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Abstract  

Elderly people exhibit a diminished capacity to cope with osmotic challenges such as dehydration. We 

have undertaken a detailed molecular analysis of AVP biosynthetic processes in the supraoptic nucleus 

(SON) of the hypothalamus, and secretory activity in the posterior pituitary of adult (3-months) and aged 

(18-months) rats, to provide a comprehensive analysis of age-associated changes to the AVP system. By 

MALDI-TOF MS analysis, we identified differences in pituitary peptides, including AVP, in adult and 

aged rats under both basal and dehydrated states.  In the SON, increased Avp gene transcription, 

coincided with reduced Avp promoter methylation in aged rats.  Based on transcriptome data, we have 

previously characterised a number of novel dehydration-induced regulatory factors involved in the 

response of the SON to osmotic cues. We found that some of these increase in expression with age, whilst 

dehydration-induced expression of these genes in the SON was attenuated in aged rats.  In summary, we 

show that ageing alters the rat AVP system at the genome, transcriptome and peptidome levels.  These 

alterations however did not affect circulating levels of AVP in basal or dehydrated states. 

  

Keywords: Ageing, vasopressin, supraoptic nucleus, methylation, gene expression, peptidomics 
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1. Introduction 

As we age, disorders of body salt and water composition become more commonplace. Cases of 

hypo/hypernatremia are much more prevalent in the elderly, where they have been linked to increased 

incidences of falls, fractures and osteoporosis, thus contributing to increased hospital admissions and 

morbidity and mortality (Cowen et al., 2013). To promote healthy living well into old age, it is thus 

necessary to determine why such imbalances occur. Age-associated changes to both peripheral and central 

mechanisms that control salt and water homeostasis are deemed responsible. There is a progressive age-

related decline in renal function, with less urine concentrating capacities in the elderly compared to 

younger subjects (Ishunina and Swaab, 2002).  Such impaired capacity to conserve body water, together 

with reports of reduced thirst and inadequate fluid intake after periods of fluid deprivation, make the 

elderly more susceptible to dehydration (Mack et al., 1994, Phillips et al., 1993).  Inappropriate release of 

the antidiuretic hormone arginine vasopressin (AVP) in to the systemic circulation has been highlighted 

as one of the causes of irregular water homeostasis in ageing (Swaab and Bao, 2011).    

 

AVP is synthesised in magnocellular neurones of the supraoptic nucleus (SON) and paraventricular 

nucleus (PVN) of the hypothalamus.  A change in plasma osmolality is detected by osmosensitive 

neurones in circumventricular organs of the brain that provide direct inputs to shape the firing of AVP 

magnocellular neurones which are osmosensitive themselves, and to co-ordinate AVP synthesis and 

secretion from the posterior (neural) lobe of the pituitary gland (Mecawi Ade et al., 2015, Nissen et al., 

1994, Zhang and Bourque, 2003).  Once released, following incidences such as rise in plasma osmolality 

or decrease in blood volume (Kondo et al., 2004), AVP promotes sodium  and water reabsorption by the 

kidney (Ares et al., 2011, Breyer and Ando, 1994).  When placed under stress, the capabilities of the AVP 

system have been shown to decrease with age (Frolkis et al., 1999, Keck et al., 2000, Sladek et al., 1981). 

 

The AVP system has been interrogated on multiple levels, from synthesis to secretion, in aged subjects 

with differing results. For example, basal circulating AVP levels have been found to decrease, remain 
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unchanged and to increase with age in humans, as well as rodents (Frolkis et al., 1999). These 

discrepancies have been attributed to genetic, age and strain differences. Whilst there are many 

disputations, one area of agreement is that, whilst in many brain areas neuronal activity decreases with 

age (Burke and Barnes, 2006), paradoxically AVP neurones become more active (Palin et al., 2009, 

Terwel et al., 1992). This hyperactivity is thought to be a compensatory mechanism for decreased 

responsiveness to AVP in the kidney due to decreased receptor abundance in aged subjects (reviewed by 

(Ishunina and Swaab, 2002)), although this theory has been questioned (Preisser et al., 2004), and is not 

intuitive with the profound difference in circulating AVP described in ageing models. The AVP 

magnocellular neurones undergo numerous morphological changes as they age including increased size of 

perikarya, nucleoli and Golgi apparatus in humans as well as rodents (Ishunina and Swaab, 2002), 

analogous to morphological changes in these neurones with dehydration (Hatton and Walters, 1973).  

Increased AVP neurone size in states of dehydration is recognised as a necessary measure to meet cellular 

demands for increased transcription and protein synthesis under hypertonic stimulation where circulating 

levels of AVP are robustly increased (Zhang et al., 2001). It has been suggested that such hyperactivity of 

AVP neurones may in itself lead to electrolyte disorders in the elderly (Swaab and Bao, 2011), but the 

relationship between the activity of AVP neurones and circulating levels of AVP is poorly understood  

 

Transcriptional changes have been identified in AVP neurones with ageing.  A study by Palin et al. (Palin 

et al., 2009) showed increased expression of immediate early gene c-Fos, a commonly used marker of 

neuronal activity, in the rat SON, consistent with hyperactivation of the AVP neurones.  In contrast to 

increased activity under basal conditions, reports have described an attenuation of the evoked AVP 

secretion in response to osmotic stress with ageing in rodents (Sladek and Olschowka, 1994, Swenson et 

al., 1997).  This has led some to suggest that deficits in mechanisms controlling transcription, mRNA 

stability or translation in the ageing SON magnocellular neurones may be responsible (Lucassen et al., 

1997). Moreover, we recently showed that dehydration initiates the formation of new methylation marks 



ACCEPTED MANUSCRIPT

on the rat Avp promoter (Greenwood et al., 2016a), suggesting that altered methylation patterns could lie 

beneath these transcriptional changes in ageing AVP neurones. 

 

Few studies have sought to combine information on the physiological aspects of ageing with analyses of 

the molecular changes occurring in the hypothalamus. The reasons why old AVP neurones have elevated 

basal activity, or why they can fail to adequately respond under stress, is not well understood. In 

particular, the molecular basis for these changes in relation to circulating levels of AVP has received little 

attention.   We reasoned that ageing-associated deficits in the AVP system may be due to a combination 

of changes at the genome, transcriptome and peptidome levels, and that these changes might be 

responsible for disturbances in osmotic stability.   In this study we have interrogated the physiological 

aspects of ageing, performed metabolic measurements, and analysed peptide levels in plasma and 

pituitary, correlating the results with molecular events occurring within the hypothalamus of aged rats.   

Further, we have utilised our extensive knowledge of the transcriptome of the adult rat SON in 

euhydrated and dehydrated states to uncover novel changes surrounding altered Avp transcription in 

ageing. 

 

2. Materials and Methods 

2.1. Animals 

All experiments were performed under a Home Office UK licence held under, and in strict accordance 

with, the provisions of the UK Animals (Scientific Procedures) Act (1986); they had also been approved 

by the University of Bristol Animal Welfare and Ethical Review Board. We choose to use male Wistar 

Han rats from the international standard program (IGS) in our ageing study (Charles River, France).  The 

carefully managed breeding program for these animals helps to manage genetic drift so colonies bred in 

different locations around the world are not significantly divergent from each other giving a level 

continuity in ageing studies performed in laboratories worldwide. The Charles River Han Wistar rats have 

been extensively studied at 2 years of age when these rats are reaching the end of their natural lifespans. 
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Incidences of neoplastic and non-neoplastic lesions were high in tissues including the kidney and pituitary 

gland at this age.  Furthermore, rats surviving to this age varied from 30-80% across 20 control studies 

(www.criver.com).   Therefore, in this ageing study we opted for rats of 18 months of age to minimise 

pathophysiological effects and thus allow investigation of the ageing process in healthy animals.  All 

adult rats used in this study were free of pituitary tumours, however 6/50 aged animals were removed 

from this study because of tumours on the pituitary gland.  On arrival, rats were 2 weeks younger than the 

desired ages, 3 months (adult) and 18 months (aged), to enable sufficient time for acclimatisation before 

experimentation.  Rats were housed at a constant temperature of 22°C and a relative humidity of 50�60%  

(v/v) under a 14:10 hour light/dark cycle (lights on at 0500) with food and water ad libitum for 2 weeks. 

To induce hyperosmotic stress, both adult and aged rats were randomly assigned to two groups: control 

(free access to drinking water) and dehydrated (removal of drinking water for 3 days).  All rats were 

humanely killed by striking of the cranium (stunning), and then immediately decapitated with a small 

animal guillotine (Harvard Apparatus, Holliston, MA).   Trunk blood was collected in heparin-coated 

tubes.  Brains were rapidly removed from the cranium and immediately frozen by covering with 

powdered dry ice (within 3 minutes of stunning).  The pituitary gland was removed from the base of the 

skull within 2 minutes after decapitation.  The neurointermediate lobe (NIL) was carefully separated from 

the anterior pituitary using a scalpel blade, and then, either placed into 1.5 ml tubes containing 500 µl of 

0.1M HCl or 0.2 ml tubes containing 150 µl of 15 mg /ml of 2, 5-dihydroxybenzoic acid (DHB) solution.  

Frozen brains and NIL in HCl solution were stored at -80°C, whilst NILs in DHB solution were stored at  

4oC.    Animal experiments were performed between 9 am -2 pm.   

 

2.2. Metabolic measures in adult and aged rats 

For metabolic measurements, animals were individually housed in metabolic cages (Techniplast, Italy) to 

allow precise daily measures of fluid and food intake, and urine output. A plastic gnawing disc was 

suspended from the lid of the cage to provide environmental enrichment throughout the study.  Animals 

were firstly acclimatised to metabolic cages for 48 hours.  Measures of food hoppers, water bottles and 
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urine collection tubes were performed for 3 consecutive days, by weight.  Extra-renal secretion of fluid 

was calculated by subtracting water intake from urine output.  Plasma and urine osmolalities were 

measured by freezing point depression using a Roebling micro-osmometer (Camlab).   

 

2.3. Vasopressin measures 

The NIL of the pituitary was sonicated for 15 seconds in 0.1M HCl and incubated at 85°C for 20 minutes .  

Cellular debris was removed by centrifugation at 3,000×g for 30 minutes at 4°C.   Pituitary AVP conten t 

was determined using an AVP8-Vasopressin ELISA (Enzo; ADI-900-017A) kit.  The supernatant was 

diluted (1:10,000) with assay buffer and ELISA was performed following the manufacturer�s protocol.  

The signal was detected on an iMark Microplate absorbance reader (Biorad).  For radioimmunoassay, 

trunk blood was centrifuged at 1,600×g for 15 minut es at 4°C.  Extractions were performed from 1 ml of  

plasma. Two sample volumes of ice-cold acetone were added and samples were vortexed for 1 minute.  

Protein precipitates were removed by centrifugation at 2,500×g, 4°C, for 25 minutes. The supernatant w as 

transferred to a new tube and mixed with 2 ml of cold petroleum ether by vortexing for 1 minute. The 

tubes were left to stand for 1 minute at room temperature before discarding the upper phase.  The lower 

phase solution was lyophilised using a freeze dryer (Benchtop Pro, Biopharma).  AVP concentration was 

determined by specific radioimmunoassay (Husain et al., 1973). 

 

2.4. Peptide analysis of the NIL 

Peptides were measured directly in individual NIL extracts by mass spectrometry (MS) (Romanova et al., 

2014, Romanova and Sweedler, 2015). 

 

2.4.1. Extraction of peptides. NIL samples were incubated in 15 mg/mL DHB solution for 48 hour as 

described by Romanova et al. (Romanova et al., 2008). The samples were grouped as follows: adult 

control (n=14), adult 3-day dehydrated (n=16), aged control (n=11), aged 3-day dehydrated (n=13).  
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2.4.2. Measurement of the NIL peptide profiles by MALDI-TOF MS. For MALDI-TOF MS measurements, 

0.7 µl of the NIL extraction solution was spotted o n a stainless steel MALDI target in triplicates and co-

crystallized with 0.7 µl of freshly prepared concen trated DHB matrix (50 mg/mL, 50% (v/v) acetone). 

Positive ion mass spectra of each spotted sample were acquired automatically at 1 KHz laser frequency 

and constant power optimized for the sample type in the 600�6000 m/z region using an ultrafleXtreme 

mass spectrometer (Bruker Daltonics) operated in reflectron mode via the AutoXecute protocol. 

Acquisition parameters included laser Fuzzy control logic, random laser walk over the entire sample area, 

250 laser shots per raster step, maximum of 5000 shots per sample in 250-shot increments, and dynamic 

termination of spectrum acquisition when the signal intensity reached 30000 counts for 3 peaks, 

regardless of the number of fired laser shots. Peak evaluation was set to a signal intensity per shot of 20 or 

above, minimal resolution of 10000, S/N=3, maximum 300 peaks per spectrum, and centroid peak 

detection algorithm; 50 failed spectrum judgments were required before acquisition moving to the next 

sample. External quadratic calibration was adjusted automatically for every 5 x 5 sample spot square.  

 

2.4.3. Principal component analysis of the peptide profiles. Statistical analysis of raw MALDI MS data 

was performed using ClinProTools 2.2 software (Bruker Daltonics). All spectra were normalized to total 

ion count upon loading into ClinProTools, and level scaled. Spectra were processed for convex hull 

baseline correction within 800�5500 m/z, smoothed with 0.1 Da x 2 cycles of the Savitzky-Golay method 

and a data reduction factor of 2, null spectra exclusion was enabled, and spectra grouping applied. Other 

criteria included automatic peaks selection on the total average group spectrum by intensity, S/N=5 cut 

off, 1% relative threshold base peak on average group spectrum, unlimited picking. Manual peak editing 

for the integration area after automatic peak picking was done on the mean spectrum representative of 

each sample group in order to include entire isotopic clusters of highly resolved peaks. Peptide profiles of 

the mean spectra were compared by principal component analysis (PCA) followed by the Anderson-

Darling (AD) normality test and Student�s unpaired t-test for normal distributed data. Data not showing 

normal distributions (pAD �0.05) were evaluated by Kruskal-Wallis tests, respectively (Kruskal and 
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Wallis, 1952, Stephens, 1974, Wilcoxon, 1945). To decrease the number of false positives while 

computing individual peak statistics on the complex spectra, the Benjamini-Hochberg procedure 

incorporated into ClinProTools was automatically applied for p-value adjustment during analysis (Dudoit 

and shaffer, 2003). Unsupervised clustering of spectra was performed on PCA-modified data using 

Euclidean distance, average distance methods and a Minkowski exponent of 1.5. The following peptide 

profile differences were investigated: 1) between control aged and adult rats, 2) between dehydrated aged 

and adult rats, and 3) between control and dehydrated rats of either age. 

 

2.5. Dual DNA and RNA extraction from SON punch samples 

SON samples (12 unilateral punches) were collected from 12 coronal slices using a 0.35 mm sample corer 

(Fine Scientific Tools) using the optic chiasm as a reference.  Total RNA and genomic DNA were 

extracted from each sample as previously described (Greenwood et al., 2016a). 

 

2.6. cDNA synthesis and quantitative PCR 

For cDNA synthesis, 40 ng of total RNA was reverse transcribed using the Quantitect reverse 

transcription kit (Qiagen).  Primers for rat genes used in this study: Avp (5�-

TGCCTGCTACTTCCAGAACTGC-3� and 5�-AGGGGAGACACTGTCTCA GCTC-3�), heteronuclear 

Avp (hnAvp) (5’-GAGGCAAGAGGGCCACATC-3� and 5�-CTCTCCTAGCCCATGACCCTT-3�),  ras 

related dexamethasone induced 1 (Rasd1) (5�-CCCTCAGCGTTGTGCCTACT-3� and 5�-

AAAGAGCGCACGGAACATCT-3�), caprin famiy member 2 (Caprin2) (5�-

CAGGGTTAAGTGCAAGCGAT-3� and 5�-CTGGTGGTTGACTGGTTGAG -3�), c-Fos (5�-

AGCATGGGCTCCCCTGTCA-3� and 5�-GAGACCAGAGTGGGCTGCA-3 �), cAMP responsive 

element binding protein 3 like 1 (Creb3l1) (5�-GCCAACAGGACCCTGCTCCA-3� and 5�-

AGTGCCAGTCTGTGTGGCCG-3�), gonadotropin inducible ovarian transcription factor 1 (Giot1) (5�-

GACACTTCCGGTCCGTCATAG-3� and 5�-GCCTCACTCAAGCACCCAG T-3�), DNA 
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methyltransferase 1 (Dnmt1) (5�-AACCACTCAGCATTCCCGTA-3� and 5�-

TGCTGGTACTTCAGGTCAGG-3�), Dnmt3a (5�-AAGACCCCTGGAAC TGCTAC-3� and 5�-

TGGCGAAGAACATCTGGAGT-3�), mature oxytocin (Ot) (5 �-TGCCCCAGTCTTGCTTGCT-3� and 5�-

TCCAGGTCTAGCGCAGCCC-3�), heteronuclear Ot (hnOt) (5�-TGAGCAGGAGGGGGCCTAGC-

3� and 5�-TGCAAGAGAAATGGGTCAGTGGC-3�), proprotein convertase subtilisin/kexin type 1 

inhibitor (proSAAS) (5�-GAGCTGCTGAGGTACTTGCT-3� and  5�-ACCCAAATCCTGGTCCACAG-

3�), heteronuclear proSAAS (hnproSAAS) (5�-GAAGTGAC GACCGAGGTGTA-3� and 5�-

GCAGTATTGTAGGGCGTTCG-3�),  tet methylcytosine dioxygenase 1 (Tet1) (5�-

TGACCCACTCTTACCAGACC-3� and 5�-GATGGGCCATTGCTTGATGT -3�), Tet2 (5�-

TCGGAGGAGAAGAGTCAGGA-3� and 5�-TAGGGCTTGCATTTTCCATC -3�), Tet3 (5�-

ATGGCATGAAACCACCCAAC-3’ and 5�-ACTTGATCTTCCCCTCCAGC-3�) and ribosomal protein 

L19 (Rpl19) (5�-GCGTCTGCAGCCATGAGTA-3� and 5�-TGGCA TTGGCGATTTCGTTG-3�) were 

synthesised by Eurofins MWG Operon.  Quantitect Primer Assays for solute carrier family 12, member 1 

(Slc12a1) were purchased from Qiagen.   The optimisation and validation of primers was performed using 

standard Applied Biosystems protocols.  The cDNA from reverse transcription reaction was diluted 1:4 

with H2O and used as a template for subsequent PCRs, which were carried out in duplicate using SYBR 

green (Roche) on an Applied Biosystems StepOnePlus Real-Time PCR system.  For relative 

quantification of gene expression the 2-��CT method was employed (Livak and Schmittgen, 2001).  The 

internal control gene used for these analyses was the housekeeping gene Rpl19. 

 

2.7. poly(A) tail-length assay 

The poly(A) tail-length of the Avp mRNA was examined using the USB poly(A) Tail-Length Assay Kit 

(Affymetrix).  RNA extracted from SON (50 ng) was used as the starting material.  Guanosine and 

inosine residues were added to the 3� ends of poly(A)-containing RNAs using poly(A) polymerase 

enzyme.  After incubation at 37°C for 1 hour, stop solution was added and the tailed-RNAs were 

converted to cDNA by reverse transcription (RT) using the newly added G/I tails as priming sites.  PCR 
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amplification products were generated by using two primer sets: Set 1, gene-specific forward and reverse 

primer set for Avp (forward 5�-CGAGTGTCGAGAGGGTTTTT-3�, reverse 5�-

TTTATTTTCCATGCTGTAGG-3�) and Set 2, Avp gene-specific forward primer and a universal reverse 

primer provided in the kit.  PCR reactions were performed using 2 µl of undiluted RT sample.  PCRs 

were performed using the following cycling conditions; 94°C for 2 minutes followed by 40 cycles of 

94°C for 10 seconds, 60°C for 45 seconds and 72°C f or 5 minutes. The PCR products were separated on 

2.5% (w/v) agarose/TAE gel.  The PCR products were visualised on ethidium bromide-stained gels using 

a Syngene G:BOX imaging system.         

 

2.8. Bisulfite conversion and sequencing 

Genomic DNA from SON punches (25 ng) was bisulfite converted using an EZ DNA Methylation-Gold 

kit (Zymo Research).  The amplification and sequencing steps were performed as previously described 

(Greenwood et al., 2016a).  

 

3. Results 

3.1. Physiological assessment of adult and aged rats 

We singly housed adult and aged rats in metabolic cages to assess their ingestive behaviours. As expected, 

the average weight of aged rats was significantly higher than that of adult rats (Fig. 1A).  Despite their 

larger size, aged rats consumed significantly less food (Fig. 1B) and water (Fig. 1C) over consecutive 24 

hour periods compared to adult rats. The lower water intake in aged rats was not accompanied by a 

significant decrease in urine output compared to adult rats (Fig. 1D), but reflected a decrease in extra-

renal water loss compared to their younger counterparts (Fig. 1E).  Urine osmolality was not affected by 

age (Fig. 1F).   

 

3.2. The AVP system in adult and aged rats 
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To test how fluid homeostatic systems respond to osmotic stress, rats were deprived of water for 3 days.   

A decrease in weight from the starting body weight was observed for both adult and aged rats (Fig. 2A). 

This period of dehydration increased plasma osmolality by similar degrees in both aged and adult rats 

(Fig. 2B).  However, a higher basal plasma osmolality was observed in aged rats, a difference that was 

preserved in response to 3 days of dehydration, suggestive of different osmolality set points in adult and 

aged rats. We investigated the expression of Avp mRNA and hnAvp RNA, a surrogate measure of Avp 

transcription (Herman et al., 1991), in the SON of control and dehydrated adult and aged rats using qRT-

PCR (Fig. 2C-D).  The abundance of Avp mRNA under basal conditions was not influenced by age (Fig. 

2C), whilst increased hnAvp expression in aged animals indicated increased transcription of the Avp gene 

compared to adult rats (Fig. 2D).  In contrast, the osmotic stimulus of dehydration, increased hnAvp 

levels above adult basal measures for both adult and aged rats, though this response was only significant 

in adult rats.  The AVP content in the pituitary was investigated by AVP ELISA (Fig. 2E). There was a 

decrease in NIL AVP content in rats subjected to dehydration for both age groups.  AVP NIL content was 

unchanged by age. Interestingly, the expected decline of AVP content with dehydration was marginally 

attenuated in aged rats, with higher AVP levels detected in aged dehydrated compared to adult dehydrated 

rats.  However, there was no significant effect of age on basal or osmotically induced plasma AVP levels 

when comparing adult and aged rats (Fig. 2F).   

 

3.3. Peptide analysis of the NIL in control and dehydrated states 

3.3.1. Effect of dehydration on NIL peptide profiles in adult rats  

The abundance of peptides in the NIL provides a good measure for assessing changes in peptide 

synthesis/secretion. To study effects of ageing on peptide profiles in the NIL, we used MS-based peptide 

measurements (Romanova et al., 2013, Romanova and Sweedler, 2015) to characterize and quantify the 

neuropeptide changes of the NIL.  In adult rats, control and dehydrated profiles were easily classified by 

PCA according to PC1 (~60% of variance) (Fig. 3A).  Loading plots indicated that peptides contributing 

to this difference matched the masses of AVP and its sodiated ion, the sodiated ion of OT, acetylated 
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alpha-MSH, di-acetylated alpha-MSH, a portion of the ACTH domain, and other POMC-derived peptides 

(Fig. 3B). The level of AVP and OT decreased with dehydration, whilst alpha-MSH and proSAAS levels 

increased (Fig. 3C).   

 

3.3.2. Comparison of the NIL peptide profiles between aged and adult rats 

A comparison was performed for adult and aged rats. In PCA, 10 PCs were required to explain 93% of 

variance in the dataset, with most sample segregation achieved along PC1 accounting for about 30% of 

variance. Spectra from aged animals showed more broad distribution within the 3D space constructed of 

the first 3 PCs.  In this dataset, a total of 78 peaks passed the criteria for statistics selection, of which 22 

(~30%) were detected at statistically different intensities (p � 0.05) between compared age groups (see 

Tables 1S and 2S). Some of the peaks can be matched to proopiomelanocortin (POMC) by peptide mass 

fingerprinting, or other previously reported neuropeptides expressed in pituitary including OT (Fig. 3D). 

Relative to adult rats, the aged rats exhibited significant decrease in the sodiated ion and potassiumated 

ion of OT  and increases in the intensity of peptides matching the masses of alpha-MSH, acetylated alpha-

MSH, di-acetylated alpha-MSH, and five other POMC-derived peptides..  

  

3.3.3. Effect of ageing on NIL peptide profile in dehydrated rats 

A comparison was performed for NIL of adult and aged dehydrated rats. In PCA, 13 PCs were required to 

explain 95% of variance in the dataset. Both adult and aged rats showed a range of profiles that could not 

be reliably classified by PCA and unsupervised clustering. Four of 13 adult rats and 2 out of 16 aged rats 

were particularly different. A total of 121 peaks were selected for statistics, of which 20 (~16%) were 

detected at statistically different intensities (p � 0.05) between compared age groups (see Tables 3S and 

4S). Similar to the control groups, aged animals had higher levels of peptides matching by mass to the 

POMC prohormone as well as proSAAS and AVP-copeptin (Fig. 3E). 

 

3.3.4. Effect of dehydration on NIL peptide profiles in aged rats  
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With the set of 24 aged rats (11 control and 13 dehydrated), no significant changes in NIL profiles were 

seen with dehydration, and no clear segregation was observed on a PCA plot.   

 

3.3.5. Peptide changes specific to age or dehydration 

A number of peptides profiles in the NIL were altered only as a function of ageing (Fig. 3F).  In addition 

a separate cohort of peptides were found to only differ between adult and aged rats in dehydration. (Fig. 

3F).  These included OT (ageing) and proSAAS (dehydration) whose precursor proteins are known to be 

synthesised in magnocellular neurons in the supraoptic nucleus (Murphy et al., 2012).  Using qRT-PCR 

we show that expression of these genes in the SON is not altered by age or dehydration (Fig. 3G)  

 

3.4. Changes in Avp promoter methylation as a consequence of ageing 

To see if changes in methylation could account for Avp gene transcriptional differences in the SON with 

age, we looked at the expression of genes known to regulate methylation status of DNA, namely the 

Dnmt and Tet families, in the SON (Fig. 4A).  We found decreased Dnmt1 and Tet1 in the SON of aged 

compared to adult rats, whilst expression of the closely related genes Dnmt3a and Tet2/3 remained 

unchanged with age.  In the dehydrated state, Dnmt1 increased and Tet1 decreased in adult rat SON 

samples, whilst no changes in these genes were observed with dehydration and ageing.    To analyse gene-

specific methylation changes we chose to examine the methylation profile of the Avp promoter within the 

SON by sequence analysis of bisulfite-converted DNA. Using primers spanning the proximal Avp 

promoter (-325 to -24bp) we investigated the methylation status of a cluster of 7 CpG sites (Fig. 4B).  

Analysis of the methylation pattern of CpGs in single clones from individual control and dehydrated 

animals with ageing are depicted in Fig. 4C. Analysis of the overall methylation of the Avp promoter for 

the SON revealed decreased methylation in aged compared to adult animals by two-way ANOVA 

(p<0.002), whereas methylation levels increased in response to dehydration in aged rats (Fig. 4D).   In 

comparison, overall methylation was not significantly altered by dehydration in the SON of adults.   
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We next compared the methylation profiles of individual CpGs (Fig. 4E).  Of the 7 CpGs analysed, only 

CpG2 was significantly influenced by age, with lower methylation compared to adult controls.  In aged 

rats dehydration increased methylation of CpGs 1, 3-5, and 7 compared to aged controls.  By contrast, 

only CpG4 showed increased methylation in dehydrated adult rats compared to adult controls.  Of note, 

the methylation of individual CpGs was found to be similar in dehydrated adult and aged rats.     

 

3.5. Ageing changes gene expression in the SON and alters the effect of dehydration 

We have used transcriptomics to catalogue all of the genes expressed in the adult male SON, and to 

identify genes that are differentially regulated by dehydration (Hindmarch et al., 2006).  The challenge 

now is to place these genes into physiologically relevant pathways; thus, in pursuit of this aim, our 

functional investigations have revealed novel genes involved in AVP elaboration (Creb3l1, (Greenwood 

et al., 2014, Greenwood et al., 2015a, Greenwood et al., 2015b); Slc12a1, (Konopacka et al., 2015b); 

Caprin2, (Konopacka et al., 2015a); Giot1, (Qiu et al., 2007); and Rasd1, (Greenwood et al., 2016b)). We 

have now asked if the expression of these genes is altered with ageing, under both euhydrated and 

dehydrated conditions (Fig. 5). We used qRT-PCR to reveal age-related increases in mRNA expression of 

transcription factors c-Fos (a general marker of neuronal activation), Creb3l1, Giot1 and RNA binding 

protein Caprin2 under basal conditions, whilst levels of the small G-protein Rasd1 and the Na-K-2Cl 

cotransporter Slc12a1 were unchanged. The expression of all of these genes was increased by dehydration 

in both adult and aged animals.  In aged rats, dehydration induced smaller rises in the expression of all 

genes analysed, reaching statistical significance compared to adult dehydrated rats, with one notable 

exception, Caprin2.    

 

3.6. Post-transcriptional modification to Avp mRNA in ageing  

A known feature of the Avp mRNA is that the unusually long 3� poly(A) tail further increases in length in 

response to osmotic stress (Carter and Murphy, 1991).  Here we have used poly(A) tail assays to 

determine the length of Avp mRNA poly(A) tail in adult and aged rats in the basal condition and in 
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response to dehydration (Fig. 6A).  The length of Avp poly(A) tail was found to be susceptible to change 

with ageing.  In aged rats the poly(A) tail was longer than adult control rats (Fig. 6B), perhaps suggesting 

altered transcript stability with age. The Avp poly(A) tail-length increased more in adult rats in 

dehydration, but overall poly(A) tail lengths ended up  being the same size in both dehydrated groups 

reflecting the smaller starting point in adult rats.     

 

4. Discussion 

With increased life expectancy, maintaining a health and well-being into old age is becoming a priority, 

making the push toward understanding our ageing homeostatic systems ever more pertinent.  A decline of 

appetite accompanied by a reduction in daily fluid intake, as we observed in the rat, are common 

behavioural characteristics observed in the elderly (Kmiec, 2006, Phillips et al., 1993), suggesting that our 

rat model is of particular value to study metabolic changes related to ageing.   Comparisons of basal and 

dehydrated urine osmolalities in both age groups suggested that urine concentrating capacity and thus 

renal function is not impaired in our model at this age. Furthermore, AVP circulating levels were 

comparable in adult and aged rats in the basal state and in response to dehydration suggesting no changes 

in hypothalamo-neurohypophysial system (HNS) responsiveness to osmotic and volume stimuli. Hence, 

the circulating levels of AVP and the renal response to it are adequate to concentrate urine in these ageing 

rats.   

 

Chronic dehydration depletes AVP stores in the posterior pituitary to meet necessary circulatory demands 

for AVP to facilitate increased water uptake by the kidney (Antunes-Rodrigues et al., 2014).  The large 

stores of AVP in the posterior pituitary were depleted by comparable amounts in both age groups by 

dehydration. However, when compared to adult rats, aged rats had higher levels of pituitary AVP as a 

consequence of dehydration. We propose that increased basal AVP pituitary is responsible for this 

difference as opposed to ineffective stimulation of AVP secretion.  This concept is consistent with the 

comparable increases in circulating levels of AVP after dehydration.   Therefore, the ability to store and 
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secrete adequate quantities of AVP in response to 3 days of dehydration was not compromised in these 

Han Wistar rats at this age.  Taken together, these data show that changes to AVP secretion cannot 

account for the observed metabolic changes in aged compared to adult rats.  The altered fluid intake and 

plasma electrolytes may represent changes to other systems co-ordinating salt and water balance.  For 

example, the renin angiotensin aldosterone and atrial natriuretic peptide systems that are known to be 

altered in rats and humans as a function of ageing (El-Sharkawy et al., 2014, Pollack et al., 1997, Silver et 

al., 1993).  However, any involvement of these systems in this particular ageing model remains to be 

investigated.  

 

A higher set-point for basal plasma osmolality in our aged model, one of the reported characteristics of 

ageing in humans and rodents (McLean et al., 1992, Terwel et al., 1992), provides one possible 

explanation for AVP neurone hyperactivation in the basal state.  A small rise in plasma osmolality of 

approximately 1% is normally sufficient to activate Avp transcription in magnocellular neurons of the 

SON and PVN and these transcriptional events are well known to occur together with increased AVP 

secretion from the posterior pituitary in adult rats (Arima et al., 1999).  The higher plasma osmolality in 

aged rats, being approximately 1% above adult rats, was indeed associated with increased transcription, 

but not with increased secretion of AVP.  In contrast, 3 days of dehydration, a well-characterised model 

for activating Avp transcription in the SON (Greenwood et al., 2014), increased AVP secretion, but not 

Avp transcription in the aged group.  This is despite a rise in plasma osmolality of greater than 2% by this 

osmotic stimulus.  

  

The synthesis and secretion of AVP are normally twinned to maintain neurohypophysial homeostasis as 

AVP stores in the pituitary become depleted and need to be replenished with newly synthesised AVP 

(Murphy and Carter, 1990).  Any delay in replenishing pituitary AVP stores to pre-stimulus levels might 

leave the system at greater risk from further hyperosmotic insults. The elderly living in care homes have 

been shown to have lower daily intakes of fluid than those that live at home. Furthermore, elderly people 
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with cognitive impairments such as dementia often forget to drink.   These behavioural characteristics, 

coupled with reduced thirst perception in elderly people, greatly increase their risk of dehydration (El-

Sharkawy et al., 2014).  In elderly patients admitted to hospital, hypernatremia has been associated with 

an increased mortality rate (Snyder et al., 1987).  In addition, clinical studies of care home patients who 

develop acute illness and require hospital treatment, reported that approximately 34% became markedly 

hypernatraemic in hospital (Millet et al., 1991).  The uncoupling of plasma osmolality and Avp 

transcription did not alter AVP secretion here in healthy ageing rats but may become important in 

pathophysiological conditions if the rate of Avp transcription ever fails to meet secretory demands.    

 

We next investigated if the observed uncoupling of synthesis and secretion was unique to AVP in the 

ageing HNS.  We revealed a cohort of peptides in particular POMC-derived peptides, N-terminal 

truncated form of copeptin, proSAAS and OT in addition to AVP, which were susceptible to changes 

with age and also dehydration.  POMC has been shown to be expressed in the pituitary intermediate lobe, 

with its expression altered by osmotic stimulation and changes in blood pressure (Felder and Garland, 

1989, Pardy et al., 1990).  In rats supplied with a drinking diet of 2% NaCl, POMC mRNA expression 

was shown to decrease in the intermediate lobe of the pituitary (Pardy et al., 1990).  In relation to blood 

pressure, SHR rats have lower POMC expression in the intermediate lobe compared to WKY rats.  

Lowering blood pressure in SHRs with antihypertensive agents normalises POMC expression in the 

intermediate lobe to those of the WKY rat (Felder and Garland, 1989).  We show here age-related 

increases in an array of POMC-derived peptides in the NIL under basal and dehydrated conditions.  How, 

or if, these POMC peptides contribute to age-related changes to physiology is currently not known. 

 

Copeptin and AVP are derived from the same common precursor molecule.  Copeptin is the C-terminal 

part of pro-AVP that is cleaved during processing and released with AVP into the circulation.  The 

functions of copeptin are not known, but due to its higher stability in plasma it is commonly used as 

surrogate measure for circulating levels of AVP (Christ-Crain and Fenske, 2016).   Here, we have 
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identified an N-terminal truncated form of copeptin in the NIL, and further show that the abundance of 

this peptide increases in the dehydrated rat as a function of ageing.   This peptide has previously been 

identified in a peptidomic study of the rat SON (Bora et al., 2008).  Therefore, increased abundance of 

this peptide in the NIL might suggest increased processing of pro-AVP in ageing magnocellular neurones 

in response to dehydration.  In support of this concept, a study using microdialysis probes to measure 

release patterns of AVP in the PVN and SON in the ageing male Wistar rat showed an age-associated 

increase in AVP release in the PVN, though not in the SON (Keck et al., 2000).    

 

ProSAAS and OT are known to be expressed in magnocellular neurons of the hypothalamus and the 

posterior lobe of the pituitary gland (Bora et al., 2008, Gouraud et al., 2007). The propeptide precursor 

ProSAAS is processed into a number of smaller peptides in the brain and pituitary including big SAAS, 

little SAAS, PEN, big LEN and little LEN (Mzhavia et al., 2001).  Here we identify age-associated 

alterations in truncated forms of little SAAS (ProSAAS 42-57) and PEN (ProSAAS 221-237) in the 

dehydrated NIL.  Interestingly, dehydration for 3 days also increases ProSAAS expression in the SON 

whilst decreasing ProSAAS expression in the NIL, suggesting that ProSAAS peptide might be secreted 

(Gouraud et al., 2007), although this remains to be determined.  The previous peptidomic study performed 

on rat SON samples also identified this cleavage of ProSAAS (42-57) as well a multiple PEN peptides in 

magnocellular neurons.  One possibility for the involvement of ProSAAS in the regulation AVP is 

through its interactions with proprotein convertase 1.      Pro-AVP is processed by proprotein convertase1, 

and ProSAAS inhibits the activity of this convertase (Murphy et al., 2012). Therefore, changes in 

ProSAAS expression in ageing might alter the processing and thus the availability of AVP.  

 

OT is probably best known for its role in female reproduction but also functions as a natriuretic hormone 

that reduces sodium appetite and increases sodium excretion at the kidney (Verbalis et al., 1991).   

Circulating levels of OT increase in response to stimulation by osmotic stress and this depletes pituitary 

stores of this peptide consistent with this study (Silverman et al., 1990).  Our data suggests that OT stores 
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are depleted in the NIL  as a consequence of ageing, in agreement with earlier studies of the ageing HNS 

(Silverman et al., 1990, Zbuzek et al., 1988).  Because OT and ProSAAS are synthesised in magnocellular 

neurons of the hypothalamus, like AVP, we have also investigated their transcript abundance in the SON 

to assess this phenomena of uncoupling observed for AVP.  We report no age-related effects on Ot or 

ProSAAS transcription in the SON even though our data indicates altered peptide levels in the pituitary.  

 

We have made significant steps to understanding the mechanism regulating AVP in the adult rat and have 

applied our understanding to the Avp transcriptional changes in this ageing model.  Based on our recent 

study where we described altered methylation patterns of the Avp promoter with dehydration, we 

hypothesised that altered methylation marks in the Avp promoter could be responsible.  Cellular ageing is 

closely associated with a decrease in expression of Dnmt1, an enzyme that stabilises methylation marks 

on DNA (Casillas et al., 2003), as we observed here in the SON. This is thought to be one reason for 

hypomethylation of DNA sequences in rodents as well as humans, and is consistent with hypomethylation 

of the Avp promoter in the aged rat SON.  We also found lower levels of Tet1 expression in the aged rat 

and adult SON following dehydration.  Tet1, by hydroxylation of 5hmc, has been shown to promote 

active demethylation of DNA in the rodent brain (Guo et al., 2011).   

 

The decrease in Avp promoter methylation in aged rats may perhaps explain the increased Avp 

transcription in the ageing SON.  Many studies have shown that lower levels of promoter methylation 

correlate with increased gene transcription. We previously reported increased Avp transcription in 

hypothalamic 4B cells following demethylation by 5-aza-2�-deoxycytidine treatment, consistent with this 

hypothesis (Greenwood et al., 2016a).  Individual CpG sites were largely unaffected by age, apart from 

CpG2, which resides close to a cAMP responsive element which underwent hypomethylation with age.  

Methylation at cAMP response element sites has been shown to inhibit cAMP response element binding 

protein (CREB) mediated transcription (Elliott et al., 2010, Zhang et al., 2005), so hypomethylation of 

this site may serve to enhance Avp promoter activation by CREB (Iwasaki et al., 1997).   Interestingly, 
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methylation signatures on this segment of the Avp promoter remained largely unchanged by dehydration 

in adult rats, differing from our findings in the Sprague Dawley rat (Greenwood et al., 2016a).  We 

suggest this is due to strain differences. Nonetheless, dehydration induced the hypermethylation of CpG3, 

4, and 7 in aged rats, as observed in adult Sprague Dawley rats, thus adding strength to the argument for a 

relationship between the methylation status of specific Avp promoter CpGs and Avp gene transcription.   

 

To further aid our understanding of AVP neurone activity in ageing, we looked at the expression of genes 

known to be robustly induced by osmotic stimuli, and whose functions have been the subject of 

interrogation by us in relation to AVP biosynthesis in the SON, and the overall regulation of fluid balance 

in the rat (Greenwood et al., 2014, Greenwood et al., 2016b, Konopacka et al., 2015a, Konopacka et al., 

2015b, Qiu et al., 2007).  We recently identified Creb3l1 as a putative transcription factor regulating the 

expression of the Avp gene (Greenwood et al., 2014).  Therefore, in the basal condition, increased Avp 

transcription can perhaps be explained by the upregulation of Creb3l1 expression and, conversely, the 

attenuated Creb3l1 induction in aged dehydrated rats following osmotic stimulation may explain the 

reduced capacity to elevate Avp.  The altered expression of genes regulating transcriptional events (c-Fos, 

Creb3l1, and Giot1) in basal and dehydrated states, implies dramatic changes in the SON transcriptome 

with ageing.  These genes are all activated by cAMP pathways (Greenwood et al., 2015a, Qiu et al., 2007), 

suggesting that altered cAMP signalling may determine altered transcriptional responses in the aged SON. 

The source of these altered signalling responses is not known, but may be a consequence of either altered 

inputs from the circumventricular organs due to changes in plasma osmolality (McKinley et al., 2004), or 

changes within the magnocellular neurones themselves.   

 

It is interesting to note that basal Rasd1 and Slc12a1 expression levels were not influenced by age 

implying activation of these genes by separate signalling pathways not affected by age.  Rasd1 is a 

member of the Ras family of small G-proteins that is expressed in AVP magnocellular neurones of the 

PVN and SON, where increased circulating glucocorticoid and/or raised plasma osmolality induce its 
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expression (Greenwood et al., 2016b).  Interestingly, plasma corticosterone levels increase in ageing 

rodents as a result of hyperactivity of the hypothalamo-pituitary-adrenal axis (Goncharova, 2013). At the 

same time there is an age-associated decrease in the sensitivity of the hypothalamus, along with other 

brain nuclei, to glucocorticoids (Goncharova, 2013), which may account for the blunted increase in Rasd1 

expression in dehydrated aged animals, despite changes to corticosterone levels.  By lentiviral vector 

mediated overexpression of Rasd1 in the SON, we recently showed that Rasd1 inhibits osmotically 

induced Avp transcription in this nucleus (Greenwood et al., 2016b).  The aged dehydrated rats appear to 

have lost this dehydration-induced inhibitory input on Avp transcription in the ageing SON.     

 

The expression of Slc12a1 in magnocellular neurones of the SON and PVN is also known to be induced 

by chronic and acute osmotic stimulation (Konopacka et al., 2015b).  We recently showed that lentiviral-

mediated knockdown of Slc12a1 in these hypothalamic nuclei altered fluid homeostasis by increasing 

fluid intake and urine output during salt loading.  Furthermore, the loop diuretics bumetanide and 

furosemide were found to inhibit gamma-aminobutyric acid-mediated excitation of AVP neurones and 

AVP release, respectively.  Therefore, an altered abundance of Slc12a1 might be expected to alter 

neuronal activity in ageing AVP neurones.   

 

The Avp mRNA is subject to post-transcriptional modification in the form of an increase in the length of 

the poly(A) tail, as seen in the SON in response to osmotic challenges (Carter and Murphy, 1991), and as 

we show here by age. An increased poly(A) tail length is thought to reduce the degradation and increase 

the stability of many transcripts (Zeevi et al., 1982), and maybe involved in the control of translation 

(Palatnik et al., 1984). We recently showed that the RNA binding protein Caprin2 binds to the Avp 

mRNA, and in doing so, mediate an increase in the length of the poly(A) tail (Konopacka et al., 2015a).  

It is interesting to note that the expression of Caprin2 in the ageing SON increases in parallel with the 

Avp mRNA poly(A) tail length. The increase in Avp mRNA poly(A) tail length in response to 

dehydration was not affected by age, as previously reported (Sladek and Olschowka, 1994), which was 
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further corroborated by there being no difference in Caprin2 expression in dehydrated adult and aged rats.   

A previous Northern blot study on Fisher344 rat SON samples reported no change in Avp poly(A) tail 

length with age (Sladek and Olschowka, 1994). We suggest that this discrepancy could be due either to 

strain differences, or the different methodological approaches employed. 

 

 

4.1. Conclusions 

In summary, we have performed a comprehensive analysis of the AVP system in ageing Han Wistar rats.  

There were no age-related changes to AVP circulating levels in basal or dehydrated states suggesting that 

the functioning of the HNS in body water homeostasis is intact in healthy rats at this age.  In stark 

contrast, we describe in the magnocellular neurons of the SON a plethora of molecular changes known to 

alter Avp expression.  These include methylation changes to the Avp promoter and altered expression of 

genes involved in transcriptional and posttranscriptional regulation of the Avp gene (Fig. 7).  We 

currently do not understand the origin of these changes or why they are a necessary part of normal ageing 

in the rat.  The current rat model was perfectly capable of coping with 3 days of dehydration by secreting 

adequate quantities of AVP.  However, this may not be true for pathophysiological conditions commonly 

encountered in the ageing process.  The stimulus secretion uncoupling of Avp transcription as seen here 

in normal ageing could increase the likelihood of fluid and electrolyte disorders in critically ill elderly 

patients.  Not being able to adequately correct or respond to fluid and electrolyte disturbances such as a 

rise plasma osmolality would certainly lead to hypernatremia, a condition which is regularly observed in 

elderly patients admitted to hospital (El-Sharkawy et al., 2014).  Further studies are necessary to address 

whether Avp transcription can be a rate-limiting step in the ageing HNS.  The identification by MS of 

additional peptides that are also influenced by age in the NIL gives further scope for exploring other 

peptidergic systems in the ageing hypothalamus, in the context of healthy ageing.  Understanding how 

ageing alters these hormonal systems may help to improve treatment regimens and perhaps improve the 

clinical outcomes for elderly patients. 
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Figure Legends 

Figure 1. Comparison of metabolic parameters in adult and aged rats 

Physiological parameters: (A) body weight, (B) food intake, (C) water intake, (D) urine output, (E) extra-

renal water secretion and (F) urine osmolality were recorded in adult (3-months old) and aged (18-months 

old) male rats (n=6) housed in metabolic cages.  **,p<0.01; ***, p<0.001 by two-way ANOVA with 

Bonferroni post-hoc test. 

 

Figure 2. Effect of ageing on the rat AVP system 

Adult and aged male rats were subjected to dehydration for 3 days and AVP measures were performed.  

(A) Body weights were recorded before and after dehydration (n=11-14).  (B) Plasma osmolality was 

measured (n=19-23) by freezing point depression.  The effect of ageing on Avp expression was examined 

at the transcriptional level in control and dehydrated adult and aged rats. (C-D) The RNA expression level 

of Avp (both heteronuclear and mature form) was examined by qRT-PCR (n=6).  AVP measures were 

performed on NIL and plasma extracts.  (E) AVP content in NIL was measured by ELISA (n=9-10).  (F) 

Plasma AVP level was determined by radioimmunoassay (n=9). DH, dehydrated. *, p<0.05 ***, p<0.001 

by two-way ANOVA with Bonferroni post-hoc test.  #, p<0.05 by unpaired t-test. 
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Figure 3. Peptide analysis in aged rats 

Adult and aged male rats were subjected to dehydration for 3 days and NIL peptide measures were 

performed by MALDI-TOF MS. (A-E) Signal intensity of peptides in NIL was measured by MALDI-

TOF MS in individual tissue extracts from adult and aged rats in basal and dehydrated states (n=11-16). 

(A) Control and dehydrated peptide profiles are easily classified by principal component analysis (PCA) 

according to PC1 (~60% of variance) in adult rats; PCA plot is shown for the first 3 PCs. (B) Loading 

plot indicates that a small subset of peptides contributes to differences between control and dehydrated 

adult rats, among which are masses matching AVP, acetylated alpha-MSH, and di-acetylated alpha-MSH.  

(C) The AVP and OT signal decreases significantly, whilst the alpha-MSH signals and proSAAS (221-

237) increase significantly with dehydration in adult rats. (D-E) The effect of age on peptide signals in the 

NIL. (D)  The OT signals decreased, whilst the signals of POMC derived peptides increased in aged 

compared to adult rats.  (E) Peptide signals in the NIL of adult and aged rats subjected to 3 days of 

dehydration. The AVP-copeptin signal increased whereas the proSAAS signal decreased with age.  (F) 

Peptides uniquely altered as a function or ageing or by just dehydration.  (G) Relative RNA expression of 

proSAAS and Ot in the SON of adult and aged rats.  DH, dehydrated.  *p<0.05 by unpaired t-test or 

peptide names beginning with * by Kruskal-Wallis tests. 

    

Figure 4. Epigenetic changes in Avp gene promoter in ageing 

Methylation status of the Avp promoter in the SON of control and dehydrated adult and aged male rats. 

(A) Relative mRNA expression of Dnmt1, Dnmt3a, Tet1, Tet2, and Tet3 was determined by qRT-PCR. 

(B) Diagram showing seven CpG sites on the Avp promoter that were examined by colony-based PCR.  

(C) Representative tile diagrams showing the methylation status of seven CpG sites for individual clones 

of the Avp promoter extracted from the SON.  (D) Percentage of global methylation on this region of the 

Avp promoter in control and dehydrated adult and aged rats. (E) Percentage methylation of individual 
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CpG sites on the Avp promoter in control and dehydrated adult and aged rats.  *, p<0.05; **, p<0.01;***, 

p<0.001 by two-way ANOVA with Tukey�s post-hoc test.  #, p<0.05 by unpaired t-test. 

 

Figure 5. Effect of ageing on the expression of osmotically induced genes    

Relative mRNA expression of genes involved in hyperosmotic stress in the SON of the hypothalamus in 

control and 3-day dehydrated adult and aged rats.  DH, dehydrated. *, p<0.05; **, p<0.01;***, p<0.001 

by two-way ANOVA with Bonferroni post-hoc test.  #, p<0.05 by unpaired t-test. 

 

Figure 6. Effect of ageing on transcriptional and post-transcriptional Avp gene expression  

 The effect of ageing on Avp poly(A) tail length in the SON in control and dehydrated adult and aged rats.  

(A) Diagram of poly(A) tail assay design for the rat Avp gene.  (B) poly(A) tail length of the Avp mRNA 

was examined using a PCR-based poly(A) tail assay.  DH, dehydrated; Ag, aged; Ad, adult; RT, reverse 

transcription.   

 

Figure 7. Modelling of molecular events in the SON in ageing and dehydrated rats. (A) How ageing 

may alter Avp expression in the SON compared to younger counterparts.  (B) Proposed differential 

regulation of Avp expression in the SON as a function of both ageing and dehydration.  
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Highlights  

·  Uncoupling of plasma osmolality and Avp transcription in the ageing supraoptic nucleus 

·  Age-associated change to methylation and gene transcription in the rat hypothalamus  

·  Ageing diminishes transcriptional responses to dehydration in supraoptic nuclei 

 


