This article can be cited before page numbers have been issued, to do this please use: R. A. Musgrave, R. Hailes, A. Schäfer, A. D. Russell, P. J. Gates and I. Manners, *Dalton Trans.*, 2018, DOI: 10.1039/C7DT04593J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [author guidelines](http://www.rsc.org/authors).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard [Terms & Conditions](http://www.rsc.org/t-and-c) and the ethical guidelines, outlined in our [author and reviewer resource centre](http://www.rsc.org/authors), still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
New Reactivity at the Silicon Bridge in Sila[1]ferrocenophanes

Rebecca A. Musgrave, Rebekah L. N. Hailes, André Schäfer, Andrew D. Russell, Paul J. Gates and Ian Manners*

We describe two new types of reactivity involving silicon-bridged [1]ferrocenophanes. In an attempt to form a [1]ferrocenophane with a bridging silyl cation, the reaction of sila[1]ferrocenophane [Fe(η-C5H5)Si(H)TMP] (12) (TMP = 2,2,6,6-tetramethylpiperidyl) towards the hydride-abstraction reagent trityl(tetrafluoroborate)borate ([CPh3][B(CF3)4]) was explored. This yielded the unusual dinuclear species [Fe(η-C5H5)Si(TMP+H)[η-C5H5]Fe(η-C5H5)Si(H)TMP][B(CF3)4]] (13)[B(CF3)4] in low yield. The formation of [13] is proposed to involve abstraction of hydride from the silicon bridge in 12 with subsequent C–H bond cleavage of a cyclopentadienyl group by the resulting electrophilic transient silyl cation intermediate. We also explored the reaction of dimethylsila[1]ferrocenophane [Fe(η-C5H5)SiMe2] (1) with the Au(I) species AuCl(PMe3). This was found to result in addition of the Au–Cl bond across the Cp5Si bond to yield the ring-opened species [1′-(chlorodimethylsilyl)-ferrocenyl][trimethylphosphine]gold(I), [Fe(C5H5)Si(MeCl)C5H5Au(PMe3)] (14). This represents the first example of ring-opening addition of a metalloconophane with a reagent possessing a transition metal-halogen bond.

Introduction

Within a decade of the discovery of ferrocene in the 1950s, the first ansa-metalloconophanes, or [n]metalloconophanes, were prepared. 1-7 [n]Metalloconophanes (Figure 1) possess an ansa [n] bridge (an inter-ring bridge composed of n bridging atoms) which links the cyclopentadienyl rings and tilts them about the metal centre. These [n]metalloconophanes, combined with analogous species based on other π-hydrocarbon ligands, make up by far the broadest and most well-studied class of strained metal-containing rings, and have attracted substantial attention over the last fifty years. 3-13 Their unusual molecular and electronic structures arise from distortion of the favoured parallel disposition of the Cp rings, resulting in a higher energy (for d2–d8 metals), ring-tilted structure.

[n]ferrocenophanes bridged by a single silicon atom were among the first [n]metalloconophanes to be reported, 14 and they are at present widely employed as precursors to poly(ferrocenylsilanes) which have attracted much attention as a result of their interesting redox, precumeral and etch-resistant characteristics and other physical properties. 15-19 [n]ferrocenophanes are also of interest as ligands, 20, 21 and structural supports for low-valent main group species, with recent examples incorporating carbenes, 22-24 germynes, 25, 26 and stannynes. 27 Investigation of the reactivity of silicon within [n]ferrocenophanes has led to a good general understanding of the mechanisms for ring-opening and polymerisation processes, and reactivity at the bridging silicon atom in dimethylsila[1]ferrocenophane 1 (Figure 2) is particularly well documented. 27, 28 The polar Cp5Si bond is labile in these strained molecules as a result of various structural distortions, which are visualised by β (the extent to which the coordination environment of the sp3 Cp5Si carbon atom deviates from a trigonal planarity) and θ (an angle which describes the distortion from tetrahedral geometry of the bridging silicon) (see Figure 1).

Fig. 1 Geometric parameters characterising the structural distortions in the molecular structures of [1]ferrocenophanes. α = dihedral angle between the Cp and Cp’ ring planes, β = [180° – (Cpαcent-Cpβcent-Si)] angle, δ = Cpαcent-Fe–Cpβcent angle, θ = Cp5Si-Si-Cp5Si angle.

Anionic, 28-30 cationic, 31 thermal, 9, 32-35 and transition metal-catalysed ring-opening polymerisation (ROP) 36-38 all proceed via cleavage of this bond, in addition to many stoichiometric ring-opening reactions. 39, 40 To date, most sila[1]ferrocenophanes feature a tetravalent bridging silicon atom which exhibits pseudo-tetrahedral geometry within the ansa bridge. Only two examples of sila[1]ferrocenophanes which feature hypercoordinate silicon atoms have been reported (2 and 3, Figure 2). 31, 41 Coordination of the donor nitrogen- or oxygen-based pendant group in these molecules...
results in lengthening of the trans \(\text{Cp}_{\text{ipso}} \)-Si bond, and increases reactivity of this bond towards cationic species.\(^{31}\) No examples currently exist in which the bridging silicon atom exhibits a coordination environment of less than four substituents, despite low coordinate silicon compounds being commonplace in the literature.\(^{42-46}\)

Fig. 3 Isoelectronic \(\alpha \)-ferrocenylborane \(4,59 \) \(\alpha \)-ferrocenylcarbenium ion \(5,60 \) and \(\alpha \)-ferrocenyl silyl cation \(6\) \((\alpha^\circ = [180^\circ - (\text{Cp}_{\text{ipso}} - \text{Cp}_{\text{ipso}} - \text{E})] \) angle).

In all cases, a "dip angle", \(\alpha^\circ \) (defined as \([180^\circ - (\text{Cp}_{\text{ipso}} - \text{Cp}_{\text{ipso}} - \text{E})] \) angle) of the electron-deficient \(\alpha \)-substituent towards the iron atom is evident, which increases with the increasing electrophilicity of the substituent from boron to carbon to silicon. The charge in silicon is predominantly localised at silicon,\(^{165}\) whereas the second method involves heterolytic cleavage and protonation of a strained C-Si bond. Herein, we intend to apply the hydride abstraction route to a sila[1]ferrocenophane with an Si-H moiety with the intention of synthesising a silyl ion where both \(\text{Cp}_{\text{ipso}} \)-Si bonds remain intact.
Results and Discussion

Using the hydride abstraction route described above, several initial attempts to synthesise silyl cations from monoaeryl-substituted sila[1]ferrocenophanes (such as methylsila[1]ferrocenophane) were unsuccessful, resulting in a number of unidentifiable silicon-containing products. In an attempt to attenuate the electrophility of a potential cationic silicon-based species, a tetramethylpiperidyl (TMP) substituted sila[1]ferrocenophane was targeted. The nitrogen atom, directly bonded to the bridging silicon atom, has the potential to stabilise a silylium ion via π-donation into the empty silicon p orbital. Hydride abstraction from this TMP-substituted sila[1]ferrocenophane will be discussed, in addition to the reactivity of sila[1]ferrocenophanes with chloro(phosphine)gold(I) complexes.

Synthesis of (2,2,6,6-tetramethylpiperidyl)sila[1]ferrocenophane (12)

In a similar manner to the synthesis of bulky sila[1]ferrocenophane 11 (Figure 4), which involved substitution of chlorine at silicon using Li(N(SiMe$_3$)$_2$)$_2$, the addition of 2,2,6,6-tetramethylpiperidyllithium to a THF/hexanes solution of 10 at room temperature did not result in ring-opening of the strained monomer. Instead, nucleophilic substitution at the silicon bridging atom was found to have occurred, yielding the (2,2,6,6-tetramethylpiperidyl)sila[1]ferrocenophane 12 in 83% yield (Scheme 3).

![Fig. 4 Sila[1]ferrocenophanes bearing chloro- and bis(trimethylsilyl)amino-substituents.](image)

The Si–H hydride of 12 was located at 5.6 ppm by 1H NMR spectroscopy, further upfield to that of the precursor 10 (5.9 ppm), in addition to four resonances typical of α and β-Cp protons (Figure S1). Resonances corresponding to the tetramethylpiperidyl group are observed further upfield between 1.38 and 1.61 ppm. Five resonances in the 13C NMR spectrum typical of α, β and ipso-Cp carbons were identified, along with a further four resonances corresponding to the tetramethylpiperidyl substituent (Figure S2). The 29Si(1H) NMR spectrum (Figure S3) showed one resonance at -32.5 ppm assigned to the bridging silicon atom, in a similar region to that of 10 (-15.4 ppm).

![Scheme 3 Synthesis of (2,2,6,6-tetramethylpiperidyl)sila[1]ferrocenophane (12).](image)

The orange/red product 12 was isolated from hexanes at -40 °C and found to crystallise in the orthorhombic space group Iba2. The molecular structure of 12, shown in Figure 5, exhibits structural parameters similar to those of the related sila[1]ferrocenophane 11, which also features a bulky amino-based group at the bridging silicon (Table 1).
hydride-abstracting trityl reagent were used, but instead of the anticipated [Si⋯H⋯Si]+ bridged product, crystalline [13][B(C₆F₅)₄] was isolated in 7% yield (Scheme 4).

Scheme 4 Hydride abstraction from 12 and electrophilic aromatic substitution at a Cp ring by the transient silyl cation intermediate to yield [13][B(C₆F₅)₄].

This unexpected product was isolated via slow diffusion of hexanes into the reaction solution in 1,2-difluorobenzene, and crystallises in the monoclinic space group P₂₁/n (the molecular structure of the [13]+ cation is shown in Figure 6, and ¹H, ¹³C and ²⁹Si NMR spectra are shown in Figures S5–7).

Fig. 6 Molecular structure of the [13]+ cation. Thermal ellipsoids displayed at the 50% probability level. Hydrogen atoms are pictured as spheres of arbitrary radii. Selected distances (Å) and angles (°): Fe(1)–Cp = 1.642(2)/1.636(2), Si(1)–N(1) = 1.925(4), Fe(1)–Si(1) = 2.6547(15), α[Fe(1)] = 20.6(2), β[Fe(1)] = 39.4(3)/38.9(3), δ[Fe(1)] = 165.77(5), θ[Fe(1)] = 97.2(2), Fe(2)–Cp = 1.649(2)/1.638(2), Si(2)–N(2) = 1.711(4), Fe(2)–Si(2) = 2.7893(16), α[Fe(2)] = 23.8(2), β[Fe(2)] = 39.4(3)/38.9(3), δ[Fe(2)] = 165.77(5), θ[Fe(2)] = 91.9(2).

Two intact sila[1]ferrocenophane units are linked via the bridging silicon of one and a β-Cp carbon of the other (Si(1)–C(20)). The charge of [13]+ is formally localised not at a silicon atom, but at N(1), which has been protonated to yield the
tertiary ammonium ion. The Si(1)–N(1) bond length (1.925(4) Å) is lengthened relative to both Si(2)–N(2) in [13]+ (1.711(4) Å) and the Si(1)–N(1) bond in precursor 11 (1.7280(16) Å). The sum of bond angles involving the three non-protic substituents at N(1) (namely C(15)–N(1)–Si(1), C(11)–N(1)–Si(1) and C(11)–N(1)–C(15)) is 350.6°, intermediate between that expected for trigonal planar and tetrahedral geometry at nitrogen. In contrast, the sum of all bond angles at N(2) reflects trigonal planar geometry about nitrogen (361.5°). The structural differences within the sila[1]ferrocenophane (FCP) units FCP(1) and FCP(2) (defined as those based on Fe(1) and Fe(2) respectively) in [13]+ are minor, although the increased tilt-angle for FCP(2) of 23.8(2)° relative to that in FCP(1) of 20.6(2)° is significant, and may be explained by the increased steric bulk attached to the Cp ring of FCP(2). Comparison of other structural parameters between FCP(1)/FCP(2) are detailed in Table 1.

<table>
<thead>
<tr>
<th>12</th>
<th>[13]+</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FCP(1)</td>
<td>FCP(2)</td>
</tr>
<tr>
<td>α, °</td>
<td>21.89(8)</td>
<td>20.6(2)</td>
</tr>
<tr>
<td>β, °</td>
<td>36.21(14)</td>
<td>39.4(3)</td>
</tr>
<tr>
<td>δ, °</td>
<td>163.675(16)</td>
<td>165.77(5)</td>
</tr>
<tr>
<td>θ, °</td>
<td>93.73(9)</td>
<td>97.2(2)</td>
</tr>
<tr>
<td>Fe–Cp\textsubscript{cent}, Å</td>
<td>1.6371(7)</td>
<td>1.642(2)</td>
</tr>
<tr>
<td>Fe–Cp\textsubscript{ipso}, Å</td>
<td>1.6353(8)</td>
<td>1.636(2)</td>
</tr>
<tr>
<td>Si–N, Å</td>
<td>1.7280(16)</td>
<td>1.925(4)</td>
</tr>
</tbody>
</table>

Table 1 Important structural parameters of compounds 12, [13]+ and 11. FCP(1) and FCP(2) refer to the independent sila[1]ferrocenophane units in [13]+ based on Fe(1) and Fe(2) atoms respectively. Geometric parameters are depicted in Figure 1 (α = dihedral angle between the plane of each Cp ring, β = [180° – (Cp\textsubscript{cent}–Cp\textsubscript{ipso}–Si)] angle, δ = Cp\textsubscript{cent}–Fe–Cp\textsubscript{′ cent} angle, θ = Cp\textsubscript{ipso}–Si–Cp\textsubscript{′ ipso} angle).

It is probable that the formation of the new silicon-carbon bond in the product is a result of the electrophilic aromatic substitution of the Cp ring by a reactive cationic silicon intermediate. DFT calculations were performed to further investigate the validity of this type of bond activation (Figure 7), where an amino-stabilised silylium ion forms a Wheland-type intermediate,78 which rearranges in a four-membered ring transition state with Si–C bond formation and protonation of nitrogen (TS = +80 kJ mol−1) to form the ammonium product (−93 kJ mol−1).79
Fig. 7 Calculated relative Gibbs free energies, G^{298}, for the hydrogen transfer from carbon to nitrogen via the proposed Wheland intermediate. Calculations performed at the M06-2X/6-31G(d)(C,H,N,Si):SDD(Fe) level of theory. The substituents of the FCP(2) unit have been simplified to protons, and some protons have been omitted in the illustration of calculated structures.

It is interesting to note that throughout this bond activation process, all Cp$_{ipso}$–Si bonds remained intact, in contrast to the synthesis of 9 from a similar sila[1]ferrocenophane precursor. This observation is promising, as the pentacoordinate species 3 undergoes cationic ROP in the presence of a silylum salt. The increased bulk of 12 relative to 3 and the associated decrease in polymerisation enthalpy may account for the stability of the silyl cation intermediate with respect to ROP.

In an attempt to isolate the monomeric silyl cation, the reaction of 12 with one molar equivalent of trityl tetrakis(pentafluorophenyl)borate was performed at low temperature (1,2-difluorobenzene, –78 °C), but crystalline products were not isolated. It may be possible to trap the reactive silyl cation-bridged [1]ferrocenophane with a solvent molecule or Lewis base before it reacts further, much like the pyridine-stabilised silylium ion 9. Further attempts to isolate cations of this nature will be pursued in future work.

Reactivity of Sila[1]ferrocenophane 1 with Chloro(phosphine)gold(I)

As discussed earlier, treatment of 1 with HCl yields the ring-opened species 7 (Scheme 1). A similar reaction is observed in the case of species with B–Cl and Al–Cl bonds. However, ring-opening reactions with transition metal halides have not yet been reported. Initial investigations into the reactivity of sila[1]ferrocenophanes with chloro(trialkyl/arylphosphine)gold complexes involved attempts to functionalise monomers which featured alkine substituents at silicon, with the aim of eventually synthesising poly(ferrocenylsilane)s with pendant gold groups (bimetallic polymers). However, the targeted ethynyl-gold complexes could not be isolated under basic conditions. Repetition of these types of experiments with the simple dimethylsila[1]ferrocenophane monomer 1 in the absence of base revealed a different type of reactivity (Scheme 5).

Addition of Au–Cl across the Cp$_{ipso}$–Si bond in 1 to form 14.

Addition of AuCl(PMe$_3$) to 1 in d_2-dichloromethane yielded the ring-opened product [1’-(chlorodimethylsilyl)-ferrocenyl](trimethylphosphine)gold (14), which exhibited four Cp multiplets, one PMe$_3$ doublet and one SiMe$_2$ singlet in the 1H NMR spectrum (Figure S8). 11C, 29Si and 31P NMR spectra were also consistent with this ring-opening chemistry (Figures S9, S10 and S11 respectively). Product 14 (which crystallises in the triclinic space group $P\overline{1}$) exhibits linear geometry about the gold(I) atom (Figure 8). Although spectroscopic data was consistent with formation of 14, satisfactory elemental analysis could not be obtained. This may be due to the presence of a small amount of ClAuPMe$_3$, which is observed at –9.7 ppm in the 31P NMR spectrum of the crystalline product (Figure S11).
Fig. 8 Molecular structure of [1’-(chlorodimethylsilyl)ferrocenyl][trimethylphosphine]gold (14). Thermal ellipsoids displayed at 50% probability level. Hydrogen atoms are pictured as spheres of arbitrary radii. Selected bond lengths (Å) and angles (°): Fe(1)–Cpcent = 1.6599(14), C(1)–Au(1) = 2.036(2), Au(1)–P(1) = 2.2812(13), Fe(1)–Cp’cent = 1.6502(14), C(6)–Si(1) = 1.833(2), Si(1)–C1(1) = 2.1007(13), Cp175°–Cpcent–Cp175° = 71.56(15).

Relatively few metalloenzyl-gold complexes have been reported, and they are of interest as a result of gold(I) catalysis in general, in addition to the catalytic efficiency which is observed for metallocene-based metallacycles. Metallation of ferrocene can be achieved with lithium, magnesium, mercury and tin. The auration of ferrocene was first reported in 1969 and involved reaction of lithioferrocene with ClAuPPh₃. Synthetic routes to ferrocenyl-(phosphine)gold complexes involve reactions of lithiated ferrocene derivatives and ClAuPR₃ reagents. In most of these cases (compounds 15–20), the substituted ferrocene with an R' group directs the lithiation to an adjacent site on the same Cp ring, and therefore the disubstituted ferrocenyl-(phosphine)gold complexes that have been reported to date do not include any in which both Cp rings of the ferrocene unit are functionalised (Figure 9). Recently, an alternative synthesis was also reported, involving the transmetallation of various (phosphine)gold(I) bromide compounds with arylboronic acids in the presence of base to yield the monosubstituted ferrocene compound 16 and diphosphine derivative. The unusual dinuclear chiral complex 25 was synthesised from Me₅SAuCl and a lithiated ferrocene precursor, and features an intramolecular Au(I)–Au(I) distance of 2.85 Å.

Conclusions

The abstraction of hydride from [Fe(η-C₅H₅)Si(H)TMP] (12) was explored and an interesting product [Fe(η-C₅H₅)Si(TMP•H)(η-C₅H₅)Fe(η-C₅H₅)Si(H)TMP][B(C₆F₅)₄] containing two ferrocenophane rings was synthesised via reaction of 12 with [CPh₃][B(C₆F₅)₄]. This unusual species is proposed to have formed via electrophilic aromatic substitution of a Cp ring by a silyl cation intermediate, with subsequent protonation of the tetramethylpiperidyl substituent. The reactivity of dimethylsila[1]ferrocenophane (1) towards AuCl(PMe₃) was also explored. This yielded [1’-(chlorodimethylsilyl)-ferrocenyl] (trimethylphosphine)gold [Fe(C₅H₅)Si(Me₅Cl)(C₅H₅)Au(PMe₃)] (14), and presents a novel route to gold-substituted ferrocene compounds.

Experimental

Materials and Equipment

All reactions and product manipulations of molecular species were carried out under an inert atmosphere of dinitrogen or argon using standard Schlenk line or glovebox techniques (MBraun glovebox MB150G-B maintained at < 0.1 ppm H₂O and < 0.1 ppm O₂). Dimethylsila[1]ferrocenophane (1), Chlorosila[1]ferrocenophane (10), 2,2,6,6-tetramethylpiperidyl lithium were prepared according to literature procedures. [CPh₃][B(C₆F₅)₄] was purchased from Abcr and used as received. Celite 521 was obtained from Sigma Aldrich and heated to 200 °C for 16 h prior to use. Dry...
1,2-difluorobenzene was purchased from Sigma Aldrich and stored over molecular sieves. Pyridine was purchased from Fluka and distilled from CaH₂ prior to use. Dry acetonitrile, hexanes and toluene were obtained from a Grubbs-type solvent system employing alumina and supported copper columns. THF was distilled under dinitrogen from Na/benzophenone.

1H, 13C, 29Si and 31P NMR spectra were recorded at ambient temperature on a Varian 500 MHz NMR spectrometer, a Jeol ECS 400 MHz NMR spectrometer and a Jeol Eclipse 300 MHz NMR spectrometer. All spectra are reported relative to external TMS and, in the cases of 1H and 13C, are referenced to the most downfield residual solvent resonance (CDCl₃: δH 7.16 ppm, δC 128.06 ppm; CD₂Cl₂: δH 5.32 ppm, δC 53.84 ppm).

Electron ionisation (EI) mass spectra were obtained using a VG Analytical Auto-Spec mass spectrometer with a 70 eV electron impact ionisation source.

Elemental analyses were carried out by the Laboratory for Microanalysis at the University of Bristol (Model 3000 Euro EA Elemental Analyzer) using V peel to promote combustion. Single crystal X-ray diffraction experiments for compounds 12, [13]B(C₆F₅)₄, 14, [Fe(NCMe)₃]B(C₆F₅)₄ and [Fe(NCMe)₅]B(C₆F₅)₂Cl₂ were carried out at 100 K on a Bruker APEX II diffractometer using Mo Kα radiation (λ = 0.71073 Å). Data collections were performed using a CCD area detector from a single crystal mounted on a glass fibre. Intensities were integrated, from several series of exposures measuring 0.5° in ω or φ. Absorption corrections were based on equivalent reflections using SADABS (compounds [13]B(C₆F₅)₄, 14, [Fe(NCMe)₅]B(C₆F₅)₄ and [Fe(NCMe)₅]B(C₆F₅)₂Cl₂) or TWINABS (compound 12). The structures were solved using SHELXS and refined with all F₂ data with hydrogen atoms located geometrically and refined using a riding model in SHELXL. Compound 12 was twinned and refined against an hklf file. Crystallographic details provided in Tables S1–2. DFT calculations were carried out using the Gaussian 09 Rev. 2b package of programs, using the M06-2X functional. The standard Stuttgart/Dresden ECP and associated basis set were used on iron, and the 6-31G(d) basis set on carbon, hydrogen, nitrogen and silicon. The M06-2X global hybrid functional with the 6-31G(d) basis set is a well-established level of theory in the computational chemistry of organic and organometallic compounds, and the closely related M05-2X/6-31G(d) level of theory has recently been shown to be adequate for silyl cationic compounds. The transition state was located by using the Synchronous Transit-Guided Quasi-Newton (STQN) method, using the optimised structures of the starting complex (Wheland intermediate) and the end product. All stationary points were characterised as minima or transition states (maxima), respectively, by analytical vibrational frequency calculations. Frequency calculations were used to compute zero-point energies and to derive values for free energy, G. Atomic coordinates are provided in the Supporting Information.

Hydride Abstraction Reactions

Isolation of [Fe(NCMe)₅]B(C₆F₅)₂Cl₂ (2,2,6-Tetramethylpiperidyl)sila[1]ferrocenophane (12) (100 mg, 0.28 mmol) and [CPh₃]B(C₆F₅)₂Cl₂ (261 mg, 0.28 mmol) were combined and dissolved in a mixture of acetonitrile (0.3 mL, 5.8 mmol, ca. 20 equiv.) and 1,2-difluorobenzene (3 mL). After stirring at room temperature for 24 h, the orange reaction solution was filtered and layered with hexanes (20 mL). Colourless crystals suitable for single crystal X-ray diffraction were grown by slow diffusion of hexanes into a 1,2-difluorobenzene solution of the product (40 mg, 7% crystalline yield). The resulting red solution was filtered and layered with toluene (20 mL), but no crystalline product was isolated. The colourless precipitate was dissolved in hexanes:THF (1:2, 10 mL) and stirred at room temperature for 24 h. The solvent was removed in vacuo from the resulting red solution. Hexanes (10 mL) was added and lithium chloride was removed by filtration. The product (12) was recrystallised from hexanes at ~40 °C to yield 590 mg of orange/red crystals (83% yield) suitable for single crystal X-ray diffraction. 1H NMR (500 MHz, C₆D₆): δ (ppm) 5.64 (s, 1H, satellites: Jₕ₋ₗ = 113 Hz, Si–H), 4.41 (t, 2H, C₆H₄), 4.30 (t, 2H, C₆H₂), 4.26 (t, 2H, C₆H₄), 4.23 (t, 2H, C₆H₂), 1.61 (s, 12H, Me), 1.54 (m, 2H, NCH₂CH₂), 1.38 (m, 4H, NCH₂CH₂). 13C NMR (500 MHz, C₆D₆): δ (ppm) 77.37 (Cp), 76.23 (Cp), 75.52 (Cp), 75.34 (Cp), 53.79 (NC(CH₃)), 42.88 (NC(CH₃)₂CH₃), 39.94 (Cp₂Si), 32.86 (NC(CH₃)₂), 18.08 (NC(CH₃)₂CH₃). 25Si [H] NMR (500 MHz, C₆D₆): δ (ppm) –32.5. EI-MS (positive ion mode, THF/MeCN): m/z 213.0 [Fe(n⁻C₆H₄)₂Si]+, 338.1 [Fe(n⁻C₆H₄)₂SiH(C₆H₅)N]⁺, 353.1259 [Fe(n⁻C₆H₄)₂SiH(C₆H₅)N]⁺ ([(12)]⁺) (Figure S4). Anal. Calcd for C₆H₄FeSiN: C 64.58%, H 7.70%, N 3.96%. Found: C 64.39%, H 7.53%, N 3.82%.

Synthesis of [13]B(C₆F₅)₄

(2,2,6,6-Tetramethylpiperidyl)sila[1]ferrocenophane (12) (153 mg, 0.43 mmol) and [CPh₃]B(C₆F₅)₂Cl₂ (200 mg, 0.22 mmol) were combined and dissolved in 1,2-difluorobenzene (5 mL). A colour change from red to brown/red was immediately observed. After stirring at room temperature for 1 h, the resulting solution was filtered and layered with hexanes (20 mL). Crystals of [13]B(C₆F₅)₄ suitable for single crystal X-ray diffraction were grown by slow diffusion of hexanes into a 1,2-difluorobenzene solution of the product (40 mg, 7% crystalline yield). 1H NMR (500 MHz, C₆D₆): δ (ppm) 5.59 (s, 1H, satellites: Jₕ₋ₗ = 117 Hz, Si–H), 4.99 (m, 1H, C₆H₄), 4.69 (m, 4H, C₆H₂), 4.58 (m, 1H, C₆H₄), 4.56 (m, 1H, C₆H₄), 4.45 (m, 1H, C₆H₂), 4.37 (m, 1H, C₆H₄), 4.32-4.28 (m, 2H, C₆H₂), 2.42 (m, 1H, C₆H₄), 4.19 (m, 1H, C₆H₂), 3.94–3.90 (m, 2H, C₆H₄), 2.05–1.94 (m, 6H, TMP),

10 | Dalton Trans., 20xx, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Dalton Transactions Accepted Manuscript

Published on 23 January 2018. Downloaded by University of Bristol on 29/01/2018 14:33:25.
100. *Bruker-AXS SAINT V7.68A, Madison, Wisconsin*.
101. *G. M. Sheldrick, SADABS V2008/1 or TWINABS V2008/4, University of Göttingen, Germany*.