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Abstract18

Floods are costly to global economies and can be exceptionally lethal. The ability to pro-19

duce consistent �ood hazard maps over large areas could provide a signi�cant contribution20

to reducing such losses, as the lack of knowledge concerning �ood risk is a major factor21

in the transformation of river �oods into �ood disasters. In order to accurately reproduce22

�ooding in river channels and �oodplains, high spatial resolution hydrodynamic models23

are needed. Despite being computationally expensive, recent advances have made their24

continental to global implementation feasible, although inputs for long-term simulations25

may require the use of reanalysis meteorological products especially in data-poor regions.26

We employ a coupled hydrologic/hydrodynamic model cascade forced by the 20CRv2 re-27

analysis dataset and evaluate its ability to reproduce �ood inundation area and volume for28

Australia during the 1973-2012 period. Ensemble simulations using the reanalysis data29

were performed to account for uncertainty in the meteorology, and compared with a vali-30

dated benchmark simulation. Results show that the reanalysis ensemble capture the inun-31

dated areas and volumes relatively well, with correlations for the ensemble mean of 0.8232

and 0.85 for area and volume respectively, although the meteorological ensemble spread33

propagates in large uncertainty of the simulated �ood characteristics.34

1 Introduction35

Floods are one of the most devastating natural disasters, a�ected an estimated 2.836

billion people in the past 30 years [Doocy et al., 2013] and causing damages with costs37

of US$6 billion annually [Hallegatte et al., 2013]. Population exposure varies by nation:38

15 nations together account for 80% of population exposed to river �ood risk world-wide39

[Winsemius et al., 2013]. Flood hazard maps have long been prepared in the developed na-40

tions at the local scale, but costs are high for such detailed hydraulic modeling as it must41

be based on abundant in situ data about �oodplain topography and channel bathymetry.42

Such work requires in any case abundant hydrological data, such as river �ow time series,43

which are not available for many of the nations most a�ected by damaging �oods. Thus,44

for many regions across the globe, a di�erent approach is needed [Hagen and Lu, 2011].45

E�orts to estimate �ood risk at continental and global scales have increased recently, ei-46

ther through remote sensing observations [Brakenridge et al., 2017] or models [Ward et al.,47

2015]. Satellite observations can be hindered by sparse spatial and temporal coverage (due48

to cloud cover or orbital characteristics), and the inability to only map �ooded area but49

not depths (directly linked to �ood hazard) in the case of the more prevalent optical sen-50

sors. Global �ood risk models can overcome those limitations, although they have been51

restricted to only estimating river discharge, and either solving �oodplain dynamics at in-52

adequate spatial resolutions (tens of km) [e.g.Yamazaki et al., 2011] or using simpli�ed53

physics [e.g.Paiva et al., 2013].54

Recently, advances in numerical algorithms and high-performance computing as well55

as the availability of global datasets (e.g. topography) have allowed the implementation56

of hydrodynamic models over continents and globally [e.g.Sampson et al., 2015]. The �-57

delity of these models, and particularly their spatial resolution (1 km or less), has enabled58

them to resolve some of the �ne-scale processes that control �ooding. Nevertheless, most59

of the existing global model applications have focused on the estimation of �ood charac-60

teristics for di�erent �ow return periods [Trigg et al., 2016], instead of simulating event-61

continuous time series of �ood inundation. The transformation of stream�ow to �ood in-62

undation can be highly nonlinear, which can lead to non-correspondence between their63

probability distributions. The latter has implications for �ood risk assessment and it has64

been posited that in order to correctly assign �ood return periods, long-term records of65

stream�ow need to be supplemented by �oodplain inundation and depth [Schumann et al.,66

2016].67
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Most applications that use return periods assume the �ow with the same probability68

occurs everywhere simultaneously. This problem may be alleviated by obtaining boundary69

in�ows from in-situ measurements, using sophisticated statistical models to produce real-70

istic �ood event footprints from �ood frequency distributions [Dixon and Tawn, 1995] or71

by forcing hydrodynamic models with runo� generated from meteorological �elds that72

produce realistic �ood events. The latter choice essentially creates a model cascade of73

loosely coupled models that begins with the meteorological data that force the hydrologic74

model, which in turn produces the stream�ow data that are used as boundary conditions75

for the hydrodynamic model resulting in maps of �ood-pertinent variables [Pappenberger76

et al., 2012]. In order to produce historical, long-term �ood event time series from such77

a model cascade we need consistent meteorology datasets that are available globally. Re-78

analysis datasets, which are produced by assimilating multi-sensor observations into a cli-79

mate model, could be a viable option for reconstructing �ood events globally especially in80

data-poor regions (e.g. developing countries).81

Previous studies have evaluated whether meteorology derived from reanalysis datasets82

can reproduce the hydrology of river basins at multiple spatial and temporal scales [e.g.83

Essou et al., 2016]. In addition, such studies within the context of �ood modeling have84

either focused on river �ow [e.g.Zsótér et al., 2016], have been performed at relatively85

coarse spatial scales [e.g.Emerton et al., 2017], or have only simulated �ood return peri-86

ods but not event time series [e.g.Ward et al., 2013]. However, there has been relatively87

little work assessing whether such datasets can simulate �ood inundation via a model cas-88

cade and capture the variability of �ood events at scales that adequately resolve �oodplain89

hydrodynamics. Although uncertainties in meteorological data, such as the ones derived90

from reanalysis products, may be too large for accurate local scale studies [Sampson et al.,91

2014] there is a need to evaluate the skill of reanalysis data over appropriate scales.92

Here, we evaluate the ability of an atmospheric reanalysis dataset, when used as93

input to a coupled hydrology/hydrodynamic model, to reproduce �ood inundation of a94

continental-size area over a 40-year period. Although the overarching goal of the reanalysis-95

driven reconstruction of �ood events is its evaluation globally, we use Australia as a case96

study and stepping stone towards global implementation. Apart from its size, which would97

demonstrate the feasibility of long-term hydrodynamic simulations, the availability of a98

validated, benchmark simulation that would allow for a rigorous evaluation supports Aus-99

tralia as an appropriate test case.100

2 Methods101

The experimental design involves the prediction of �ood characteristics, such as in-102

undated area and volume, from a coupled hydrologic and hydrodynamic model that has103

been forced by the reanalysis meteorological datasets. A benchmark hydrodynamic simula-104

tion (driven by observed stream�ow) that has been validated against satellite observations105

was used to evaluate how well the reanalysis simulations reproduced �ood characteristics106

over Australia.107

2.1 Meteorological datasets108

The meteorological data necessary for driving the hydrologic model are derived109

from the Twentieth Century Reanalysis (20CRv2) dataset [Compo et al., 2011], which is110

a long-term (1871-present) reanalysis product that provides a 56-member ensemble of nu-111

merous atmospheric variables at a spatial resolution of 2°(T62) and a time step of 6 hours.112

Here we use daily time series of 20CRv2 precipitation, maximum and minimum 2-m air113

temperature and 10-m wind speed in order to match the meteorological forcing require-114

ments of the hydrologic model. When compared with observations, 20CRv2 data have115

been shown to reproduce the variability of precipitation rates [e.g.Dolinar et al., 2016]116

while also being used in regional hydrologic studies. For example,Whelan and Frederik-117
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sen[2017] utilized 20CRv2 data to examine the role of the Madden-Julian Oscillation in118

Australian �ooding during La Niña events. Although alternative reanalysis data products119

exist, e.g. JRA55 [Kobayashi et al., 2015], they do not provide uncertainty estimates and120

would hinder the proper evaluation of how that uncertainty propagates from the reanalysis121

to the simulated �ooded area and volume. In contrast, the 20CRv2 dataset provides the122

mean and spread (i.e. standard deviation) of the ensemble allowing the stochastic simula-123

tion of �ood characteristics that could also be directly translated to �ood risk.124

The reanalysis precipitation was downscaled using the Constructed Analogs (CA)125

method [Hidalgo et al., 2008], while air temperature and wind speed were spatially down-126

scaled using the methods fromShe�eld et al. [2006]. The latter involved bilinear interpo-127

lation of the reanalysis �elds to the model 0.25°grid, with adjustments made to air tem-128

perature for elevation e�ects. Before interpolation to the �ner-scale grid, the data were129

adjusted to sea level using a lapse rate of 6.5°C km-1, and re-adjusted to the model el-130

evation after interpolation. The CA method is a deterministic approach for statistically131

downscaling coarse-scale meteorological �elds to �ner spatial scales by linearly combining132

past weather patterns that exhibit similarity to the coarse-scale (i.e. target) pattern. The133

past weather patterns (i.e. analogs) used to derive the linear combination (i.e. regression)134

are obtained by aggregating �ner-scale data to the target resolution. The downscaled �elds135

are then constructed by applying the linear regression coe�cients for the target pattern to136

the �ner-scale data from the same days used to derive the analog [Hidalgo et al., 2009].137

In this study, the analog patterns are composed from daily precipitation observed138

from the Tropical Rainfall Measuring Mission (TRMM) satellite [Hu�man et al., 2007]139

and aggregated to the spatial resolution of the 20CRv2 dataset. The TRMM data used140

here (3b42v7 product) cover the period Jan 1, 1998 to Dec 31, 2012 and have a spatial141

resolution of 0.25°. The target pattern was estimated by performing a regression on the 30142

best predictors ranked in terms of the coarse-scale spatial root mean square error (RMSE),143

with the potential patterns being selected within� 45 days from the target day [Maurer144

and Hidalgo, 2008]. The resulting regression coe�cients for each target day were then145

applied to the �ne-scale patterns (from TRMM) from the same days as the selected pre-146

dictors. Given the objective of this study, that is the evaluation of reanalysis datasets for147

reproducing �ood inundation, we opted to not perform any bias correction [e.g.Maurer148

et al., 2010] so as not to modify the magnitude or timing of the reanalysis precipitation.149

In addition, despite the availability of a long-term ground-based dataset of precipitation150

over Australia [Jones et al., 2009], which could have been used instead of TRMM, we151

elected to demonstrate the feasibility of the approach globally where such detailed data152

would not exist. Although a direct pixel-by-pixel comparison would not be applicable, the153

resulting spatial patterns between the downscaled reanalysis precipitation and the TRMM154

observations showed good agreement with pattern correlations ranging from 0.81 to 0.94155

(maps of seasonal means are shown in Figure S1 in the supporting information).156

2.2 Model description157

Flood inundation area and volume were simulated using a state-of-the-art hydro-158

dynamic model, LISFLOOD-FP, which solves an approximation of the 2-D Saint-Venant159

equation in a computationally e�cient manner [Bates et al., 2010]. The model is able160

to simulate river and �oodplain hydraulics over large areas but also resolve processes161

for rivers with widths smaller than the model's nominal resolution by using a sub-grid162

channel formulation [Neal et al., 2012]. LISFLOOD-FP requires inputs on �oodplain to-163

pography, river channel widths and bank elevation, as well as a set of upstream and lat-164

eral boundary conditions. Topography was derived at 1 km from Shuttle Radar Topog-165

raphy Mission (SRTM) satellite data, after being corrected for vegetation using a global166

ICESat canopy dataset and hydrologically conditioned [Schumann et al., 2013]. River167

channel widths were derived from a global database [Andreadis et al., 2013], while river168

bathymetry was estimated within the model based on hydraulic geometry [Neal et al.,169
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2012]. Lakes and wetlands were included in the model using the Global Land and Wet-170

lands Database (GWLD) [Lehner and Doll, 2004], and only rivers that drained areas larger171

than 10,000 km2 were explicitly modeled. Boundary conditions for the model included in-172

�ows upstream of the modeled rivers and at locations with signi�cant �ow contributions173

from tributaries, as well as downstream of rivers where normal depth �ow conditions were174

imposed (shown in Figure S2 in the supporting information along with a map of eleva-175

tion). A more detailed description of the implementation of LISFLOOD-FP over Australia176

can be found inSchumann et al.[2016], with hydrodynamic variables being simulated at a177

1-km spatial resolution over a period of 40 years (Jan 1, 1973 to Dec, 31 2012).178

The in�ows (42 locations) to the LISFLOOD-FP model were obtained from ob-179

served daily �ows for the benchmark simulation, and estimated from a hydrology model180

for each of the reanalysis simulations. The model used to simulate the upstream and lat-181

eral in�ows was the Variable In�ltration Capacity (VIC) macroscale model [Liang et al.,182

1994], which has been used successfully numerous times to simulate the hydrology of183

large-scale river basins [e.g.Nijssen et al., 2001]. The VIC model solves the energy and184

water balance over a gridded domain, with each grid cell being comprised of tiles that185

have been partitioned based on vegetation cover and elevation. Apart from land cover and186

topography, the model also accounts for sub-grid variability in soil moisture (by treat-187

ing capacity distribution probabilistically) and precipitation, while the subsurface is rep-188

resented as three layers that control the generation of surface runo� and base�ow. The189

VIC model was implemented at a 0.25°spatial resolution with elevation derived from the190

SRTM data, vegetation fractions obtained from the MODerate resolution Imaging Spectro-191

radiometer (MODIS) land cover product [Friedl et al., 2010], and soil parameters derived192

from the Australian Soil Resources Information System (ASRIS) database [Johnston et al.,193

2003]. The downscaled precipitation, air temperature, and wind speed for each reanalysis194

dataset were used to force VIC and simulate hydrologic �uxes including runo� and base-195

�ow. The latter were then used as input to a river routing model [Lohmann et al., 1998] to196

estimate stream�ow at each in�ow location.197

2.3 Model parameters198

The benchmark simulation that we use here does not have any dependence on the199

reanalysis meteorological (or TRMM) data since the hydrodynamic model is driven by ob-200

served �ows at the upstream and lateral boundary points. This implementation of LISFLOOD-201

FP over Australia has been previously calibrated by varying model parameters that control202

river channel bathymetry, cross-section shape, and roughness [Schumann et al., 2016]. The203

optimal model parameterization was evaluated using Receiver Operating Characteristic204

(ROC) curves (shown in Figure S3 in the supporting information) and had an Area Under205

Curve (AUC) of 0.81 (with 1.0 signifying perfect performance). Simulated inundated area206

was validated against observations derived from Landsat optical imagery [Mueller et al.,207

2016], and resulted in correct predictions (i.e. hit rate) of 89.6% of the domain.208

The hydrologic parameters were derived by calibrating the VIC model against the209

observed stream�ow data using an e�cient algorithm in order to minimize the computa-210

tional cost of the necessary simulations. Details of the calibration procedure can be found211

in the supporting information. In order to isolate the impact of the uncertainties of the re-212

analysis dataset on the simulated �ood characteristics, we performed the �ood simulations213

using the calibrated set of model parameters. An ensemble of simulations was generated214

by forcing the VIC/LISFLOOD-FP model with the ensemble of meteorological data con-215

structed from the 20CRv2 mean and standard deviation. Therefore, any uncertainty in the216

simulated �ood characteristics resulted from the uncertainty in the reanalysis data (the en-217

semble simulations for each in�ow location along with the observed �ow are shown in218

Figure S4 in the supporting information).219
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3 Results220

There have been a number of major �ood events in Australia during the 1973-2012221

study period. Queensland was severely �ooded in 1974 and 2010-2011, with the latter222

event leading to damages that cost billions of dollars. Additional major �ooding occurred223

in the mid-1970s in eastern Australia, including New South Wales and Victoria with events224

on the order of 35-100 year recurrence between 1973-1978. The 2010-2011 �ooding in225

Queensland was followed by another major event in 2011 in Victoria. New South Wales226

and Queensland were a�ected by a �ood in the spring of 1990, whereas the northern parts227

of Australia were �ooded during 1998 due to cyclone activity. Although the aforemen-228

tioned events do not, by any means, form an exhaustive list of �ooding in Australia, they229

can be identi�ed by examining the time series of the gauge-driven (i.e. benchmark) simu-230

lation of inundated area and volume. Figure 1 shows the monthly time series of in�ow (a),231

inundation volume (b), out�ow (c), and inundated area (d) for the benchmark simulation,232

the reanalysis ensemble (as propagated from the uncertainty in the 20CRv2 data), as well233

as the ensemble mean.234

Figure 1. Time series of in�ow (a), inundated volume (b), out�ow (c), and inundated area (d) from the

benchmark and ensemble simulations.

235

236

The in�ow (Figure 1a), calculated as the sum of the boundary in�ows, is gener-237

ally well captured by the ensemble with only 1.0% and 0.7% of values being underesti-238

mated and overestimated respectively. The uncertainty in the reanalysis precipitation can239

be rather large, with the ensemble coe�cient of variation ranging from 0.15 to 1.41 and240

a mean value of 0.62, propagating into large uncertainty in the simulated in�ow. The re-241

spective coe�cient of variation for in�ow ranges from 0.01 to 1.27 with a mean value of242

0.88, which partly explains the observed in�ow being captured by the ensemble for 98.3%243

of the simulation period. The temporal variability is relatively well reproduced with Pear-244

son correlation coe�cients between the benchmark and the ensemble-mean simulation245

being 0.75 (0.77 and 0.44 for the upper and lower in�ow ensemble bounds respectively).246

For continuous event simulation temporal correlation is of greater importance than bias247

in in�ow, since the latter is easier to correct for (particularly when cascading it through248

a hydrodynamic model) and has been shown to be disadvantageous compared to correla-249

tion [Criss and Winston, 2008]. In this context, the ensemble-mean simulation underes-250

timates the observed peaks whilst the performance in terms of area and volume is much251

higher, which can be attributed to the importance of temporal dynamics of successive252

�ood-generating peaks in high-�ow periods [Schumann et al., 2016].253

The ensemble reanalysis was also able to reproduce the temporal variability in out-254

�ows relatively well, with correlations of 0.71, 0.70 and 0.43 for the ensemble mean, max-255

imum and minimum simulations (Figure 1b). The ensemble mean underestimates the ob-256

served out�ow by 488.1 m3/s n average during the simulation period. Similar to the sim-257

ulated in�ow, the ensemble spread for out�ow is rather large with the average range being258

5,237.2 m3/s. Nonetheless, the ensemble fails to capture and underestimates the observed259

out�ow for 11.2% of the study period. This underestimation suggests that the �ow con-260

veyances are miscalculated and the �oodplain waters are not drained back into the river261

channel correctly.262

The upper bound of the ensemble-simulated in�ow overestimates the observed �ow263

by 6,188 m3/s (or 300.1%) on average, leading to a large ensemble spread shown in the264

inundated volume comparison (Figure 1c). All of the peaks in the inundated volume are265

captured by the ensemble, with the timing being reproduced relatively well as evidenced266

by the correlation of 0.85 between the mean and the observations. The ensemble mean267

generally underestimates the peaks in inundated volume with a bias of -8.78 km3, while268
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the overall bias (from the daily time series) was -1.67 km3, suggesting that the mean re-269

analysis was not able to capture extreme precipitation events well. The spread in the re-270

analysis data propagates into a relatively large uncertainty in the model predictions of in-271

undated volume, especially during �ood events. The ensemble spread of the inundated272

volume during the annual peak times ranges from 25.0 to 100.8 km3 (or 134.1 to 173.2%273

relative to the ensemble mean).274

Figure 1d shows the comparison between the reanalysis and the benchmark simu-275

lations for inundated area, with results being somewhat similar to the inundated volume276

comparison. The reanalysis ensemble captures the inundated area from the observation-277

driven simulation during the entire study period. The correlation between the reanalysis278

mean and the benchmark simulation is 0.82, suggesting that the timing of overbank �ow is279

being reproduced relatively well. The impact of the meteorological uncertainty is nonex-280

istent in terms of capturing the temporal variability for the ensemble upper bound (corre-281

lation of 0.82), but is very large for the lower bound reducing the aforementioned correla-282

tion to 0.02 essentially retaining water within the river channels only. Contrary to the in-283

undated volume, the ensemble mean simulation of inundated area has a positive bias when284

compared with the benchmark simulation (-3,995.9 km2) suggesting that the �oodplain285

residence times (i.e. �oodplain drainage) are not accurately reproduced by the reanalysis-286

driven simulations.287

Figure 2. Map of agreement between reanalysis ensemble simulations of maximum inundation area with

benchmark simulation over 1973-2012 period. Pixels are categorized in terms of classi�cation metrics (H:

Hit, M: Miss, F: False alarm) and probability of occurrence (i.e. number of ensemble members that had the

corresponding classi�cation). Enlarged versions of the inset maps are included in the supporting information

as Figures S5-S8.

288

289

290

291

292

Although the comparison of the total inundated area and volumes showed that the293

reanalysis simulations (mean and maximum) mostly captured the temporal variability294

when compared with the benchmark simulation, we need to also evaluate them in a spa-295

tial context. Figure 2 shows a bivariate choropleth map of the maximum inundated area296

draped over the topography of the study domain. The inundated pixels are colorized ac-297

cording to nine classes derived from two variables with three classes each: a classi�cation298

metric and the probability of occurrence. The former corresponds to whether the reanaly-299

sis simulations predict a pixel as inundated or not in comparison to the benchmark simula-300

tion. When both the reanalysis and the benchmark simulation predict a pixel as inundated,301

it is classi�ed as a Hit (i.e. True positive); when the pixel is inundated in the benchmark302

but not in the reanalysis simulation, it is classi�ed as a Miss (i.e. False negative); and303

when the pixel is inundated in the reanalysis but not in the benchmark simulation it is304

classi�ed as a False alarm (i.e. False positive). Additionally, each pixel is assigned a prob-305

ability according to the number of ensemble members that agreed with the aforementioned306

classi�cation, in order to capture the uncertainty in the predictions of inundation extent.307

The area that was correctly classi�ed as inundated, in terms of maximum extent,308

in the reanalysis ensemble was 238,125 km2 (97.5% of the total area inundated). How-309

ever, when examining the hit rate in terms of the uncertainty in the ensemble we �nd that310

the area that was inundated for the entire ensemble was 38,436 km2 (15.7%), the inun-311

dated pixels correctly predicted by 2/3 of the ensemble was 109,965 km2 (45.0%), while312

the area correctly inundated only in the maximum ensemble simulation was 89,723 km2
313

(36.8%). The areas that were incorrectly classi�ed as either non-�ooded or �ooded were314

6,018 km2 and 31,158 km2 respectively. The false negatives corresponded to 2.2% of the315

area inundated either in the benchmark or reanalysis simulations. None of the ensemble316

members �ooded those areas suggesting that the reanalysis precipitation was underesti-317
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mated at the local scale resulting in inadequate �ows in those areas. On the other hand,318

the false positives equaled 11.6% of the area inundated in the reanalysis simulations with319

the ensemble maximum contributing 9.5% (33.3% probability) while 2.1% of the total320

area was incorrectly predicted by 2/3 ensemble members (mean and maximum).321

Most of the areas that were incorrectly inundated by the reanalysis ensemble were322

located in the Murray-Darling basin (region D) although false alarm pixels were apparent323

in all �ooded regions. The �ow regime for the Murray-Darling can be classi�ed as inter-324

mittent with high daily �ow variability as well as having stable base�ow near the coast325

[Kennard et al., 2010], although natural �ows have been modi�ed from human activities326

downstream. The intermittency in �ows could lead to higher uncertainty and could partly327

explain the relatively large misclassi�cation of inundated area for this region. On the other328

hand, the stable base�ow and a strong seasonal signal could have resulted in the correct329

classi�cation of �ood inundation. The reanalysis-derived inundated area in the regions in330

western and northern Australia (A and C in Figure 2) was correctly classi�ed with reason-331

able con�dence (2/3 probability), but was underestimated (misses) at the �oodplains up-332

stream, which is probably related to the degree of local detail in �oodplain topography not333

captured by the SRTM DEM in those regions. The �ow regime of both of these regions334

can be characterized as intermittent during the summer, dominated by zero-�ow days or335

relatively constant �ows with high predictability that could explain the lower uncertainty.336

Region B (Queensland) exhibits correct classi�cation of inundated pixels for the ensemble337

mean and maximum traces, although there are some disjointed patterns of false alarms,338

which could be attributable to errors in the spatial variability of rainfall.339

The map in Figure 2 does not have explicit timing information, but it does show340

that the reanalysis simulations do not inundate areas that were identi�ed as �ooded in the341

benchmark simulation. When combining this information with Figure 1, it is implied that342

the reanalysis simulations were not able to capture the spatial variability of the in�ows343

leading to some areas not being inundated during the entire simulation period. It is appar-344

ent that the lower bound of the ensemble captures the inundated area to a small degree,345

mostly in areas adjacent to the river channels. On the other hand, there are large areas (es-346

pecially in Queensland) when only the upper bound of the reanalysis ensemble results in347

true positives of maximum inundation extent.348

Figure 3. Time series of Critical Success Index (CSI) calculated from the �ood depth ensemble and bench-

mark simulations.

349

350

Another approach to evaluate the estimation of �ood inundation from the reanalysis351

simulations is by adapting a categorical veri�cation metric such as the Critical Success352

Index (CSI). The de�nition of the CSI is given by353

CSI =
A

A + B + C
(1)

where theA, B, C terms are the number of pixels where an event is both predicted and354

observed, an event is predicted but not observed, and an event is observed but not pre-355

dicted respectively [Wu et al., 2012]. The �event� is de�ned here as the �ow depth value356

falling within the reanalysis ensemble for each pixel. Figure 3 shows a monthly time se-357

ries of the CSI index calculated for the entire study area. The CSI metric allows the eval-358

uation of the reanalysis simulations in both space and time, by capturing both the magni-359

tude and timing of predicted �ow depth for each 1-km pixel. The prediction skill of �ow360

depth appears to slightly decrease with time during the study period, although the median361

CSI is 0.72 suggesting a reasonably good agreement between the reanalysis ensemble and362

the benchmark simulation.363
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4 Conclusions364

A model cascade that is driven by meteorological data and couples a hydrologic365

(VIC) and a high-resolution (1 km) hydrodynamic (LISFLOOD-FP) model was employed366

to evaluate whether reanalysis datasets could reproduce �ood inundation over Australia367

during 1973-2012. An ensemble of simulations were performed by constructing an enve-368

lope of model traces around the mean reanalysis meteorology from the latter's associated369

uncertainty, and were compared with a benchmark simulation that was driven by observed370

gauge in�ows. The reanalysis ensemble was able to capture the inundated volume and371

area overall, although the uncertainty propagated from the meteorology resulted in a large372

ensemble spread. Moreover, the reanalysis-driven simulation produced a majority of true373

positives in terms of �ood extent although there were some problematic areas (misses and374

false alarms) suggesting that the in�ow spatial and/or local topographic variability were375

not properly captured. Further analysis is needed to identify the factors a�ecting the per-376

formance of the reanalysis ensemble in terms of predicting �ood inundation and also ex-377

amine attribution of the resulting errors. Additionally, there are a number of approaches378

that could improve the reanalysis simulations including their merging with remotely sensed379

observations of inundated area, or the correction of the meteorological data with other ob-380

servational datasets [e.g.Tanoue et al., 2016]. Nonetheless, our study presented and eval-381

uated the application of a hydrologic/hydrodynamic model cascade over continental scales382

for long-term, continuous event simulations and demonstrated its feasibility for global im-383

plementation.384
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