall that for any reducible g P G, we have Bigpgq “ tAiu Y tBju, where g acts axially
on each CAi and distortedly on each CBj . It remains to prove:

Lemma 7.4. If g P G is reducible, then tBju “ H.

For each U P S, letGU “ AUXG be the subgroup ofG fixing U P S and let sGU “ θUpGU q,
where AU “ StabAutpSqpUq and θU : AU Ñ AutpSU q is the restriction homomorphism.

Lemma 7.5. Let U P S. Then sGU acts acylindrically on CU .

Proof of Lemma 7.5. By definition, sGU acts by automorphisms on the hierarchically hyper-
bolic space pFU ,SU q. We first establish:

Claim 1. For each R ě 0, there exists K “ KpRq such that any R–ball B Ď FU intersects
gB for at most K elements g P sGU .

Proof of Claim 1. Since the inclusion hieromorphism pFU ,SU q Ñ pG,Sq is a quasiisometric
embedding (with constants independent of U), it suffices to bound the number of cosets
gpker θU q in GU so that gpker θUq ¨ pB1 ˆEU q “ pḡB1q ˆEU intersects B1 ˆEU , where B1 is
a ball in FU Ă PU Ă X of radius depending on R and the quasiisometry constants. Such a
bound exists because G acts on itself geometrically. �

We now follow the proof of Theorem 14.3 of [BHS14]. Let ǫ ą 0 be given and let
R ě 1000ǫ. Consider the set H of g P sGU so that dU px, gxq, dU py, gyq ă ǫ, where x, y P FU .
Choose s0 as in the distance formula for pFU ,SU q and, for each r ě 0, consider the set Lprq
of Ď–maximal V P SU ´ tUu so that dV px, yq ą s0 and |dU px, ρVU q ´ R

2
| ă rǫ. Arguing

exactly as in the proof of Theorem 14.3 of [BHS14] yields a uniform bound on |Lp11q|. We
then divide into two cases.

First, if Lp10q ‰ H, then we again argue as in the proof of [BHS14, Theorem 14.3],
reaching the conclusion that, if V P Lp10q and g P H, then gPV

pxq coarsely coincides with
g ¨ gPV

pxq, from which it follows from Claim 1 that H has uniformly bounded cardinal-
ity. The argument in [BHS14] uses only the sGU–equivariance of the gate construction and
Definition 1.1 and thus goes through.

Similarly, if Lp10q “ H, then the argument in [BHS14] uses only the existence of hier-
archy paths, large links, bounded geodesic image, the distance formula, and a bound on
the cardinalities of stabilizers of balls in FU . The latter comes from Claim 1, and thus the
argument works verbatim in the present context. l

Proof of Lemma 7.4. Let U P Bigpgq. Let M ą 0 be as in Lemma 6.3 and set h “ gM ; note
that h¨U “ U , i.e. h P AU . Let hU “ θU phq P sGU . By Lemma 7.5, sGU acts acylindrically on
CU , so by Lemma 7.2, hU is either elliptic or loxodromic on CU . Since U P Bigphq, it must
be the case that hU is loxodromic on CU . Since h acts like hU on CU , the claim follows. �

8. Essential structures, essential actions, and product HHS

8.1. Product HHS. It is shown in [BHS15b] that, if X0,X1 admit hierarchically hyperbolic
structures, then X0 ˆ X1 admits a hierarchically hyperbolic structure making the inclusions
Xi Ñ X0 ˆ X1 into hieromorphisms with hierarchically quasiconvex image. Rather than
recall the construction, we now give a more streamlined (equivalent) definition.

Definition 8.1. Let pX ,Sq be a hierarchically hyperbolic space. Then pX ,Sq is a product
HHS if there exists K ă 8 and U P S such that for all V P S, either V Ď U , or V K U , or
diampCV q ď K. If, in addition, for each n P N there exist V,W P S with V Ď U,W K U and
diampπV pX qq,diampπW pX qq ą n, then pX ,Sq is a product region with unbounded factors.
Observe that pX ,Sq is a product HHS if and only if there exists U P S so that PU Ñ X is
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coarsely surjective, and that pX ,Sq is a product region with unbounded factors if in addition
FU , EU are both unbounded.

8.2. Essential structures and cores.

Definition 8.2 (Essential HH sructures). Let pX ,Sq be an HHS and let G ď AutpSq.
Then pX ,Sq is G–essential if, for any G–invariant hierarchically quasiconvex Y Ă X , all of
X is contained in some regular neighborhood of Y.

Remark 8.3. Compare Definition 8.2 to the definition of a G–essential cube complex
from [CS11], which requires that the cube complex be the cubical convex hull of a G–orbit
(but actually requires something stronger).

Proposition 8.4 (Essential core). Let pX ,Sq be an HHS and let G ď AutpSq be a subgroup.
Suppose that one of the following holds:

(1) G acts properly and cocompactly on X and with finitely many orbits on S, i.e. pG,Sq
is an HHG;

(2) G acts on X with unbounded orbits and with no fixed point in BX .

Then there exists a G-invariant, G-essential, hierarchically quasiconvex subspace Y Ă X

so that whichever of (1) or (2) held for G ñ X holds for the action of G on Y.

Proof. If pX ,Sq is an HHG, the claim follows immediately with Y “ X . In the second
case, we will build Y Ă X so that Y is hierarchically quasiconvex and G-invariant, with the
property that if Y 1 Ă X is hierarchically quasiconvex and G-invariant, then there exists an
R ą 0 such that Y Ă NRpY 1q. Given such a Y, the fact that G does not fix a point in BY
follows from Proposition 5.8 and the hypothesis that G does not fix a point in BX .

To construct Y, for each U P S, let HU Ď CU be the union of all geodesics starting and
ending in πU pG ¨ xq for some fixed basepoint x P X . A thin quadrilateral argument shows
that HU is uniformly quasiconvex. Let Y consist of all realization points y with πU pyq P HU

for all U P S; this subspace is easily seen to have the required properties. �

Recall that, by hierarchical quasiconvexity, pY,Sq is normalized: for each U P S, the
associated hyperbolic space is uniformly quasiisometric to πU pYq Ď CU .

9. Coarse rank-rigidity and its consequences

Throughout this section, pX ,Sq is a hierarchically hyperbolic space with X proper and S

countable; we always let S denote the Ď–maximal element of S. In this section, we consider
countable subgroups G ď AutpSq (so that, by the distance formula, G acts discretely on
X ). These standing hypotheses cover the case where pG,Sq is an HHG. We emphasize our
standing assumption that all HHS are normalized.

Definition 9.1 (Rank-one automorphism). The automorphism g P AutpSq is rank-one (on
pX ,Sq) if:

‚ g is axial;
‚ |Bigpgq| “ 1;
‚ if U P S is orthogonal to the domain in Bigpgq, then diampπU pX qq ă 8.

Irreducible axial elements are rank-one.

Our first goal is to show that, under the above hypotheses, either G contains an irreducible
axial element or the G–essential core of X is a product HHS (not necessarily with unbounded
factors). This is done in Section 9.1, using tools from Sections 9.2,9.3,9.4. In Section 9.5,
we apply results of Section 9.1.
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9.1. Irreducible axials or fixed domains. We now prove the following two parallel propo-
sitions (one covering the non-parabolic case, and one covering the HHG case):

Proposition 9.2. Let pX ,Sq be an HHS with X proper and S countable. Let the countable
group G ď AutpSq act with unbounded orbits in X and without a global fixed point in BCS.
Then either G contains an irreducible axial element, or there exists U P S ´ tSu so that
|G ¨U | ă 8. Moreover, any G–essential hierarchically quasiconvex subspace Y Ă X coarsely
coincides with the standard product region PU X Y.

Proof. By Proposition 8.4, there exists a G–invariant hierarchically quasiconvex subspace Y,
with a hierarchically hyperbolic structure pY,Sq admitting a G–equivariant hieromorphism
pY,Sq Ñ pX ,Sq that is the inclusion on Y and the identity on S, and so that pY,Sq is G–
essential. Moreover, G continues to act without a global fixed point in BCS. Hence, since Y is
proper and S is countable, Proposition 9.11 provides an irreducible axial isometry of pY,Sq
(hence of pX ,Sq) unless diampπSpYqq ă 8. If diampπSpYqq ă 8, then Proposition 9.10
completes the proof. �

The HHG version requires the following theorem of Osin, which we also use elsewhere:

Theorem 9.3 (Theorem 1.1 of [Osi15]). Let G be a group acting acylindrically on a hyper-
bolic space. Then exactly one of the following holds:

(1) G has bounded orbits;
(2) G is virtually infinite cyclic and contains a loxodromic element;
(3) G contains infinitely many independent loxodromic elements.

Proposition 9.4. Let pG,Sq be an HHG. Then either G contains an irreducible axial ele-
ment or there exists U P S such that |G ¨ U | ă 8 and G coarsely coincides with PU .

Proof. The G–action on pG,Sq is essential. If diampCSq “ 8, then, since G acts acylin-
drically on CS, as proved in [BHS14, Section 14], Theorem 9.3 implies that G contains an
irreducible axial element. Hence we can assume that diampCSq ă 8, and in particular that
G has no fixed point in BCS “ H. The claim now follows from Proposition 9.10. �

9.2. Finding finite orbits in S. Let µ be a probability measure on G, whose support
generates G. All spaces are equipped with their Borel σ–algebra, so every subset of G is
measurable, while the measurable subsets of X are determined by Definition 2.11.

Lemma 9.5 (Stationary measure on X ). There exists a µ–stationary probability measure ν
on X , i.e. for all ν–measurable E Ď X ,

νpEq “
ÿ

gPG

µpgqνpg´1Eq “ µ ˚ νpEq.

Proof. This is a standard fact, relying on compactness of X , i.e. Theorem 3.4. See e.g. [Fur63,
Lemma 1.2]. �

Remark 9.6 (Sampling X ). Since our aim in this section is to establish that, after passing
if necessary to a G–essential core, G contains an irreducible axial element or X is a product
HHS, and these properties are insensitive to modifications of X within its quasiisometry
type, we now “discretize” X , for convenience in the proof of Lemma 9.8.

Let D “ GzX , and let d̄ be the quotient pseudometric, so pD, d̄q is proper since X is proper.
Hence there exists ǫ ą 0 and a countable set tx̄nuně0 in D such that ND

ǫ ptx̄nuq “ D. Thus
X contains a countable, G–invariant set txnuně0 for which the inclusion txnu ãÑ X is a
quasiisometry, and we replace X with txnu. We can thus assume that X is countable.

Lemma 9.7. For each U Ă S, the set tp P BX : Suppppq “ Uu is ν–measurable.
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Proof. Either tp P BX : Suppppq “ Uu “ H, in which case we’re done, or U “ tUiu is a set of
pairwise-orthogonal domains. Let X0 be the set of points q P BX so that, for all V P Supppqq,
there exists U P U with V Ď U . Note that Y “ tp P BX : Suppppq “ Uu Ď X0. Let X1 be
the subset of X0 consisting of those q P X0 such that for some V P Supppqq, we have V R U

(so V is properly nested in some U P U and orthogonal to the remaining elements).
X0 is closed in X : We will check that for any sequence tqnu with each qn P X0, if qn Ñ q,

then q P X0. Suppose not, i.e. suppose that there exists V P Supppqq so that V Ď U for all
U P U . Consider a basic neighborhood N “ Nǫ,tNT upqq of q. There are two cases.

First case: This is the case where there exists U P U so that U&V or U Ĺ V and, for
infinitely many n, there exists W P Supppqnq so that W Ď U and W M V . Let I be the set
of such n.

First, suppose that qn is remote with respect to q. Suppose that the basic neighborhood
N has been chosen so that NV does not meet the 109E–neighborhood of ρUV . Then for
arbitrarily large n P I , the subsets ρUV , ρ

W
V coarsely coincide, and hence pBπSupppqqpqnqqV “

ρWV does not lie in NV . It follows that for arbitrarily large n P I , we have qn R N , by the
definition of the remote part of a basic set. This is a contradiction.

Second, suppose that qn is non-remote with respect to q, where n P I . Exactly as before,
suppose that NV does not meet the 109E–neighborhood of ρUV (which is still defined by

assumption). We still have that ρWV is defined and coarsely coincides with ρUV , for some
W P Supppqnq, by assumption. Hence, again, we have that pBπSupppqqpqnqqV “ ρWV does not
lie in NV . From the final condition in the definition of the non-remote part of a basic set,
it follows that qn R N , which is again a contradiction.

Second case: In this case, for all but finitely many n, we have V K W for allW P Supppqnq.
The point qn is non-remote with respect to q. Indeed, there exists V P Supppqq which is
orthogonal to every element of Supppqnq. In particular V P Supppqq ´ Supppqnq X Supppqq.
Now,

ř
TPSupppqnq´Supppqq a

qn
T ă ǫ, so

ÿ

TPSupppqnqXSupppqq

a
qn
T ą 1 ´ ǫ,

while |aqT ´ a
qn
T | ă ǫ whenever T P Supppqnq X Supppqq. Hence

ÿ

TPSupppqqXSupppqnq

a
q
T ą 1 ´ ǫ p|Supppqnq X Supppqq|q ,

which is impossible when ǫ is sufficiently small compared to aqV , since V R Supppqnq. Hence
qn R N , a contradiction.

Conclusion: Let T be the set of support sets V ‰ U such that for each V P V, there
exists U P U with V Ď U . Then T is countable, being a set of finite subsets of the countable
set S. Now, X1 is the union over all V P T of the set X0pVq of q P BX such that for each
W P Supppqq, there exists V P V with W Ď V . Hence, by the previous part of the proof, X1

is a countable union of closed sets. Thus Y “ X0´X1 is Borel, and hence ν–measurable. �

Lemma 9.8. If G has no finite orbit in pS´ tSuq Y BCS, then ν is supported on BCS Ă X .

Proof. Let D be the set of finite subsets of S, so that D is countable and G acts on D in
the obvious way. By construction, tSu and H are the only elements of D whose G–orbits
are finite. We first define a map O : X Ñ D. Note that if S “ tSu, then BX “ BCS, and
the claim follows, so we assume that there exists U Ĺ S.

Defining O on boundary points: For each p P BX , let Oppq “ Suppppq. Observe that
this assignment is G–equivariant and that Oppq “ tSu if and only if p P BCS.

Defining O on interior points: Let B Ă X contain exactly one point from each G–
orbit, and choose F P D ´ ttSu,Hu. For each x P B, let Opxq “ F . Then, for any x P B
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and g P G, let Opgxq “ gF . Then O is G–equivariant and, for all x P X , the nonempty
finite set Opxq differs from tSu. For any F 1 P D, either O´1pF 1q “ H or F 1 “ gF for some
g P G. Hence, for any subset D1 of D, we can write O´1pD1q “

Ť
gFPD1 gB. It follows that

O´1pD1q is a countable union of translates of B, which is a countable union of closed sets
(singletons) by Remark 9.6, and thus O´1pD1q is Borel.

Measurability of X ´ BCS: Since BCS “ tp P BX : Suppppq “ tSuu, it follows from
Lemma 9.7 that X ´ BCS is measurable.

Measurability of O: There is a probability measure ν̃ onD given by ν̃pAq “ νpO´1pAqq,
for each A Ď D. A set O´1pAq decomposes as:

tx P X : Opxq P Au Y tp P BX : Suppppq P Au .

The set tp P BX : Suppppq P Au “
Ť

UPA tp : Suppppq “ Uu, which is ν-measurable by Lemma 9.7.
Since A Ď D is countable, it suffices to show that O´1pF q XX is Borel for each F P D, but
this was established above.

Conclusion: We have that O : X Ñ D is a measurable G–equivariant map. Since G
preserves BCS, it follows that X ´ BCS is a G–invariant ν–measurable set.

Suppose that F 1 P D has the property that G¨F 1 is finite. Then G¨U is a finite G–invariant
subset of S for each U P F 1 and, by our hypothesis that there is no finite G–orbit in S´tSu,
we have that F 1 “ tSu. Since Opeq ‰ tSu for all e P X ´ BCS, it follows that OpX ´ BCSq
does not contain a finite G–orbit. As shown in e.g [Bal89],[KM96, Lemma 2.2.2],[Woe89,
Lemma 3.4][Hor14, Lemma 3.3], we must have νpX ´ BCSq “ 0. �

Corollary 9.9. If diampCSq ă 8, then G stabilizes a finite subset of S ´ tSu.

Proof. By hypothesis, BCS “ H, so ν cannot be supported on BCS. Hence G has a finite
orbit in S Y BCS by Lemma 9.8 and thus G must have a finite orbit in S ´ tSu. �

9.3. Finding product structures when diampCSq ă 8.

Proposition 9.10. Suppose G ď AutpSq is a countable subgroup, where diampCSq ă 8.
Then there exists U P S ´ tSu and a finite-index subgroup G1 such that G1 ¨ U “ U and X

coarsely coincides with PU . Hence either pX ,Sq is a product HHS with unbounded factors
or X coarsely coincides with FU or EU .

Proof. By Corollary 9.9, there exists U P S ´ tSu and a finite-index subgroup G1 ď G so
that G1 ¨ U “ U . Note that G1 continues to act essentially on pX ,Sq, coarsely stabilizing
PU . Since PU is hierarchically quasiconvex, X coarsely equals PU by essentiality. The last
assertion is immediate. �

9.4. Finding irreducible axial elements when diampCSq “ 8.

Proposition 9.11. Let pX ,Sq be a hierarchically hyperbolic space. Let G ď AutpSq act
essentially and suppose that G acts on X with no global fixed point in BCS and that CS is
unbounded. Then G contains an irreducible axial automorphism of pX ,Sq.

Proof. Suppose that every orbit of G in CS is bounded, so that, fixing x0 P X , there exist
Q,R ă 8 so that diamSpG ¨πSpx0qq ď R and G ¨πSpx0q is Q–quasiconvex. Consider the set
of all E–consistent tuples pbU qUPS such that bS P G ¨ πSpx0q. Let Y be the set of realization
points in X corresponding to such tuples, provided by Theorem 1.7, and note that G acts
on Y. By definition, Y is hierarchically quasiconvex in X provided πUpYq is uniformly
quasiconvex in CU for each U P S, which we now verify.

If ~b is such a tuple, with dSpbS , ρ
U
S q ď E, then consistency puts no constraint on the

U–coordinate of ~b, i.e. for any such U , the map πU : Y Ñ CU is uniformly coarsely
surjective, and in particular πU pYq is uniformly quasiconvex in CU . On the other hand, if
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dSpρUS , G ¨ πSpx0qq ą E, then consistency and bounded geodesic image imply that πU pYq is
uniformly bounded, and hence uniformly quasiconvex.

The existence of Y contradicts G–essentiality of X . Hence G has an unbounded orbit in
CS, so either there exists g P G acting loxodromically on CS, so g is irreducible axial, or
there exists a unique fixed point p P BCS, which is impossible. �

9.5. Coarse rank-rigidity. Recall that a metric space X is wide if no asymptotic cone of
X has a cut-point. The following lemma is well-known and elementary:

Lemma 9.12. Let X be a metric space quasiisometric to the product X0 ˆ X1, where each
Xi is unbounded. Then X is wide, i.e. no asymptotic cone of X has a cut-point.

We now prove the main theorems of this section. Much of the work was done in proving
Propositions 9.2 and 9.4; the remaining work is largely in sorting out technical issues that
arise when attempting to induct on complexity; these issues mainly stem from the fact
that, given U P S, the induced HHS structure on EU does not have a uniquely-determined
Ď–maximal element.

Theorem 9.13 (Coarse rank-rigidity for non-parabolic actions). Let pX ,Sq be an HHS
with X proper and S countable. Let the countable group G ď AutpSq act essentially with
unbounded orbits in X and without a fixed point in BpX ,Sq. Then one of the following holds:

(1) X is a product HHS with unbounded factors; specifically, X is coarsely equal to PU

for some U P S with |GU | ă 8;
(2) there exists g P G such that g is rank-one.

If conclusion (1) holds, then X is wide.

Proof. By Proposition 9.2, either G contains an irreducible axial element, which is rank-one
by definition, so conclusion 2 holds, or there is a finite-index subgroup G1 ď G fixing some
U P S ´ tSu, so that by essentiality, X coarsely coincides with the standard product region
PU . This implies that X is a product HHS. Choose U of minimal level with this property,
i.e. no domain of lower level has a finite G–orbit in S.

Since G has unbounded orbits in X , at least one of EU , FU is unbounded. If FU , EU are
both unbounded, then conclusion 1 holds, and we are done. The statement about wideness
follows from Lemma 9.12.

If FU is unbounded and EU is bounded, then pFU ,SU q is a HHS with FU proper and
SU countable, on which G1 acts by HHS automorphisms with no fixed point in BCU (for
otherwise G would have a fixed point in BX ). By minimality, G1 has no finite orbit in
SU ´ tUu, so Proposition 9.11 provides g P G1 acting as an irreducible axial element of
AutpSU q. As an element of AutpSq, we see that g is rank-one, for otherwise there would be
some V K U with diampCV q “ 8, contradicting that EU is bounded.

Finally, suppose that EU is unbounded and FU is bounded. Let C be a minimal G1–
invariant set of Ď–minimal elements C of S ´ tSu such that W Ď C whenever W K U .

Suppose that there exists C P C with C K U . Then g ¨ C K g ¨ U “ U for all g P G1, so
g ¨C Ď C, from which it follows that (passing if necessary to a further finite-index subgroup
if necessary) G1 ¨C “ C. Then pEU ,SCq is an HHS satisfying the hypotheses of the theorem,
and G1 ď AutpSCq acts without a fixed point in BEU (since it stabilizes BEU Ă BX ). In
this case, the claim follows by induction on complexity. Indeed, in the base case, |S| “ 1

and the theorem is obvious. Otherwise, induction shows that either conclusion (1) holds, or
there exists g P G that acts as a rank-one element of AutpSCq. Since G1 preserves PU and
PU coarsely equals X , this implies that g is rank-one on pX ,Sq, as required.

The definition of C, and Definition 1.1.(3), imply that C Ď U and U Ď C for all C P C.
Hence it remains to consider the case where each C P C satisfies C&U ; fix such a C. Since
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G1 stabilizes U , it coarsely stabilizes the image PU of PU “ FU ˆEU Ñ X . In other words,
for any basepoint x P X , the orbit G1 ¨ x lies in a neighborhood of PU . Now, since C&U ,
the definition of PU implies that πCpgxq uniformly coarsely coincides with ρUC for all g P G1,
whence diampπCpG1 ¨ xqq ă 8 so, by essentiality, diampπCpX qq ă 8.

In this case, form a new index set SK
U by appending to the set of domains orthogonal to

U a new domain C. In SK
U XS, the associated hyperbolic spaces, projections from EU , and

relative projections are defined as in S. The hyperbolic space CC is a single point, so the
projections πC : X Ñ CC and ρV

C
, for V K U , are defined in an obvious way. We thus have

an HHS structure pEU ,S
K
U q with G1 ď AutpSK

U q, of complexity less than that of S, and we

can argue as above by induction. Observe that, if g P AutpSK
U q is rank-one on EU , then

Bigpgq consists of some element of SK
U X S, and since πCpX q is bounded for all C P C, and

we can argue as above that g is rank-one on pX ,Sq. �

Theorem 9.14 (Coarse rank-rigidity for HHG). Let pG,Sq be an infinite hierarchically
hyperbolic group. Then exactly one of the following holds:

(1) pG,Sq is a product HHS with unbounded factors, and G is wide;
(2) G contains a rank-one element, and is thus not wide.

Moreover, conclusion (1) holds if and only if diampCSq ă 8.

Proof. By Proposition 9.4, either G contains an irreducible axial element, which is rank-one,
or there exists U P S ´ tSu with G1 ¨ U “ U for some finite-index G1 ď G, and G coarsely
coincides with PU . In the latter case, we argue as in the proof of Theorem 9.13, by induction
on complexity, using the following observation: if V P S ´ tSu and a finite-index subgroup
G1 fixes V , then the action of G1 on FV is proper and cobounded. Moreover, G1 acts with
finitely many orbits on SV , so pG1,SV q is an HHG structure on G1, enabling induction. �

9.6. Tits alternative for HHGs. The goal of this subsection is the following theorem:

Theorem 9.15 (Tits alternative for HHGs). Let pG,Sq be an HHG and let H ď G. Then
H either contains a nonabelian free group or is virtually abelian.

Before we proceed with the proof, we need some supporting results:

Proposition 9.16. Let pG,Sq be a hierarchically hyperbolic group. Then any H ď G

containing an irreducible axial element is virtually Z or contains a nonabelian free group.

Proof. Since G acts on CS acylindrically [BHS14], and hence H ď G does, Theorem 9.3
implies that either H is virtually cyclic or H contains irreducible axial elements g, h so that
th˘u X tg˘u “ H. Proposition 6.18 and Proposition 2.17.(1) enable an application of the
ping-pong lemma, showing that gN , hN freely generate a free subgroup F , for some N ą 0.
Or, one can apply Corollary 14.6 of [BHS14], which uses Proposition 2.4 of [Fuj08]. �

Lemma 9.17. Let pG,Sq be an HHG with S P S Ď–maximal. Suppose that H ď G has
bounded orbits in CS and fixes some p P BCS. Then |H| ă 8.

Proof. By Theorem 14.3 of [BHS14], G acts acylindrically on CS, i.e. for each ǫ ą 0, there
exists R ě 0 and N P N so that whenever s, s1 P CS satisfy dSps, s1q ě R, there are at most
N elements g P G for which dSps, g ¨ sq, dSps1, g ¨ s1q ď ǫ.

Fix s P CS and let ǫ1 bound the diameter of the orbit H ¨ s. Let γ be a p1, 20δq–
quasigeodesic ray with endpoint p and initial point s, where CS is δ–hyperbolic. Then,
for all h P H, the ray h ¨ γ emanates from h ¨ s and has endpoint h ¨ p “ p. This fact,
together with a thin quadrilateral argument, shows that there exists k “ kpδq and R0 such
that for all h P H, we have dSpt, h ¨ tq ď kδ whenever t P γ satisfies dSps, tq ě R0. Let
ǫ “ maxtǫ1, kδu and let R,N be the associated constants coming from acylindricity. Then
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we can choose t P γ so that dSps, tq ą R while dSps, h ¨ sq, dSpt, h ¨ tq ď ǫ for all h P H, and
hence |H| ď N . �

Proof of Theorem 9.15. Note that H is a countable subgroup of AutpSq, since G is finitely
generated. We divide into cases, according to whether H fixes some p P BG.
H fixes p P BCS: In this case, by Proposition 9.16, H is either virtually cyclic, contains

a nonabelian free group, or, by Theorem 9.3, H has a bounded orbit in CS. Lemma 9.17
implies that H is finite in the latter case.
H has no fixed boundary point: Suppose there is an irreducible axial g P H. Then

either H contains a nonabelian free-group or H is virtually Z, by Proposition 9.16.
Otherwise, Proposition 9.2 provides U P S ´ tSu such that H ¨ U is finite and the H–

essential core Y of in G coarsely coincides with PU X Y. By replacing H with a finite-index
subgroup if necessary, we can assume that H ¨ U “ U .

Thus we have an H–essential product HHS pX0 ˆ X1,S
ˆq with H ď AutpSˆq acting on

X0 ˆ X1. Here Sˆ consists of two disjoint subsets S0,S1, together with various domains
whose associated spaces are uniformly bounded, with the property that U0 K U1 for all U0 P
S0, U1 P S1 and each Si gives Xi an HHS structure (for more on product decompositions,
see [BHS15b]). Let Hi ď H be the stabilizer of some (hence any) parallel copy of Xi.

Observe that Hi ď AutpSiq is an action on an HHS of strictly lower complexity, for
i P t0, 1u, namely pXi,Siq. If Hi contains no irreducible axial element, then Xi decomposes
as a product HHS, by Theorem 9.13. Otherwise, applying Lemma 7.5 and Theorem 9.3,
we see that either H0 or H1 (hence H) contains a nonabelian free group, or Hi is virtually
Z for i P t0, 1u. Hence, either H contains a nonabelian free subgroup, or by induction
on complexity, we have a product HHS p

ś
j L

i
j ,Siq such that Hi ď AutpSiq and each

Li
j –q.i. R. In the latter case, we conclude that H virtually acts geometrically by HHS

automorphisms on p
ś

ij L
i
j ,S

ˆq. Hence, for some n, a finite-index subgroup of H acts by
uniform quasi-isometries on R

n, so H is virtually abelian.
H fixes p P BG´BCS: In this case, H has a finite-index subgroup fixing some U P Suppppq

(so U Ĺ S). We now argue by induction on complexity as above. �

9.7. The “omnibus subgroup theorem”. Our next result generalizes the Handel-Mosher
“omnibus subgroup theorem” from [HM10]. Theorem 9.20 below implies the omnibus sub-
group theorem in the case where X is the mapping class group of a connected, oriented
surface of finite type. In order to state the theorem, we need to restrict the class of HHS we
consider, and give some definitions.

Definition 9.18 (Hierarchical acylindricity). Given an HHS pX ,Sq, we say G ď AutpSq
is hierarchically acylindrical if, for each U P S, the image of G X AU under the restriction
homomorphism θU : AU Ñ AutpSU q acts acylindrically on CU .

Lemma 7.5 implies that every group of automorphisms of an HHG is hierarchically acylin-
drical. Moreover, hierarchical acylindricity passes to subgroups. For the rest of this subsec-
tion, fix G ď AutpSq to be hierarchically acylindrical.

Definition 9.19 (Active domains). Let G ď AutpSq be a group of HHS automorphisms.
We say U P S is an active domain for G if diamU pπU pG ¨ xqq is unbounded for some (hence
any) x P X . Let ApGq be the set of Ď-maximal active domains for G. Note that if G “ xgy,
then ApGq “ Bigpgq.

Theorem 9.20 (Omnibus Subgroup Theorem). Let pX ,Sq be a hierarchically hyperbolic
space with S countable and X proper. Let G ď AutpSq be a countable hierarchically acylin-
drical subgroup. Then there exists an element g P G with ApGq “ Bigpgq. Moreover, for any
g1 P G and each U P Bigpg1q, there exists V P Bigpgq with U Ď V .
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Before we prove Theorem 9.20, we prove a lemma related to fixed boundary points of G.
Throughout, ξpSq denotes the complexity of pX ,Sq, i.e. the length of a longest Ď–chain.

Definition 9.21 (Fixed-point set). Given an arbitrary HHS pX ,Sq and G ď AutpSq, let
FixpGq “ tp P BpX ,Sq | G ¨ p “ pu.

Given p P FixpGq, let G1 ďf.i. G be a finite index subgroup of G which fixes each U P
Suppppq. Let U P Suppppq and suppose that G is hierarchically acylindrical. Since G1 fixes
U , the restriction homomorphism θU gives a group G1

U which (coarsely) acts on FU and acts
acylindrically on CU . The next lemma relates supports of fixed points to active domains.

Lemma 9.22. If p P FixpGq, U P Suppppq, and V P ApGq, then either U K V or U “ V .
Moreover, in the latter case, there exists g1

U P G1
U such that U P Bigpg1

U q and xg1
Uy ďf.i. G

1
U .

Proof. We separately analyze two cases.
The case U&V or U Ĺ V : Suppose that U&V or U Ĺ V , i.e. ρUV is a well-defined coarse

point. Since G1 ¨U “ U , we have that G1 coarsely stabilizes the image of PU “ FU ˆEU Ñ X ,
which we denote PU . In other words, G1 ¨ x0 is uniformly close to PU for all x0 P PU .

By definition of the standard embedding, if V&U or U Ď V , then πV pPU q — ρUV P CV

(see Subsection 1.3). Thus for any x0 P PU and V P S with U&V or U Ĺ V , we have

diamV pG1 ¨ x0q — 1

which implies that any orbit of G1 projects to a bounded subset of CV . Hence V R ApGq, a
contradiction. Thus either V Ď U or V K U .

The case V Ď U : Now suppose V Ď U . Since U P Suppppq, it follows that G1
U

fixes a point pU P BFU , where pU P BCU . Since G is hierarchically acylindrical, G1
U acts

acylindrically on CU . By Theorem 9.3 and the fact that G1
U fixes a point in BCU , one of the

following holds:

(1) G1
U has bounded orbits in CU ;

(2) G1
U contains an element g1

U which acts axially on CU , and xg1
Uy ďf.i. G

1
U .

If item (1) holds, then, since G1
U fixes a point of BCU , Lemma 9.17 implies that |G1

U | ă 8.
In this case, since V Ď U , we have πV pG1 ¨ xq “ πV pG1

U ¨ xq is finite, so V R ApGq, a
contradiction.

If item (2) holds, then we have found the desired element g1
U . Moreover, the existence of

this element shows that U is nested into some element of ApGq. On the other hand, V Ď U

and V P ApGq, so U “ V by maximality of V .
Thus the only possibilities are that either V K U or U “ V and the desired g1

U exists. �

We are now ready for the proof of Theorem 9.20:

Proof of Theorem 9.20. The “moreover” part of the statement follows automatically from
the first assertion and the definition of ApGq, for if g1 P G and U P Bigpg1q, then U is an
active domain for G and thus U must nest into some domain in ApGq “ Bigpgq.

We now prove the main part of the statement. By Proposition 8.4, we can assume that
G acts essentially on X . Let S P S to be the unique Ď-maximal domain in S. Note that if
G contains an irreducible axial element or has finite order, then we are done. Moreover, by
acylindricity of the action of G on CS, either G contains an irreducible axial or has bounded
orbits in CS (so S R ApGq).

In particular, if G fixes a point of BCS, then Lemma 9.17 implies that |G| ă 8, and we
are done. We may therefore assume that G does not fix a point in BCS and S R ApGq.

We now argue by induction on complexity of S. Suppose that ξpSq “ 1. Then either
there is an irreducible axial element, and we are done, or G acts with bounded orbits on CS,
in which case ApGq “ H since S “ tSu, and we are done.
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Now assume that the statement holds for any group of automorphisms of an HHS that
satisfies the hypotheses of the theorem and has complexity less than ξpSq.

There are two main cases, depending on whether or not G has a fixed point in BX .
First consider the case where G fixes no point of BX . Proposition 9.2 implies that either

G contains an irreducible axial, in which case we are done, or there exists U P S´ tSu such
that |G ¨ U | ă 8 and X is coarsely equal to PU Ă X . In the latter case, after passing to a
finite-index subgroup if necessary, we have G acting by automorphisms on the HHS pPU ,Sq
(with complexity ξpSq).

The remaining possibility is that G fixes some p P BX ´ BCS. In this case, after passing if
necessary to a finite-index subgroup, we again find U P S´ tSu with GU “ U and G acting
by automorphisms on the HHS pPU ,Sq (with complexity ξpSq).

In either case, let PU “ FU ˆ EU , so that S contains orthogonal subsets SU ,S
K
U such

that pFU ,SU q and pEU ,S
K
U q are HHSes of complexity at most ξpSq ´ 1. By replacing G

with an index-2 subgroup if necessary, we can assume that G stabilizes SU . Moreover, G
stabilizes SKo

U :“ tV P S : V K Uu, i.e. SKo

U is obtained from SK
U by removing W if

W & U , where W Ĺ S is the (arbitrarily-chosen) Ď-minimal “container” domain containing
everything orthogonal to U .

Recall that SK
U consists of all domains V P S with V K U along with a Ď-minimal domain

W P S such that V Ď W for all V K U . If W is the unique such domain, then G ¨W “ W ,
and thus G admits a natural restriction homomorphism to AutpSK

U q.
Otherwise, W R ApGq. Since diamW pπW pPU qq — 1, we may replace W with single point

W ˚ so that CW ˚ “ t˚u. From this we obtain a new HHS structure on pEU ,S
Ko

U q, where

SKo

U “ SK
U ´ W Y tW ˚u, by making the obvious alterations to the projection and domain

maps associated to W .
In either case, let GU be the image of G under the usual restriction homomorphism

AU Ñ AutpSU q. Let GK
U be the image of G under the restriction map ψ : AU Ñ AutpSK

U q

or, if W is not unique, we take GK
U be the image of ψ : AU Ñ AutpSKo

U q defined as follows:

for all g P AU , the map ψpgq acts like g on SKo

U and acts as the identity on CW ˚.

Hence we have HHS pFU ,SU q, pEU ,S
K
U q, of complexity at most ξpSq´1, and groups GU ď

AutpSU q and GK
U ď AutpSK

U q or AutpSKo

U q, that satisfy the hypotheses of the theorem.

We now show that ApGq “ ApGU q \ ApGK
U q. The inclusions ApGU q,ApGK

U q Ñ ApGq are
obvious. Conversely, suppose that V P ApGq. If U P Suppppq for some p P FixpGq (as we
can assume is the case whenever FixpGq ‰ H), then Lemma 9.22 implies that V “ U or
V K U , i.e. V P SU \ SK

U (and, if V “ W , then W is the unique container and hence
G–invariant). Otherwise, the proof of Lemma 9.22 shows that V K U or V Ď U . Hence
V P ApGU q \ ApGK

U q.
By induction on complexity, either ApGU q “ H, or there exists h̄ P GU with Bigph̄q “

ApGU q. Likewise, either ApGK
U q “ H, or there exists h̄K P GK

U with Bigph̄Kq “ ApGK
U q.

If ApGU q “ H (repsectively, ApGK
U q “ H), we take h̄ “ 1 (respectively, h̄K “ 1). Since

ApGq “ ApGU q \ ApGK
U q, we must use h̄, h̄K to find g P G with Bigpgq “ ApGU q \ ApGK

U q.
Choose h, hK P G stabilizing SU and SK

U and mapping to h̄ P GU , h̄
K P GK

U , respectively,

under the above restriction maps. Let k be the image of h in GK
U and let kK be the image

of hK in GU , so we are considering the action of h, kK on SU and hK, k on SK
U .

Let tU1, . . . , Uℓu “ Bigph̄q Ă SU and let tV1, . . . , Vku “ Bigph̄Kq Ă SK
U . By passing to

powers, we can assume that hUi “ Ui and hKVj “ Vj for all i, j. Since the action of GU on

SU preserves ApGU q, and the action of GK
U on SK

U preserves ApGK
U q, we can, by passing to

powers, assume that kK preserves each Ui and k preserves each Vj .
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Let N " 0 and consider F “ xhN , phKq10N y ď G. The image of F in GU is F̄ “
xh̄N , pkKq10N y, and the image of F inGK

U is F̄K “ xkN , ph̄Kq10N y. The above discussion shows

that F̄ acts acylindrically on each CUi and F̄K acts acylindrically on each CVj. Examining
the various cases that arise according to how k acts on the CVi and how kK acts on the
CUi shows that, in each case, there exists g P F whose image in F̄ is loxodromic on each
CUi and whose image in F̄K is loxodromic on each Vj . Hence Bigpgq “ ApGU q \ ApGK

U q, as
required. �

The following is an immediate but useful corollary of Theorem 9.20:

Corollary 9.23. If G ď AutpSq is hierarchically acylindrical, then ApGq is pairwise or-
thogonal.

9.8. Rank-rigidity for some CAT(0) cube complexes. We now use Theorems 9.14 and
9.13 to reprove the rank-rigidity theorem of Caprace and Sageev [CS11], in the case where
the cube complex in question contains a factor system. See Section 10 for a discussion of
the definition, and the definition of the simplicial boundary B

△
X of the cube complex X .

Corollary 9.24 (Rank-rigidity for cube complexes with factor-systems). Let X be an un-
bounded CAT(0) cube complex with a factor-system F. Let G act on X and suppose that one
of the following holds:

(1) G acts on X properly and cocompactly;
(2) G acts on X with no fixed point in X Y B

△
X .

Then X contains a G–invariant convex subcomplex Y such that either G contains a rank-one
isometry of Y or Y “ A ˆ B, where A and B are unbounded convex subcomplexes.

We remark that in view of [Hag13, Remark 5.3], we could have stated the corollary in
terms of fixed points in the CAT(0) boundary rather than the simplicial boundary, but we
have opted for the latter because of the close relationship between the simplicial and HHS
boundaries discussed in Section 10.

Proof of Corollary 9.24. First suppose that G acts on X essentially, in the sense that ev-
ery halfspace contains points of some G–orbit arbitrarily far from the associated hyper-
plane (in particular, X does not contain a G–invariant proper convex subcomplex). Recall
from [BHS14] that X is equipped with a hierarchically hyperbolic structure pX ,Sq, where
S is the set of factored contact graphs of elements of F, and that G ď AutpSq. If G acts on
X properly and cocompactly, then pG,Sq is an HHG; if G acts on X with no fixed point in
B
△
X , then G does not fix a point in BpX ,Sq, by Theorem 10.1 below.
Depending on which hypothesis we invoke, one of Theorem 9.14 or Theorem 9.13 implies

that either there exists g P G which is rank-one (in the HHS sense) or there exists U P S

so that X coarsely coincides with PU , which has unbounded factors, and G1U “ U for some
finite-index G1 ď G. In the former case, elements that are rank-one in the HHS sense (with
respect to this particular HHS structure on X ) are rank-one isometries of X in the usual
sense, by [Hag13, Proposition 5.1] and the definition of a factor system [BHS14, Section 8].

In the latter case, PU “ FU ˆEU is a genuine convex product subcomplex with unbounded
factors (see [BHS14]). Let g P G and suppose that H is a hyperplane intersecting PU but not
gPU . Since PU is coarsely equal to X and X is essential, the halfspace of PU separated from
gPU by H contains points arbitrarily far from H, whence PU and gPU cannot lie at finite
Hausdorff distance. This contradicts that PU is invariant under a finite-index subgroup of
G. Hence PU and gPU are parallel for all g P G, i.e. they are crossed by exactly the same
hyperplanes. Thus X “ PU ˆ Y for some compact cube complex Y , whence Y is a single
point, by essentiality. It follows that PU is G–invariant, so X “ PU by essentiality. Hence
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X decomposes as a product with unbounded factors. In general, we first replace X by its
G–essential core in either preceding argument, using Proposition 3.5 of [CS11]. �

Remark 9.25. Question A of [BHS15b] asks whether the existence of a proper cocompact
action of G on the CAT(0) cube complex X ensures that X contains a factor system. By
a result in [BHS14], the answer is affirmative provided X embeds as a convex subcomplex
in the universal cover of the Salvetti complex of some right-angled Artin group. Although
it is a strong condition, we believe that such embeddings always exist (although there is in
general no algebraic relationship between G and the RAAG).

9.8.1. The Poisson boundary of an HHG. Results in [BHS14] show that, if G is an HHG
with diam CS “ 8, then, given a nonelementary probability measure µ on G, the boundary
BCS admits a µ–stationary measure making it the Poisson boundary. As a topological model
of the Poisson boundary, BCS is unsatisfactory since it need not be compact. However:

Theorem 9.26 (The HHS boundary is the Poisson boundary). Let pG,Sq be an HHG with
diam CS “ 8, µ be a nonelementary probability measure on G with finite entropy and finite
first logarithmic moment, and ν the resulting µ-stationary measure on BG. Then pBG, νq is
the Poisson boundary for pG,µq.

We use acylindricity of the action of G on CS and a result of Maher-Tiozzo [MT14]:

Theorem 9.27 (Theorem 1.5 in [MT14]). Let G be a countable group which acts acylindri-
cally on a separable Gromov hyperbolic space X. If µ is a nonelementary probability measure
on G with finite entropy and finite first logarithmic moment with corresponding stationary
measure ν, then pBX, νq is the Poisson boundary for pG,µq.

Proof of Theorem 9.26. Let µ be a nonelementary probability measure on G with finite en-
tropy and finite first logarithmic moment. SinceG acts on CS acylindrically [BHS14][Theorem
14.3], Theorem 9.27 implies that there exists a µ-stationary measure ν 1 on BCS such that
pBCS, ν 1q is the Poisson boundary for pG,µq.

Let f : BCS ãÑ BG be the embedding from Proposition 2.13. By Lemma 9.7, fpBCSq is
Borel, so for any Borel subset V Ă BG, the set V X fpBCSq is Borel. Define a new measure
ν on BG by νpV q “ ν 1

`
f´1pV X fpBCSqq

˘
.

Since f is G-equivariant, it follows that ν is µ-stationary. By definition, fpBCSq has full
ν-measure. Moreover, pBG, νq is a µ-boundary by measurability of f and it is maximal since
pBCS, ν 1q is maximal. Thus pBG, νq models the Poisson boundary for pG,µq. �

10. Case study: CAT(0) cube complexes

Throughout this section, X is a locally finite CAT(0) cube complex in which each collec-
tion of pairwise–intersecting hyperplanes is (not necessarily uniformly) finite. In [BHS14], it
is shown that CAT(0) cube complexes can often be given HH structures using certain collec-
tions of convex subcomplexes called factor systems. We recall the definition in Subsection
10.2. When F is a factor system for X , denote the resulting HH structure by pX ,Fq.

The simplicial boundary of X was introduced in [Hag13]; we recall the definition below.
The simplicial boundary and the HH structure are closely related by the following theorem:

Theorem 10.1 (Simplicial and HHS boundaries). Let X be a CAT(0) cube complex with a
factor system F. There is a topology T on the simplicial boundary B

△
X so that:

(1) There is a homeomorphism b : pB
△
X ,T q Ñ BpX ,Fq,

(2) for each component C of the simplicial complex B
△
X , the inclusion C ãÑ pB

△
X ,T q

is an embedding.

In particular, if F,F1 are factor systems on X , then BpX ,Fq is homeomorphic to BpX ,F1q.



BOUNDARIES OF HHS 59

We prove Theorem 10.1 in Subsection 10.3.

Remark 10.2. Proposition 3.37 of [Hag13] relates B
△
X to its Tits boundary BTX . There

is an analogous relationship between the HHS boundary and the visual boundary when the
former is defined (i.e. when X has a factor system). Specifically, one can show that there is
a commutative diagram

B
△
X BTX

BpX ,Fq BvisX

//
I

��
b

��
id

//
J

where b is the bijection from Theorem 10.1, I and J are embeddings, J is π{2–quasi-
surjective, and BpX ,Fq is a deformation retract of BvisX . The CAT(0) metric on X is far
afield from our present discussion, since the HHS structure depends only on the combina-
torics of X and is insensitive to changes in the CAT(0) metric (unlike the visual bound-
ary [CK00]), so we will not give a detailed proof of the above. The top part of the diagram
comes from [Hag13, Proposition 3.37]; the missing ingredient is to shown that J is an em-
bedding, which is a tedious exercise in the definition of the topology on BpX ,Fq.

10.1. The simplicial boundary. We first recall the necessary definitions from [Hag13].

Definition 10.3 (UBS, boundary equivalence, minimal UBS). A set U of hyperplanes in
X is a unidirectional boundary set (UBS) if each of the following holds:

‚ U is infinite;
‚ if U,U 1 P U and a hyperplane V separates U,U 1, then V P U ;
‚ if U,U 1, U2 P U are pairwise disjoint, then one of them separates the other two;
‚ for all hyperplanes W , at least one component of X ´ W contains at most finitely

many elements of U .

Given UBSes U ,V, let U ĺ V if all but finitely many elements of U lie in V. The UBSes U ,V
are boundary equivalent if U ĺ V and V ĺ U , and U is minimal if U and V are boundary
equivalent for all UBSes V with V ĺ U .

Remark 10.4. Any infinite set of hyperplanes which is closed under separation contains a
minimal UBS [Hag13, Lemma 3.7].

Proposition 3.10 of [Hag13] shows that each UBS U is boundary equivalent to a UBS of

the form
Ůk

i“0 Ui, where each Ui is a minimal UBS, and this decomposition is unique up
to boundary equivalence. Up to reordering, for 0 ď i ă j ď k, for all but finitely many
U P Uj, the hyperplane U intersects all but finitely many elements of Ui. In this situation,
Uj dominates Ui. The number k is the dimension of U .

Definition 10.5 (Simplicial boundary). A k–simplex at infinity is a boundary equivalence
class of k–dimensional UBSes. If v, v1 are simplices at infinity, represented by boundary
sets V,V 1, then V X V 1 is, if infinite, a boundary set representing the simplex v X v1. The
simplicial boundary B

△
X of X is the simplicial complex with a closed k–simplex for each

k–dimensional simplex at infinity; the simplex u represented by the UBS U is a face of the
simplex v, represented by V, if U ĺ V.

Remark 10.6 (Boundaries of convex subcomplexes). It is shown in [Hag13] that if Y Ď X

is a convex subcomplex, then B
△
Y Ă B

△
X in a natural way: each simplex at infinity in B

△
Y

corresponds to a UBS in X consisting of hyperplanes that intersect Y, and these hyperplanes
intersect in X exactly when they intersect in Y, by convexity.
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10.1.1. Visibility.

Definition 10.7 (Visible simplex). The simplex u at infinity is visible if there exists a

combinatorial geodesic ray γ in X p1q such that the set U of hyperplanes intersecting γ

represents the boundary–equivalence class u. Otherwise, the simplex u at infinity is invisible.
If every simplex at infinity is visible, then X is fully visible.

Theorem 3.19 of [Hag13] states that every maximal simplex of B
△
X is visible. Visibility is

also related to a subtlety in the definition of B
△
X :

Remark 10.8 (Visibility and proper faces). Let
Ůk

i“0 Ui be a UBS, with each Ui a minimal
UBS, numbered so that for 0 ď i ă j ď k and all U P Uj, we have that U X V ‰ H
for all but finitely many V P Ui. If, up to modifying each Ui in its boundary equivalence
class, U X V ‰ H whenever U P Ui, V P Vj, and i ‰ j, then the simplex u represented byŮk

i“0 Ui is visible. In this case, X contains an isometrically embedded (on the 1–skeleton)
cubical orthant, the boundary of whose convex hull is u. Conversely, if we know that each Ui

represents a visible 0–simplex, then
Ů

iPK Ui represents a visible simplex at infinity for any
K Ă t0, . . . , ku, as is proved in [Hag13]. If this does not occur, then there may be subsets
K Ă t0, . . . , ku so that

Ů
iPK Ui represents an invisible simplex at infinity, or is not even a

UBS (by virtue of failing to satisfy the condition on separation). In other words, when X is
not fully visible, simplices at infinity may have proper faces that are not genuine simplices
at infinity represented by UBSes.

A visible simplex v Ď B
△
X is represented by the combinatorial geodesic ray γ Ď X p1q if

the UBS of hyperplanes intersecting γ represents the boundary equivalence class v.

Remark 10.9 (Factor systems and visibility). Conjecture 2.8 of [BH] states that if X is a
CAT(0) cube complex on which some group acts geometrically, then X is fully visible. Also,
the proof of Theorem 10.1 shows that, if X contains a factor system (see Definition 10.10),
then every simplex of B

△
X is visible. This is another reason for interest in Question A

of [BHS15b], which asks whether every CAT(0) cube complex on which some group acts
geometrically contains a factor system.

10.2. Factor systems: hierarchical hyperbolicity of cube complexes. We now sum-
marize results from [BHS14] yielding hierarchically hyperbolic structures on X . We refer
the reader to Section 2 of [BHS14] for discussion of convex subcomplexes and the gate map
gF : X Ñ F from X to any convex subcomplex F .

Recall that each hyperplane H of X lies in a carrier, N pHq, which is the union of closed
cubes intersecting H. For all H, there is a cubical isomorphism N pHq – H ˆ r´1

2
, 1
2
s;

a subcomplex of X which is the image under the inclusion N pHq Ñ X of either of the
subcomplexes H ˆ t1

2
u or H ˆ t´1

2
u is a combinatorial hyperplane. We say that two convex

subcomplexes F,F 1 of X are parallel if for any hyperplane H of X , we have H X F ‰ H if
and only if H X F 1 ‰ H. We let F denote a choice of representatives for each parallelism
class of elements of F.

Definition 10.10. A factor system F is a set of convex subcomplexes such that:

(1) Each nontrivial combinatorial hyperplane of X belongs to F, as does each convex
subcomplex parallel to a nontrivial combinatorial hyperplane,

(2) X P F,
(3) there exists ξ ą 0 such that for all F,F 1 P F, either gF pF 1q P F or diampgF pF 1qq ď ξ,
(4) there exists ∆ ě 1 such that each point in X belongs to at most ∆ elements of F.

We require that elements of F are not single points. (This condition is only imposed to
ensure that nesting and orthogonality are mutually exclusive: if F is a single point and
F 1 P F, then F K F 1 and F Ď F 1, so we exclude this situation.)
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The contact graph CX of X (see [Hag14]) has a vertex for each hyperplane, with two
hyperplanes joined by an edge if no third hyperplane separates them. If F Ď X is a convex
subcomplex, then F is a CAT(0) cube complex whose hyperplanes have the form H X F ,
where H is a hyperplane of X , and, by convexity of F , this yields an embedding CF ãÑ CX

of F as a full subgraph.

Given a factor system F on X , we define the factored contact graph pCF of each F P F as
follows. Begin with CF . For each parallelism class of subcomplexes F 1 P F, parallel to a
proper subcomplex of F that is not a single 0–cube, we have CF 1 Ĺ CF , and we cone off CF 1

by adding a vertex vF 1 to CF and joining each vertex of CF 1 Ă CF to vF 1 . The resulting

factored contact graph pCF is uniformly quasiisometric to a tree [BHS14, Proposition 8.24].

Let us now define the maps πF : X Ñ 2
pCF . For each F P F, given x P X , let gF pxq P F

be its gate. There is a nonempty finite set of hyperplanes H of F that are not separated
from x by any other hyperplane; these form a nonempty clique in CF , to which we send x.

We then compose with 2CF ãÑ 2
pCF to yield πF : X Ñ 2

pCF sending each point to a clique.
Let F Ď F 1 if F is parallel to a subcomplex of F 1, and F K F 1 if there is a cubical

isometric embedding F ˆ F 1 Ñ X (after possibly varying F,F 1 in their parallelism classes).
Otherwise, F,F 1 are transverse. With these definitions, it is shown in [BHS14, BHS15b]
that pX ,Fq is a hierarchically hyperbolic space.

10.3. Relating the simplicial and HHS boundaries. Fix X with a factor system F;
necessarily, X is uniformly locally finite.

Proof of Theorem 10.1. We will first exhibit a bijection b : B
△
X Ñ BpX ,Fq. We then define

T “ tb´1pOqu, where O varies over all open sets in BpX ,Fq, so as to make b a homeomor-
phism. It then suffices to verify that this topology agrees with the simplicial topology on
each component of B

△
X ; the “in particular” statement then follows immediately.

Reduction to the single-simplex case: Let m be a maximal simplex of B
△
X . By the

definition of the simplicial boundary, m is a simplex at infinity, i.e. it is represented by some
UBS M. Moreover, by [Hag13, Theorem 3.19], we can take M to be the set of hyperplanes
intersecting some combinatorial geodesic ray γm emanating from the (fixed) basepoint x0.
Let Ym be the convex hull of γm.

By [BHS14, Lemma 8.4], Fm “ tF XYm : F P Fu is a factor system. (We emphasize that
Fm is a set, not a multiset: if F,F 1 P F satisfy F XYm “ F 1 XYm, we count this subcomplex
once.) We adopt the following convention: for each F X Ym P Fm, we assume that F has
been chosen so that F is Ď–minimal among all F 1 P F with F 1 X Ym “ F X Ym. (Note that
there is a unique such minimal F : if F X Ym “ F 1 X Ym, then F X Ym “ F X F 1 X Ym, and
F X F 1 Ď F,F 1.)

Also, if F Ď F 1, then F X Ym Ď F 1 X Ym, obviously. Conversely, suppose that F X Ym Ď

F 1 X Ym. Let F 2 “ gF pF 1q, so F 2 Ď F 1 and F 2 Ď F . Then F 2 X Ym “ F X Ym, so F 2 “ F

by minimality, whence F Ď F 1.
If F K F 1, then convexity of Ym implies pFˆ K F 1q X Ym “ pF X Ymq ˆ pF 1 X Ymq, so

pF X Ymq K pF 1 X Ymq. Conversely, suppose that pF X Ymq K pF 1 X Ymq. For brevity, let
A “ F X Ym and B “ F 1 X Ym, so that X contains A ˆ B. By Lemma 10.13, there exist
FA, FB P F so that A Ă FA, B Ă FB and FA K FB . Let F 1

A “ F X FA and F 1
B “ F 1 X FB .

Then F 1
A X Ym “ F X Ym and F 1

A Ď F , so minimality of F implies F 1
A “ F ; similarly

F 1
B “ F 1. But since FA K FB and F 1

A Ď FA, F
1
B Ď FB , we have F K F 1.

It follows that there is a hieromorphism pYm,Fmq Ñ pX ,Fq defined as follows: the map
Ym Ñ X is the inclusion; the map Fm Ñ F is given by F X Ym ÞÑ F for each F X Ym P Fm

(where F is Ď–minimal in F with the given intersection with Y), and for each F X Ym, the
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map pCpF X Ymq Ñ pCF is the inclusion on contact graphs and sends cone vertices to cone
vertices in the obvious way.

We will see below that Ym “
śk

i“0 Ymi
, where each Ymi

has the property that B pCpF X

Ymi
q “ H for all F P F except for a unique :Fi P F for which B pCp :Fi X Ymi

q consists of a

single point pi. Moreover, :Fi K :Fj for i ‰ j. Lemma 10.11 shows that for each F X Ym, the

map pCpF X Ymq ãÑ pCF is a uniform quasiisometric embedding, inducing a boundary map,

i.e. pi may be regarded as a point in B pC :Fi for each i. We thus obtain an injective map
bm : BpYm,Fmq Ñ BpX ,Fq given by

bm

˜
kÿ

i“0

aimi

¸
“

kÿ

i“0

aipi.

Constructing b: We will observe below that if m,m1 are maximal simplices, then the
associated collections tpiu

k
i“0 and tp1

iu
k1

i“0 intersect in a set corresponding precisely to the
set of 0–simplices of mXm1. It follows that the maps constructed above are compatible, i.e.
bm|

Y
mXm1

“ bm1 |
Y
mXm1

and that, if m,m1 are disjoint maximal simplices of B
△
X , then bm and

bm1 have disjoint images. Pasting together the bm thus yields an injection b : B
△
X Ñ BpX ,Fq.

Surjectivity of b: Let t :Fiu
k
i“1 be a support set in F, choose for each i a point pi P B pC :Fi,

and let p “
řk

i“1 aipi. For each i, let σi be a geodesic ray in the quasi–tree pC :Fi joining

π pC :Fi
px0q to pi. Let tH i

nu be a sequence of hyperplanes of X , each crossing :Fi, corresponding

to vertices of σi, ordered so that H i
n separates H i

n`1 from x0. Any P P F that crosses

infinitely many of these hyperplanes satisfies :Fi Ď P , or else some element of F nested into
:Fi would “kill” the pi direction in B pC :Fi. Every simplex of B

△
p
śk

j“0
:Fjq Ă B

△
X is visible,

from which it is easy to check that there is a unique (up to boundary–equivalence) minimal
UBS Mi containing tH i

nu and representing a 0–simplex mi of B
△
X such that tm0, . . . ,mku

span a simplex m. By definition, bmp
ř

i aimiq “ p.
Analysis of components: To prove that each component C of B

△
X , with the simplicial

topology, is embedded in pB
△
X ,T q, we must show that b ˝ id : B

△
X Ñ BpX ,Fq restricts

to an embedding on C, where id : B
△
X Ñ pB

△
X ,T q is the identity. Let m be a maximal

simplex of B
△
X . Let p “

ř
i aipi P b ˝ idpMq and let N “ NtUiu,ǫppq X BpYm,Fmq be a basic

neighborhood of p, as defined in Section 1.1. Observe that N is completely non-remote,
whence it is clear from the definition that b´1

m pN q is basic in the simplicial topology on
B
△
Ym “ m, so bm is continuous. It follows that b ˝ id is continuous. A similar argument

shows that the restriction of b ˝ id to C is an open map. To complete the proof, it now
suffices to produce the Fi and analyze their factored contact graphs, which we do in the
next several steps.

Visibility of faces of m: Let m be a maximal simplex of B
△
X and observe that B

△
Ym

is exactly the simplex m. We now verify that each face of m is a visible simplex at infinity.
Let m0, . . . ,mk be the 0–simplices of m; represent mi by a minimal UBS Mi so that Mj

dominates Mi when i ă j and M “
Ůk

i“0Mi. Recall from Remark 10.8 that if Mi

dominates Mj for all i, j, then each sub-simplex of m is visible.
By projecting γm to a combinatorial hyperplane on the carrier of some element of Mk,

we see that M ´ Mk represents a visible codimension–1 face m1 of m, represented by a ray
γm1 . The convex hull Ym1 Ă Ym of γm1 inherits a factor system from Ym as above. Hence,
by induction, for i ă k, the 0–simplex represented by Mi is visible. Thus it suffices to show
that the 0–simplex mk represented by Mk is visible. (In the base case, m is a maximal 0–
simplex, and is visible by maximality.) Suppose, for a contradiction, that mk is not visible,
so there exists i ă k such that Mi fails to dominate Mk. In particular, k ě 1.
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The UBS Mk contains a sequence tMnuně0 of pairwise disjoint hyperplanes such that
Mn separates Mn˘1 for all n ě 1. For each n, let M`

n be the combinatorial hyperplane in
N pMnq in the same component of X ´ Mn as Mn`1. For each n, let Pn “ gM`

0
pM`

n q be

the projection of M`
n on M`

0 . The set of hyperplanes crossed by both M0 and Mn contains
all but finitely many elements of Mi; hence each Pn is unbounded and thus belongs to the
factor system Fm. Moreover, for all N ě 0, the intersection

ŞN
n“0 Pn ‰ H. Hence, since Pm

has multiplicity ∆ ă 8, it must be the case that there exists N such that Pn “ PN for all
N ě n. Thus, when n, n1 ě N , the set of elements of Mj crossed by Mn coincides with the
set crossed by Mn1 , for all j ď k ´ 1. Hence each Mj dominates Mk, whence mk is visible.

Structure of Ym: By [Hag13, Theorem 3.23] and visibility of the mi established above,

after moving x0 if necessary, Ym “
śk

i“0 Ymi
, where Ymi

is the convex hull in X of a
combinatorial geodesic ray γi at the basepoint x0 representing a 0–simplex mi of m. Each

point of m “ B
△
Ym can be uniquely written as

ř
i“0 aimi, where ai ě 0 and

řk
i“1 ai “ 1.

For each i, let tH i
nuně0 be the set of hyperplanes crossing γi; this is a minimal UBS and is

numbered according to the order in which γi crosses the H i
n. Thus, if n ą m, the hyperplane

H i
n does not separate H i

m from x0 (in fact, either H i
n XH i

m ‰ H or H i
m separates H i

n from
x0). Choose Fi P Fm to be Ď–minimal so that all but finitely many H i

n cross Fi. Observe
that Fi K Fj for all i ‰ j, and that Fi Ď Ymi

.

Suppose that m1 is some other maximal simplex and Ym1 “
śk1

i“0 Ym1
i
. For each i, let

F 1
i P Fm1 be Ď–minimal among those factors crossing all but finitely many of the elements

crossing Ymi
. Suppose that B pCFi “ B pCF 1

j for some i ď k, j ď k1. Then the set of hyperplanes
crossing Ymi

, which is boundary–equivalent to that crossing Fi, is boundary-equivalent to
that crossing F 1

j and hence that crossing Ym1
j
, i.e. mi “ m1

j .

Orthogonality: Each Fi has the form Fi “ pFi X Ym, where pFi P F. While orthogonality
of elements of F implies orthogonality of the corresponding elements of Fm, the converse

need not hold, but we will require that pFi K pFj for all i ‰ j, in order to construct points

of BpX ,Fq. However, finitely many applications of Lemma 10.13 below show that for each

i, there exists :Fi P F such that Fi Ď :Fi Ď pFi and such that :Fi K :Fj for all i ‰ j.

Factored contact graphs in Fm: For any F P Fm, we have, by convexity and [CS11,

Proposition 2.5], that F “
śk

i“0 gYmi
pF q, whence CF decomposes as a join, so pCF is obtained

from a join by coning off certain subgraphs. Thus pCF is bounded (and B pCF “ H) unless F

is parallel to a subcomplex of some Ymi
. We claim that B pCFi consists of exactly one point

pi for each i, and that, for all other F P Fm, we have B pCF “ H.
Observe that CFi coarsely coincides with CYi, the tH i

nu are partially ordered by the order
in which γi crosses them, and that CFi is coarsely equal to a maximal chain in this partial
order (i.e. a combinatorial ray σ in CFi). By Theorem 2.4 of [Hag13], σ is unbounded in
CFi, since Fi is Ď–minimal, and thus determines a point pi P BCFi. Moreover, pi is unique,

since pCFi lies in the 1—neighborhood of σ (pCFi is obtained from σ by adding edges reflecting
intersections of elements of the tH i

nu).

Hence, if σ Ă pCFi is unbounded, then B pCFi “ tpiu. By Ď–minimality of Fi, no hyperplane
of Fi crosses infinitely many tH i

nu, so hyperplanes of Fi are compact. By minimality of the

UBS tH i
nu, any element of Fm corresponding to a cone-vertex in pCFi crosses finitely many

hyperplanes. It follows that for all n ě 0, there exists N ě n such that H i
n and H i

m cannot

be adjacent to the same cone-vertex of pCFi when m ě N . Hence B pCFi “ tpiu.
We have shown that if F P Fm has unbounded factored contact graph, then F is (up to

parallelism) contained in some Ymi
. If F intersects only finitely many elements of tHiu,
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then F is compact and thus pCF is bounded. If F intersects infinitely many, then it inter-

sects all but finitely many, whence either F is parallel to Fi or pCF contains a subgraph,
containing all but finitely many hyperplane-vertices, whose vertices are all adjacent to the

cone-point corresponding to gF pFiq; thus pCF is bounded. This completes the description of
the boundaries of the factored contact graphs of the elements of Fm. �

Lemma 10.11. Let F be a factor system in X , let Y Ď X be a convex subcomplex, and let
F1 be the factor system in Y consisting of all subcomplexes of the form F 1 XY, where F 1 P F.
Let F X Y P F1, and suppose that if F 1 P F satisfies F 1 X Y “ F X Y, then F Ď F 1.

Then the following map φ : pCpF XYq Ñ pCF is a p3, 0q–quasiisometric embedding: φ is the
inclusion on contact graphs; for each F 1 XY P F1 properly nested in F XY (with F 1 minimal

with this intersection with Y), the cone-point in pCpF X Yq corresponding to F 1 X Y is sent

to the cone-point of pCX corresponding to F 1.

Remark 10.12. Recall from the discussion in the proof of Theorem 10.1 of the hieromor-
phism pYm,Fmq Ñ pX ,Fq that if F 1 X Y Ď F X Y and F,F 1 are each Ď–minimal with the
given intersections with Y, then F Ď F 1.

Proof of Lemma 10.11. Let v, v1 be vertices of pCpF X Ymq. Let v “ v0, v1, . . . , vn “ v1 be a

geodesic sequence in pCF from v to v1. If vi is a hyperplane vertex, let Hi be the corresponding
hyperplane of F (so H crosses F X Y). If vi is a cone-vertex, let Hi be a subcomplex in
F, properly contained in F , that represents the parallelism class corresponding to the cone-
vertex vi. (For i P t0, nu, if Hi is a hyperplane, then it crosses Y. Otherwise, Hi P F is
Ď–minimal among all U P FF with U X Y “ Hi X Y.)

If Hi is a cone-vertex, then Hi˘1 are hyperplanes crossing Hi. This gives a sequence
H0,H1, . . . ,Hn of hyperplanes or factor-system elements in F such that N pHiqXN pHi`1q ‰
H when Hi,Hi`1 are hyperplanes, and Hi XHi`1 ‰ H when Hi`1 is a subcomplex in F.

For each i such that Hi P F, we have Hi Ĺ F . In particular, our minimality assumption
on F ensures that if Hi X Y ‰ H, then Hi X Y Ĺ F X Y. Otherwise, we would have
Hi X Y “ F X Y while Hi Ĺ F , contradicting minimality of F .

For each i with Hi a hyperplane, choose a combinatorial geodesic γi Ñ N pHiq joining the
terminal point of γi“1 to a closest point on Hi`1 (or N pHi`1q if vi`1 is a hyperplane vertex).
Similarly, choose γi Ñ Hi when vi is a cone-vertex. The geodesic γ1 Ñ H1 joins H1 X Y

(or N pH1q X Y to H1 X H2 (or N pH1q X H2 etc.), and γn Ñ Hn (or N pHnq) is similarly
chosen to end in Y. Let D Ñ F be a minimal-area disc diagram bounded by γ1 ¨ γ2 ¨ ¨ ¨ γn
and a geodesic of Y joining its endpoints. Moreover, suppose that each of the geodesics,
and indeed the sequence v0, . . . , vn and the representative subspaces, are chosen so as to
minimize the area of D among all possible such choices.

Then, arguing exactly as in the proof of Proposition 3.1 of [BHS14], we see that γ1 ¨ ¨ ¨ γn
can be chosen to be a geodesic since a minimal D cannot contain a dual curve traveling
from γi to γj for any i, j. It follows that γ1 ¨ ¨ ¨ γn lies in Y, so each Hi that is a hyperplane
either crosses Y or contributes a combinatorial hyperplane to F1, while each Hi that is a
subcomplex contributes an element to F1; as explained above, for each such Hi, we have

Hi X Y Ĺ F X Y, so Hi X Y corresponds to a cone-point in pCpF X Yq. We thus have a
sequence H1, . . . ,Hn of (non-Ď–maximal) elements of F1 and hyperplanes crossing Y, which

determines a path of length between n´ 1 and 3pn´ 1q in pCpF X Yq. �

Lemma 10.13. Let X be a CAT(0) cube complex with a factor system F. Suppose that A,B
are unbounded convex subcomplexes of X such that there is a cubical isometric embedding
A ˆ B Ñ X extending A,B ãÑ X . Then there exist PA, PB P F with PA K PB and
A Ď PA, B Ď PB.
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Proof. Let x “ A X B. Then A,B are contained in combinatorial hyperplanes HA,HB,
respectively. Indeed, every hyperplane crossing A (including the one whose carrier contains
HB) crosses every hyperplane crossing B (including the one whose carrier contains HA).
For each hyperplane V 1 crossing HB, let V be one of the two associated combinatorial hy-
perplanes and consider gHA

pV q. Observe that gHA
pV q P F since it contains A and is thus

unbounded. Since F has finite multiplicity, there are only finitely many distinct subcom-
plexes gHA

pV q, as V varies over all hyperplanes whose projection to HA contains A; let
PA P F be their intersection. Define PB analogously. Then PA, PB have the desired proper-
ties. (Indeed, a hyperplane H crosses PA if and only if H crosses every hyperplane V whose
projection to HA contains A; the projection of H to HB thus contains B, so very hyperplane
crossing PB crosses H, whence PA ˆ PB Ă X .) �
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