An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins

G. A. MOLDOVEANU AND V. G. PAPANGELAKIS*

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5, Canada

[Received 13 July 2015; Accepted 13 December 2015; Associate Editor: Kathryn Goodenough]

ABSTRACT

Continuous development of advanced technologies has created increasing demand for rare-earth elements (REE), with global emphasis on identifying new alternate sources to ensure adequate supply. Ore deposits containing physically adsorbed lanthanides are substantially lower grade than other REE deposit types; however, the low mining and processing costs make them economically attractive as sources of REE. To evaluate the commercial potential for the recovery of REEs from ion-adsorption deposits in a systematic manner, a standardized procedure for REE leaching was developed previously. Using this procedure it was found that, regardless of variations in ore origin and REE content, all REE consistently reached peak extraction levels under ambient conditions with fast kinetics. Various techniques to improve the REE extraction through process variations were also investigated: it was found that decreasing the L:S ratio, re-using leachate on fresh ores and counter-current leaching were all capable of increasing REE concentrations in the resultant leachate, albeit at the expense of REE extraction levels. In addition, the water content trapped in the leached material was found to contain significant amounts of REE and residual lixiviant requiring thorough washing of the solid residue.

Keywords: rare-earth elements, ion-exchange leaching, ion-adsorption ores, lanthanide extraction, clay minerals.

Introduction

Rare-earth elements (REE) are a collection of sixteen chemical elements, namely scandium, yttrium and fourteen of the fifteen naturally-occurring lanthanides (excluding promethium); the former two are included as they occur with the latter in the same ore deposits and have similar properties (Cotton, 2006). Their unique properties make them essential for the hi-tech industry. They are used in the manufacturing of high strength permanent magnets, lasers, automotive catalytic converters, fibre optics/superconductors and electronic devices (Gupta and Krishnamurthy, 2005). They are grouped depending on the atomic number, into ‘light’ rare earth elements (LREE) – La, Ce, Pr, Nd, and into ‘middle and heavy’ HREE – Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Because of the ongoing development of hi-tech and security applications, there is an increasing demand for REE in the international markets, with emphasis on identifying new resources to ensure adequate supply for present and future use. In terms of ore reserves and mineral resources, China dominates the world with reserves estimated to be around 50% of the total, followed by Australia, Russia, Canada and Brazil, while completely leading and controlling the global production at ~90% (Weng et al., 2015). A review of rare-earth deposits of North America by Castor (2008) concludes that world reserves are sufficient to meet international demand for most LREE, but the HREE such as dysprosium will become scarce because the current source of HREE is limited to ion-adsorption deposits in China. Consequently, ion-adsorption clay deposits in other parts of the world have gained interest as sources of HREE. For the last 3 decades, R&D in the field of REE in most of the Western world has
slowed down due to the import of these elements from China. Consequently, the development of specialized extraction, refining and processing technologies, including equipment and training of engineering expertise, were allowed to lapse, thus creating a dependence on Chinese supplies (Hurst, 2010). Starting in 2005, China – the undisputed leader in both REE mining and trade, started restricting yearly export quotas for HREE, in order to have enough resources for its own industries and to gain control over the global market (Wübbeke, 2013). Consequently, the last decade has brought a renewed concerted global drive towards REE research and development, led by the major end-users of rare-earth products, such as the European Union, USA and Japan, with the dual scope of finding new resources and improving processing/extraction technologies, as summarized by Adachi et al. (2010). Following negotiations with the World Trade Organization (WTO), China eliminated rare-earth oxides (REO) export restrictions in 2014, causing a fall in the REE prices in the international markets (Wang et al., 2015).

Rare-earth elements are incorporated in accessory minerals in various rocks, but the most commercially significant sources, as reviewed by Kanazawa and Kamitani (2006) and more recently described in the comprehensive assessment by Weng et al. (2015) are presented below:

(1) Bastnäsite, \((\text{REE})(\text{CO}_3)_2\text{F}_2\), is a fluorocarbonate mineral containing 65–75 wt.% light REO and accounts for more than 80% of global REO production. The two major sources in the world for lanthanides are bastnäsite deposits at Mountain Pass, California (USA, owned by Molycorp Inc. – devoted solely to REE production, and Bayan-Obo, Inner Mongolia (China) – mined primarily for iron ore and REE as a by-product (also containing monazite). In August 2015, due to a global decline in REE prices, the rare-earth production at Mountain Pass was suspended and the facility was moved to ‘Care and Maintenance’, while Molycorp Inc. filed restructuring plans which included selling the Mountain Pass assets (Molycorp News Releases, 2015a,b).

(2) Monazite, \((\text{REE})\text{PO}_4\) is a LREE phosphate containing 55–65 wt.% REO, associated with granites and beach sands in Australia, Brazil and India; the Mount Weld deposit in Western Australia, owned by Lynas Corp., contains one of the highest grade REE deposits in the world. Until about 1965 monazite was the main REE source; since then, the use of monazite has been considerably reduced due to radioactivity caused by thorium and radium.

(3) Xenotime \((\text{Y,REE})\text{PO}_4\) is an yttrium-rich phosphate containing 25–60 wt.% \(\text{Y}_2\text{O}_3\) and other heavy REE. It is recovered mainly as a by-product of mining for titanium, zirconium and tin in Malaysia, Indonesia and Thailand.

(4) Weathered crust elution-deposited rare earth ores (ion-adsorption ores) are aluminosilicate minerals (e.g. kaolinite, ilillite and smectite) containing 0.05–0.3 wt.% REEs physically adsorbed at sites of permanent negative charge (Chi and Tian, 2008). The ion-adsorption clay deposits are the result of \textit{in situ} weathering of host rocks (mainly granitic), which, over geological timescales, results in the formation of aluminosilicate clays. Clay minerals are part of the phyllosilicate class, containing layered structures of shared octahedral aluminium and tetrahedral silicon sheets, allowing water molecules and hydrated cations to move in and out of the interlayer spaces (Velde and Meunier, 2008). Very commonly, isomorphous substitution of one cation with another (of similar size but with lesser charge, e.g. \(\text{Al}^{3+}\) for \(\text{Si}^{4+}\) or \(\text{Mg}^{2+}\) for \(\text{Al}^{3+}\)) within crystal structures leads to a charge imbalance in silicate clays, which accounts for the permanent negative charge on clay particles, and thus the capability of adsorbing lanthanide ions released/dissolved from precursor REE-bearing minerals during weathering (Meunier, 2005). Warm tropical and sub-tropical climates present ideal conditions for this process to occur (Sanematsu et al., 2013). The best example of this formation process exists in Asia, where many such deposits are known to exist, as described by Bao and Zhao (2008), Murakami and Ishihara (2008) and more recently by Sanematsu et al. (2013). Regardless of the low grades, ion-adsorption clays account for ~35% of the China’s total REE output and ~80% of world’s HREE production (Yang et al., 2013). It is estimated that the production of ion-adsorbed rare earths will increase yearly by ~1.7% and peak in 2024 at 45,793 t (Wang et al., 2015).

Carbonate and phosphate sources, of high grade, are associated with elevated recovery costs due to separation, beneficiation and need for aggressive conditions to dissolve the REE. For example, bastnäsite is generally leached with concentrated \(\text{H}_2\text{SO}_4\) or \(\text{HCl}\), whereas monazite/xenotime concentrates need to be baked either in 98% \(\text{H}_2\text{SO}_4\) or 70% \(\text{NaOH}\) to render the REEs soluble (Gupta and Krishnamurthy, 2005). According to Castor (2008) other REE deposits in North America in addition to...
b bastnäsite consist of the so-called ‘hard-rock’ peralkaline ores including zircon, titanate, niobate, allanite, eudialyte, gadolinite; these deposits are enriched in HREE but require harsh conditions to break down the mineral matrix (e.g. caustic bake followed by acid leaching); the processing of these ores is directed mainly towards extraction of niobium, tantalum and zirconium (Gupta and Krishnamurthy, 2005).

The route followed by the European Union to improve resource efficiency is via creation of alternative sources through innovations in the field of reuse and recycle of rare-earth wastes such as magnets and polishing powders (ERECON, 2015). Although recycling from priority streams such as fluorescent light bulbs and batteries is presently feasible, and potential REE-rich sources reaching end-of-life, such as hard disk drives, wind turbines, magnets and automotive catalytic converters can be considered for the near-future processing sources, recycling rates at present are still very low (<1%) and there are no large scale commercially viable REE recycling operations (Massari and Ruberti, 2013).

Ion-adsorption type deposits are substantially lower grade than other types of lanthanide sources (Kanazawa and Kamitani, 2006), nominally requiring higher costs for REE extraction and recovery. However, this disadvantage is largely offset by the easier mining and processing costs, and the relatively low content of radioactive elements such as thorium and uranium (Murakami and Ishihara, 2008). These deposits are mined by open-pit methods and no ore beneficiation is required. A simple leach using monovalent sulfate or chloride salt solutions at ambient temperature can produce a high-grade REO product, as described by Chi and Tian (2008) and more recently Moldoveanu and Papangelakis (2012, 2013). Because of their abundance in surface layers in nature, ease of mining and processing, these clays warrant a detailed study as important sources of rare earths.

Nature of rare-earth elements in ion-adsorption ores

As explained above, the ion-adsorption ores contain clays with permanent negative surface charge, which is responsible for cation (such as REE) adsorption via electrostatic bonds (Meunier, 2005).

According to Bradbury and Baeyens (2002) as well as Piascik and Sverjensky (2008), for acidic and near-neutral conditions (pH < 6.5–6.8), most of the surface-adsorbed extractable lanthanides occur as simple or hydrated cations such as ‘clay-REE’ or ‘clay-REE(H2O)n’ species derived from straight-forward cation-exchange reversible reactions at the permanent negative charge sites on the clays (physiosorption); for pH > 7 the prevalent forms are the irreversibly-fixed hydrolysed ‘clay-O-REE2+n’ species derived from permanent complexation.

Formation of weathered crust elution-deposited rare-earth ores (ion-adsorption clays)

The ion adsorption REE deposits were first discovered in 1969 in the Jiangxi Province (southern China) and declared a novel type of exogenous rare-earth ore (Chi and Tian, 2008).

The formation of this ore type is due to physical, chemical and biological (microbially-assisted) weathering of REE-rich granitic and volcanic rocks under warm, humid, slightly acidic conditions in subtropical zones. According to Bao and Zhao (2008), the weathering crusts are up to 30 m deep and divided into four layers: (A) An upper humic layer of quartz, organic matter and soil: 0–2 m thick, with very low/nil REE content; (B) a strongly weathered layer enriched in REE: 5–10 m thick with kaolinite, halloysite, quartz and mica; (C) a semi-weathered layer: 3–5 m thick with kaolinite and sericite; (D) a weakly-weathered bottom layer with the same mineral composition as the host rock. Up to 80–90% of the adsorbed REE are hosted by the strongly weathered layer (B), whereas <15% are found in the semi-weathered layer (C). Depending on the nature of the original host rocks, the general components of the weathered ores are kaolinite, halloysite and muscovite, with a typical composition (as wt.%) of ~70% SiO2, 15% Al2O3, 3–5% K2O, 2–3% Fe2O3 and less than 0.5% of CaO, MgO and other elements (Ishihara et al., 2008; Weng et al., 2015).

Considering the geological and climate conditions for the formation of REE-bearing weathered ores, there is no reason to limit the occurrence of this type of deposit within Chinese borders. While at the present time China is the only country to actively pursue and develop this type of resource to commercially produce REE, recent geological surveys (summarized by Weng et al., 2015) have led to the discovery and investigation of similar ion-adsorption clay deposits in South America (Rocha et al., 2013) and Africa (TRE Project, 2014) located in the same warm subtropical and tropical weathering areas.
Due to various weathering conditions (i.e. nature of host rocks, water and soil pH, temperature, pressure, redox conditions) there are three main categories of REE present in the ion-adsorption clays, as described by Chi et al. (2005) as follows.

(1) Colloid phase: REE deposited as insoluble oxides or hydroxides or as part of colloidal polymeric organometallic compounds. These species have low occurrence in ores at the slightly acidic natural conditions and can be recovered only by acid leaching. (2) Exchangeable phase: REE occur as soluble free cations/hydrated cations or part of positively-charged complexes in solution adsorbed species on clays. These species account for 60–90% of the total content of rare earths in ores and can be recovered by ion-exchange leaching with monovalent salts. (3) Mineral phase: REE are part of solid fine particles with same mineral matrix as the host rocks (REE part of the crystal lattice). This phase usually accounts for the balance from the ion-exchangeable phase towards the total rare-earth content (TREE) content and can be recovered only by decomposition of mineral phases by alkaline bake or acid leach.

The vast majority of the ion-adsorption ores present a ‘negative cerium anomaly’, as described by Chi et al. (2005), Bao and Zhao (2008) and Sanematsu et al. (2013), meaning that there is a relative depletion in the normalized (usually to chondritic concentration) concentration of Ce compared to La and Pr. This is due to the fact that, contrary to the majority of lanthanide elements, which are usually adsorbed physically as trivalent ions, Ce$^{3+}$ can be oxidized easily by atmospheric oxygen (O$_2$) to Ce$^{4+}$ (Bard et al., 1985), and precipitate as cerianite, CeO$_2$. Additionally, Ce$^{3+}$ can be oxidized to Ce$^{4+}$ during adsorption on δ-MnO$_2$, as described by Ohta and Kawabe (2001). Consequently, these processes facilitate a natural separation of Ce from the other adsorbed trivalent lanthanides and lead to low recovery of Ce by ion-exchange reactions.

Depending on the nature of the original host rocks, other metals will become dissolved and carried downstream during the weathering, decomposition and alteration processes. The main impurities associated with the ion-adsorption ores are usually Al, Na, K, Mg, Ca, Mn, Zn and Fe. While most base metals occur as part of the mineral matrix and do not leach out during the mild ion-exchange REE leaching conditions, a certain fraction of Al (due to its trivalent state) and to a lesser extent Na, K, Ca and Mg are adsorbed physically and become liable to be dissolved during the process along with the lanthanides, as reported by Chi and Tian (2008) and Rocha et al. (2013).

Overview of leaching technologies for the ion-adsorption clays

As described previously, the ion-adsorption clays contain 0.05 to 0.3 wt.% REE, of which generally more than 60% occur as physically adsorbed species recoverable by simple ion-exchange leaching (Chi and Tian, 2008; Chi et al., 2013, Tian et al., 2013; Luo et al., 2014). Typically, the ores are leached with concentrated inorganic salt solutions of monovalent cations. During leaching, the physisorbed REE are relatively easily and selectively desorbed and substituted on the substrate by the monovalent ions and transferred into solution as soluble sulfates or chlorides, following a theoretical 3:1 stoichiometry (equation 1). However, the actual lixiviant usage generally exceeds the stoichiometric requirements due to competing desorption of other cations (such as Al) also adsorbed on clays. Dissolved REE are usually selectively precipitated with oxalic acid to form oxalates (equation 2) that are subsequently converted to REO via roasting at 900°C according to equation 3. Finally, the mixed REO are separated into individual REE by dissolution in HCl and fractional solvent extraction.

\[
2 \text{Clay}-\text{REE} + 3\text{M}_2\text{SO}_4 \\
\rightarrow 2 \text{Clay}-\text{M}_3 + \text{REE}_2(\text{SO}_4)_3 \quad (1)
\]

\[
\text{REE}_2(\text{SO}_4)_3 + 3\text{H}_2\text{C}_2\text{O}_4 + 10\text{H}_2\text{O} \\
\rightarrow \text{REE}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O} + 10\text{H}_2\text{SO}_4 \quad (2)
\]

\[
\text{REE}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O} \\
\rightarrow \text{REE}_2\text{O}_3 + 3\text{CO} + 3\text{CO}_2 + 10\text{H}_2\text{O} \quad (3)
\]

Various investigations of the desorption of REE from clays via ion-exchange leaching (Chi and Tian, 2008; Moldoveanu and Papangelakis, 2012, 2013) indicated that, regardless of the initial content, not all REE reached similar extraction levels (i.e. the percentages of desorbed/recovered REE varied widely). Coppin et al. (2002) reported that the amount of trivalent lanthanide ions adsorbed on smectite and kaolinite was inversely proportional to the ionic radii and pointed to a fractionation during selective sorption of lanthanides, with heavy elements (i.e. higher atomic number: Tb to Lu) being adsorbed stronger that the light ones (i.e. La to Gd). They related this behaviour to the lanthanide
contraction in the ionic radii going from light to heavy REE. Based on these observations, it was inferred that desorption must exhibit a similar trend, with $HREE$ being more difficult to extract, probably according the trend $La > Ce > Pr > Nd > Sm > Eu > Gd > Tb > Dy > Ho > Y > Er > Tm > Yb > Lu$.

Ever since the discovery of the weathered crust elution-deposited rare-earth ores, China has employed the ion-exchange leaching procedure for the extraction of lanthanides via three successive generations of technology, as summarized by Chi et al. (2013) and presented below.

The first-generation leaching technology – batch leaching with $NaCl$

In the early 1970s, the ores were processed by opencast mining, sieved and leached with ~ 1 M $NaCl$ in barrels, followed by oxalic acid precipitation. The main disadvantages of this initial approach were small scale, low yields, high hixivian concentration needed and poor product quality ($< 70\%$ total rare-earth oxide content due to Na oxalate coprecipitation), which greatly surpassed the advantages of extremely low costs and fast processing times. By the mid-1970s the procedure was changed to bath leaching in concrete pools in order to increase production; however, the main disadvantage of low product purity remained and, because of the largely unregulated and illegal/clandestine mining and extraction practices, the environmental impact was devastating, including severe loss of vegetation and biodiversity, soil erosion and water contamination (both streams and phreatic).

The second-generation leaching technology – batch and heap leaching with $(NH_4)_2SO_4$

In the early 1980s, 1 M $NaCl$ solution was replaced by ~ 0.3 M $(NH_4)_2SO_4$ solution as lixiviant for batch leaching, which required less reagent consumption due to increased desorption capabilities of NH_4^+ as compared to Na^+ and led to improved final product purity (Chi et al., 2013). The procedure was so successful that it became the primary leaching method for the next ~ 20 years and contributed largely to the intense development of REE ion-adsorption research. However, the second-generation batch leaching technology led to environmental impact as well, due to mining-related deforestation and discharge of tailings and was ultimately replaced in the early 1990s by the heap leaching procedure (Yang et al., 2013).

In the traditional heap leaching procedure, the soil pile ($1.5–5$ m high) is built on a flat impermeable (leak-proof) layer $5–20$ cm thick inside a cofferdam ~ 50 cm high to prevent solution overflow. The lixiviant is injected into the top of the pile at a solid to liquid (S:L) ratio of $\sim 0.25:1$ and accumulates at the bottom in the collecting ditch. Washing is performed with clean water at a S:L ratio of $\sim 0.6:1$; depending on the size of the ore heap, leaching time ranges from 100 to 320 h and REE extraction can reach up to 90%. This procedure is very well suited for the processing of very low-grade ores.

The third-generation leaching technology – in situ leaching with $(NH_4)_2SO_4$

The intense and largely unregulated use of successful batch and heap leaching with ammonium sulfate for 2 decades led to severe and long-lasting environmental, ecological and health damages in southern China; as an example based on data presented by Yang et al. (2013), by 2010 the REE mining in Guangdong Province alone has left ~ 302 abandoned mines, 191 million tons of tailings and 153 km2 of destroyed forests.

In June 2011, in an effort to regulate the industry and deal with the environmental effects, the Chinese government enforced a ban on surface mining and batch/heap leaching while implementing mandatory in situ leaching technology for the processing of the ion-adsorption ores, as being more advantageous in terms of surface vegetation clearing and soil disturbance (Yang et al., 2013; Wang et al., 2015). The basic principle of in situ leaching (also called ‘solution mining’) is injection of leaching solution directly into the natural orebody and retrieval of the pregnant solutions for further processing. Leaching holes with a depth of $1.5–3$ m and diameter of ~ 0.8 m are drilled $2–3$ m apart, for up to 100 m, the lixiviant (~ 0.3 M $(NH_4)_2SO_4$) is injected at high pressure, flows through the pores of the orebody and the loaded leach solution is pumped above-ground through the recovery wells; depending on the adsorbed REE content and degree of weathering the whole process (including injection of water for washing) can take up to 400 days before reaching maximum possible REE extraction.

The in situ leaching technique is also currently applied in China for the recovery of residual REE from very low-grade ores and the tailings of older batch and heap leaching operations (Chi et al., 2014).

The implementation of in situ leaching requires comprehensive geological surveys – specific to
each site – in order to determine the hydrogeological structure of the area, ore characteristics, grade, orientation and the surrounding rock infiltration properties. The procedure can only be applied to an orebody with suitable permeability and placed over solid bedrock without fissures. Failure to conduct diligent geological surveys may result in serious environmental degradation such as underground water contamination, mine collapse, landslides and severe loss of REE extraction (Li, 2011; Chi et al., 2014).

Recent trends in ion-adsorption ore research are focused on minimizing the consumption of ammonium sulfate for in situ leaching, in an effort to reduce ammonia pollution of surface and ground waters, either by adding certain leaching-enhancing additives to the conventional (NH$_4$)$_2$SO$_4$ lixiviant or by evaluating alternative leaching reagents, as described below. Small additions (0.03–0.1%) of natural organic reagents such as the plant derivative Sesbania Gum (Tian et al., 2013) and humic acids (Luo et al., 2014) to ammonium sulfate have been proven to increase TREE extraction by up to 8% and improve the leaching rate. Although neither group offers a fundamental explanation of the reported phenomena, we believe that it is an increased solubility effect via the formation of soluble TREE-organic complexes due to the chelation power of the many hydroxyl groups contained in the organic additives.

Xiao et al. (2015) assessed the use of magnesium sulfate for leaching of ion-adsorption clays from southern China, with the dual aim of replacing ammonium-based lixiviants and correcting a magnesium (well-known nutrient) deficiency problem encountered for the soils in that particular region. It was considered that the long-term environmental advantages of using magnesium sulfate far exceeded the losses in production due to the small decrease in REE extraction (5–7%) as compared to ammonium sulfate. An additional benefit of using MgSO$_4$ instead of (NH$_4$)$_2$SO$_4$ is the 10–15% decrease in aluminium desorption, which translates into a lower solution impurity content to be processed/eliminated downstream (Xiao et al., 2015).

Evaluation of leaching potential of various ion-adsorption ores

As new ion-adsorption REE deposits are being explored and discovered in the rest of the world, research on REE extraction from ores has expanded outside of China as well. For the last six years, the University of Toronto has conducted systematic in-depth studies on the leaching chemistry and optimum conditions for REE extraction from clay samples obtained from various geographical locations. Overall, it was determined that, under atmospheric conditions, the leaching efficiency of monovalent ions for REE extraction depends on the hydration energy of the exchange ion, following the order Cs$^+$ > NH$_4^+$ > K$^+$ > Na$^+$ > Li$^+$, in both sulfate and chloride systems (Moldoveanu and Papangelakis, 2012). While Cs$^+$ performed best in terms of leaching power, for economic and environmental reasons NH$_4^+$-based lixiviants would be the more practical choice. Batch leaching studies also revealed that the ion exchange process achieved equilibrium in as little as 5 min, regardless of the experimental conditions; ambient temperatures and moderately acidic pH values (5–5.5) represent optimum conditions for maximum REE recovery, as massive lanthanide hydrolysis is expected to occur at pH above 6.8–7, whereas high temperature tends to lower the hydrolysis pH values (Moldoveanu and Papangelakis, 2013).

Based on those previous studies, a benchmark batch leaching procedure was established and research has been conducted at the University of Toronto in order to compare leaching characteristics among different ore samples obtained from Africa (Madagascar), South-East Asia (outside China) and South America (Brazil) (exact location and specifics of deposits subject to confidentiality agreements between authors and the mining companies providing the samples) and evaluate lanthanide extraction. The final aim is to develop a fully contained optimized process for field implementation that minimizes the impact to the environment by providing options for efficient reagent use, maximized extraction and recycling/regeneration of the lixivant (Cheuk et al., 2014).

Experimental methodology

Solid characterization

The REE contents of the ore samples were determined by acid digestion for 30 min at 220°C according to the following procedure: 0.5 g crushed ore samples were added to 15 ml *aqua regia* (a mixture in volumetric ratio of 3:1 of concentrated HCl and HNO$_3$, respectively) and placed in hermetically closed pressurized vials inside the Ethos EZ Microwave Digestion System (Nieuwenhuize and Poley-Vos, 1991). Following digestion, the liquid
samples were filtered, diluted with 5% HNO₃ and the REE content was determined by inductively coupled plasma optical emission spectrometry (Agilent 720 ICP-OES) of the solution; REE standards (Inorganic Ventures) in the range 0–20 ppm were used.

Batch leaching tests

The leach solutions were prepared using ACS reagent grade ammonium sulfate and deionized water. The benchmarked procedure for leaching is: 0.5M (NH₄)₂SO₄ (natural pH ∼5.2), ambient conditions, liquid to solid (L:S) ratio of 2:1 (vol./mass), 30 min total time. The slurry was agitated via magnetic stirring then the mother liquor was separated by vacuum filtration. The filter cake was washed by deionized water of pH 5 (2 × 100 ml), and the wash water was collected separately for analysis. The resultant loaded solutions were diluted with 5% (vol.) nitric acid and analysed by ICP-OES to calculate the REE extractions.

Column leaching tests

After being homogenized and pelleted (agglomerated) to a size of ∼2 μm, ∼220 g of ore sample (bed height 300 mm) was placed in a glass leaching column with an inner diameter of 30 mm; a fibreglass filter plate was fixed at the bottom of the leaching column to retain soil particles and one was placed on top of the ore sample to resist preferential flow (even liquid dispersion). The lixiviant (0.5 M (NH₄)₂SO₄ solution) was added into the leaching column via a peristaltic pump at a constant flow rate of 0.4 ml/min. The sampling was done every 10 ml for 48 h and the loaded solution was diluted with 5% HNO₃ and stored for further analysis; afterwards, the column was flushed with deionized water of pH 5 for 33 h (at a flow rate of 0.4 ml/min), with 10 ml increments sampling.

Leaching results and discussion

Eight samples from three different geographical locations (Madagascar, Brazil and South-East Asia) were tested. The individual REE content of the original samples was measured by ICP-OES and is given in Table 1 (expressed as ppm); the chondrite-normalized distribution, based on chondrite data from Taylor and McClellan (1985), is shown in Fig. 1.

Despite TREE content being consistent with grades expected for the ion-adsorption ores, no specific pattern of preferential REE accumulation and distribution was observed, except that all ores seem to be rich in La, Y and Nd; although some similarities in terms of relative composition are observed within deposits originating from the same geographical areas (e.g. A₁ through A₅), there is no consistent trend. This is due to wide variations in composition of original host rocks and

<table>
<thead>
<tr>
<th>Origin</th>
<th>Africa</th>
<th>Asia</th>
<th>S. America</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
</tr>
<tr>
<td>REE (ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>290</td>
<td>140</td>
<td>180</td>
</tr>
<tr>
<td>La</td>
<td>1750</td>
<td>290</td>
<td>1790</td>
</tr>
<tr>
<td>Ce</td>
<td>260</td>
<td>170</td>
<td>220</td>
</tr>
<tr>
<td>Pr</td>
<td>280</td>
<td>70</td>
<td>270</td>
</tr>
<tr>
<td>Nd</td>
<td>1000</td>
<td>230</td>
<td>880</td>
</tr>
<tr>
<td>Sm</td>
<td>170</td>
<td>40</td>
<td>170</td>
</tr>
<tr>
<td>Eu</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Gd</td>
<td>110</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>Tb</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Dy</td>
<td>60</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Ho</td>
<td>10</td>
<td>10</td>
<td>4.6</td>
</tr>
<tr>
<td>Er</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>Tm</td>
<td>2</td>
<td>0.869</td>
<td>0.685</td>
</tr>
<tr>
<td>Yb</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Lu</td>
<td>2.66</td>
<td>2.66</td>
<td>2.53</td>
</tr>
<tr>
<td>TREE</td>
<td>3990</td>
<td>1080</td>
<td>3800</td>
</tr>
</tbody>
</table>

Table 1. Total REE content of ion-adsorption clays from different geographical origins.
incongruent dissolution-adsorption processes during the weathering processes, as shown by Bao and Zhao (2008), Sanematsu et al. (2013) and Xiao et al. (2015 b). Ores B1, B2 (South-East China) and C (Brazil) indicate higher content of HREE while A1 thorough A5 (Madagascar) seem to contain more LREE.

Batch leaching

The ore samples listed in Table 1 were batch leached using the benchmarked procedure described above to investigate the terminal REE extraction levels (shown in Table 2) and TREE leaching kinetics, respectively (presented in Fig. 2).

From data in Table 2 it can be observed that all the minerals investigated are the ion-adsorption type, i.e. the lanthanides are physically adsorbed and can be easily recovered via a simple ion-exchange leaching procedure, as described by Moldoveanu and Papangelakis (2012, 2013). The extraction levels vary between 40 to 80%, consistent with the predicted exchangeable REE percentage, as described by Chi and Tian (2008). Again,

Table 2. Final REE extraction levels, expressed as %E (leaching + washing).

<table>
<thead>
<tr>
<th>Origin</th>
<th>Africa</th>
<th>Asia</th>
<th>S. America</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>Y</td>
<td>77.3</td>
<td>72.6</td>
<td>93.6</td>
</tr>
<tr>
<td>La</td>
<td>83.6</td>
<td>76.9</td>
<td>92.7</td>
</tr>
<tr>
<td>Ce</td>
<td>0.0</td>
<td>16.9</td>
<td>12.6</td>
</tr>
<tr>
<td>Pr</td>
<td>75.1</td>
<td>65.0</td>
<td>92.3</td>
</tr>
<tr>
<td>Nd</td>
<td>80.8</td>
<td>74.1</td>
<td>90.3</td>
</tr>
<tr>
<td>Sm</td>
<td>90.6</td>
<td>85.2</td>
<td>97.1</td>
</tr>
<tr>
<td>Eu</td>
<td>62.1</td>
<td>79.0</td>
<td>89.1</td>
</tr>
<tr>
<td>Gd</td>
<td>82.6</td>
<td>63.0</td>
<td>82.8</td>
</tr>
<tr>
<td>Tb</td>
<td>84.1</td>
<td>62.8</td>
<td>74.6</td>
</tr>
<tr>
<td>Dy</td>
<td>80.9</td>
<td>76.3</td>
<td>97.4</td>
</tr>
<tr>
<td>Ho</td>
<td>75.5</td>
<td>0.0</td>
<td>96.1</td>
</tr>
<tr>
<td>Er</td>
<td>86.8</td>
<td>73.5</td>
<td>80.2</td>
</tr>
<tr>
<td>Tm</td>
<td>53.4</td>
<td>79.4</td>
<td>30.0</td>
</tr>
<tr>
<td>Yb</td>
<td>73.2</td>
<td>64.0</td>
<td>17.6</td>
</tr>
<tr>
<td>Lu</td>
<td>52.3</td>
<td>34.9</td>
<td>33.7</td>
</tr>
<tr>
<td>TREE</td>
<td>76.6</td>
<td>64.0</td>
<td>76.7</td>
</tr>
</tbody>
</table>
there is no consistent trend regarding REE desorption within clays of similar geographical origin; this could be explained in terms of: (1) The ores may contain a higher percentage of clays with lower cation exchange capacity (CEC) such as kaolinite, that will adsorb fewer ions than the ones with larger CEC such as smectites, hence less is available for desorption (possibly observed for A5). (2) The overall exchangeable fraction of REE is low, regardless of the high REE content; probably the majority of the total REE content is locked in the mineral matrix (possibly observed for clays A4 and C1).

As a general trend for all ion-adsorption ores, the percentage of extracted cerium is significantly lower than that of other REE due to its presence mostly as CeO₂ while some of the HREE also show poor extraction probably because of the stronger adsorption, as described by Coppin et al. (2002).

In terms of extraction kinetics, all materials investigated showed a common trend of fast REE desorption which is the typical behaviour of the ion-adsorption minerals. While each clay sample possesses a slightly different REE content and REE extraction end point, it can be seen that extractions reach the terminal levels in a very similar fashion, typically reaching a plateau in <15 min of batch leaching time. Moldoveanu and Papangelakis (2013) demonstrated that desorption kinetics are very fast and independent of temperature, pH, and agitation rate, but there is an effect on the terminal extraction levels.

Maximizing REE extraction

As the leaching process can be considered an ion exchange process at equilibrium, the authors investigated whether all the extractable REE are indeed recovered during the initial leaching stage. One possible option to increase REE extraction from the clays is through multi-stage leaching using fresh lixiviant: i.e. the clays were leached, vacuum filtered, washed twice and re-leached with fresh solution for a total of three times, following the same base-line procedure; a L:S ratio of 2:1 was used for each leaching stage. The ore A4 was selected for this experiment as it showed somehow lower TREE %E (percent extractions) during the initial leaching step (Table 3) – thus raising the

<table>
<thead>
<tr>
<th>Process</th>
<th>Mass of clay (g)</th>
<th>Mass of REE on clay (mg)</th>
<th>Mass of REE extracted (mg)</th>
<th>%E (TREE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column leaching</td>
<td>223</td>
<td>310</td>
<td>163</td>
<td>53</td>
</tr>
<tr>
<td>Column leaching + wash</td>
<td>223</td>
<td>310</td>
<td>186</td>
<td>60</td>
</tr>
<tr>
<td>Batch leaching + wash</td>
<td>100</td>
<td>139</td>
<td>75</td>
<td>57</td>
</tr>
</tbody>
</table>
possibility that more could be extracted via repeated leaching; the results are presented in Fig. 3. It can be seen that multi-stage leaching of clays with fresh solution provided no benefit to additional extraction, increasing the overall TREE extraction by only ∼1.88%; therefore, further use of fresh lixiviant is not recommended as it does not improve %E (this behaviour has been observed consistently for all ion-adsorption ores investigated). Proper washing of leached material, however, plays an important role in maximizing the recovery of REE and the unspent lixiviant. Figure 3 also shows the distribution of TREE recovery between the initial stage leachate, the first washing step and a second washing step for a single-stage leaching experiment. It can be observed that washing accounted for ∼9.5% of the TREE recovered from leachate retained in the filter cake — and it is therefore an essential and strongly recommended step.

Leachate loading

While maximum REE extraction is the primary objective of the leach process, it is important to note that the REE concentration of the resultant leachate impacts on the downstream circuit. High REE
concentration reduces the circuit size of the
downstream precipitation process.

The REE concentration in the leach solution
increases with decreasing L:S ratio. As the total
amount of ammonium in solution is usually well in
excess of the stoichiometric requirement to desorb
REE, decreasing the L:S ratio has a minor impact on
maximum extraction. In this part of the study, the
ore A2 was leached using the standard leaching
procedure described in the experimental section,
with L:S ratios of 0.5, 0.75, 1 and 2.

Figure 4 shows the total REE extractions
expressed as %E, and the resultant total REE
concentrations in the leachate expressed as
\([\text{REE}]_{\text{aq}}\). It can be seen that, while an extraction
improvement by 10–20% units was observed when
the L:S ratio was increased from 0.5 to 2, the TREE
collection (%E) and total REE concentration in the leachate dropped due to dilution.
Additionally, as the L:S ratio decreased, agitation
became increasingly more difficult due to increased
slurry viscosity; slurries with L:S ratios below 0.5
were virtually impossible to agitate. Hence, a L:S
ratio of 1.5–2.0 was deemed to be the optimal.

Recent research studies by the authors (Cheuk et al.,
2014) demonstrated that reusing loaded leachate on
fresh ores (i.e. leachate recycling) and multi-stage
counter-current leaching were all capable of increasing
REE concentrations in the resultant leachate, though at
the expense of REE extraction levels.

Column leaching studies
An alternative technique of increasing leachate
loading and decreasing L/S ratio is column

FIG. 5. Column leaching results as a function of L/S ratio and time (A4 ore, 0.4 ml/min flow, ambient temperature).

FIG. 6. Column residue washing (A4 ore, 0.4 ml/min flow, deionized H2O of pH 5, ambient temperature).
leaching, which simulates heap and/or in situ leaching processes presently practiced in the field (Chi et al., 2014). The column leaching tests were performed on the ore A4, according to the procedure described in the Experimental section.

The total REE extraction as a function of lixiviant volume collected over 48 h (expressed in volume per unit mass of ore) is shown in Fig. 5. It can be observed that ∼94% of the total extracted REE (referenced to a terminal extraction of ∼53%) is collected in the first ∼0.6 ml/g of leachate (corresponding to 120 ml lixiviant) after 9 h of operation. It appears that increasing the column operation beyond 1.5 ml/g or 20 h would only bring minimal extraction improvement.

In order to completely elute all REE in the column and to ensure that the solid residue is free of lixiviant prior to disposal, column flushing with fresh water becomes necessary – and the results are shown in Fig. 6. It can be observed that ∼99% of NH₄⁺ was removed in the first 1.06 ml/g wash water collected (corresponding to ∼234 ml of H₂O) after 13 h of operation.

For an overall comparison, Table 3 shows %E (TREE) for batch and column leaching modes, respectively. It can be observed that, for much lower L/S ratios (0.5–1.0), the column leach achieves TREE extraction levels similar to the batch process (which employs a L/S ratio of 2), and better extraction than batch when column flushing (washing) is performed.

Conclusions

The leaching performance of ion-adsorption REE deposits outside China have been demonstrated and a unified benchmark procedure for REE leaching from these types of ores has been established. It was found that, regardless of variations in ore origin and REE content, all REE consistently reached peak extraction levels under ambient conditions with fast kinetics. However, the final overall extractions were generally element-specific, i.e. not all REE reached similar recovery levels for a given ore, as shown in Table 2.

Various techniques to improve the REE extraction through process variations were also investigated. It was found that decreasing the L:S ratio, leachate recycling and counter-current operation were all capable of increasing REE concentrations in the resultant leachate, however, at the expense of REE maximum extraction levels.

Column leaching provides a more efficient alternative to the batch process, achieving similar or better REE extraction levels with lower lixiviant use and constitutes an important step towards simulating the heap or in situ leaching. The water trapped in leached ore residues was found to contain significant amounts of REE and residual lixiviant necessitating significant washing for increasing REE recovery and environmental compliance.

References

