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Abstract—Template matching algorithms describe the way a
tracker is able to follow an object by comparing two templates.
Representing information about the object to be tracked and the
other about the frame that is being analysed. Previous imple-
mentations prove to be sensible to partial occlusion, updating
the model template even in cases where the line of sight between
the camera and the object is being partially blocked, producing
a misrepresentation of the object’s features. This paper proposes
a dynamic template update, using normalised cross correlation
as a similarity metric. Using the response given by the similarity,
it is possible to determine ranges in which to update the model
of the object. With this, the algorithm is able to keep relevant
information about the object when it is partially or completely
occluded. The main assumption made during the development
of most template tracking algorithms is the prior knowledge of
the object’s location and dimensions in the initial frame. This
paper proposes an interactive implementation where the prior
information that is needed can be obtained from a single point
in the object using segmentation. The implementation of the
algorithm described produced reliable and real-time results (30
frames per second) on the NVIDIA Jetson TX1 platform.

I. Introduction

Object Tracking is a core problem in computer vision, with
a wide range of applications which include human-computer
interaction, surveillance, augmented reality and performance-
driven animation. In some cases this process can be simplified
by knowing the object to be tracked in advance, incorporating
prior knowledge when designing the tracker to create a model
of the object. However, for many applications there is no prior
information as the object is specified at run-time. For this
scenario the implementation needs to be able to model the
object across the duration of the application.

Tracking implementations can be divided into appearance-
based and model-based [1]. Appearance-based trackers rely
on visual cues (colour, contour, corners, etc.), while model-
based trackers make use of a 3D model of the object used for
comparison during the video sequence. Implementing a model-
based tracker into an UAV can prove to be troublesome, given
that in most applications the object to be tracked is specified at
run-time. A main requirement for appearance-based trackers is
the prior knowledge of the start position and dimensions of the
object. This information can be provide by selecting an area
of a segmented image that represents the object and bounding
this region. The segmented image can be produced by edge
based or region growing techniques. Due to the nature of these
methods, the whole image is segmented before the area that

represents the desired object is considered. A more efficient
implementation is to design an interactive object segmentation;
for this an input is needed, then based on this the segmentation
can be focused on regions of the image the object is most likely
to be contained in.

Previous methods to achieve this often require a large
amount of user input, either in the form of multiple points [2]
or multiple strokes [3] of the object and/or the background.
This proves to be problematic for real-time systems, as by
the time all the input has been provided, the object could
have changed position. To counteract this problem, this paper
proposes a method to segment and bound an object based on
a single point within it.

Template matching is commonly used to achieve
appearance-based tracking. Previous implementations describe
the comparison between two templates using a similarity
metric such as normalised cross correlation [4] or the sum
of absolute value of differences [5]. Other implementations
achieve this type of tracking by storing information about the
object on each frame and improving a learning algorithm on
each iteration [6]. These implementations define a constant
model template update, which is problematic, because across
the duration of the application, there is a high chance
of occlusion, which can lead to misrepresentation of the
object. To account for this problem, this paper proposes a
dynamic template update, for which the model template is
not updated in every iteration. Instead, it defines an update
region given the results of the similarity metric used. This not
only increases the accuracy of the tracking, but also avoids
constant memory writes, improving the algorithm’s efficiency.
Besides this, an occlusion threshold is also implemented, for
which the region of interest (ROI) of the image (see section
IV) can be extended, to account for movement of the object
while occluded. The block diagram of the proposed tracking
system is shown in Fig. 1.

This paper is organised as follows: Section II outlines the
procedures needed to segment the object from the background
and create the tightest bounding box possible covering the
object. Sections III, IV and V describe how to use the infor-
mation from each frame. This includes the usage of different
templates and how to extract and match features from them.
The following section (section VI) describes how to select the
ROI and update of the model template. Section VII describes
how the algorithm was implemented and its performance.



Fig. 1: Tracking algorithm implementation flow chart.

Finally, Section VIII describes improvements that can be made
to the procedures described in this paper.

II. Finding Initial Bounding Box

In order to define the object location on the initial frame,
a pixel within the object must be provided to extract the
segmented object from that area. Initially, the bounding box
is defined as the whole image, then at each stage this is
examined and the size is reduced where appropriate. The main
idea behind this implementation is to incorporate increasingly
complex techniques as the bounding box decreases.

Algorithm 1 Finding Bounding Box

function findingBoundingBox(Frame,Input Coordinate)
maxSize(Box,Input Coordinate,currHeight)
backgroundMasking(Box,Mask,Frame)
smooth(Box,Mask)
getClickedRegion(Box,Mask,Input Coordinate)
sizeReduction(Box,Mask,Input Coordinates)
colourSobelBarriers(Box,Mask,Input Coordinates)
getClickedRegion(Box,Mask,Input Coordinates)
return Box

end function

(a) (b) (c)

(d) (e) (f)

Fig. 2: (a) Input image [7] reduced to bounding box from
maxSizeEstimation. (b) Output from smoothing. (c) Output
from first getClickedRegion. (d) Output from sizeReduction.
(e) Output from second getClickedRegion. (f) Input image
reduced to final bounding box.

The pixel width and height of an object can be estimated
based on the real object dimensions and the distance between
the camera and the floor [8]. So, by assuming a maximum size
for the object to be tracked, we can estimate a bounding box
covering this area.

Sobel edge detection is applied to obtain the sharp changes
in brightness of the image, which in most cases represent the
outlines of the object in the image. A threshold is applied to
the output of the edge detector. Any pixel greater than this
threshold is stored in a binary image as one. Representing an
edge, otherwise it is stored as a zero. Connected component
analysis (CCA) [9] is then applied to the resulting binary
image. This assigns the same label to the pixels that are
connected in an object. Given that the initial bounding box
is an overestimation, then any pixel in the selected object
is not connected outside the initial boundaries. Assuming a
fully connected edge was found previously. This means that
any region produced by the connected component analysis
that touches the edge of the bound box can be deemed as
background or a separate object and therefore ignored.

Smoothing is then applied to what so far is considered the
object. Disconnecting weakly linked pixels. This is achieved



by a sliding window technique, in which the quantity of pixels
labelled as objects inside the window is compared with a
threshold. If it is below this, the centre pixel is eliminated.
This process is repeated for two different window sizes and
thresholds.

CCA is applied again to the output of the smoothing, after
which, all the pixels sharing the same label as the input
coordinate are extracted.

A recurrent problem with segmentation is under-
segmenting, meaning multiple objects are labelled as
one. To solve this, colour Sobel barriers are applied, which
aim to split objects that have been incorrectly classified.
But this implementation is inefficient, so to improve the
performance the bounding box is first decreased.

To reduce the dimensions of the bounding box, the system
scans horizontally in both directions from the selected point,
until it reaches a pixel marked as background on both sides.
Measuring the height of the object at each pixel. It scans across
before it reaches a pixel labelled as background. This is then
averaged to produce a more general result. This process is
then repeated vertically to determine the width. However, this
reduction of the bounding box is not guaranteed to contain the
whole object. To solve this, a multiplier is applied to try and
ensure the object is bounded by this area.

Following this, a colour Sobel edge detection is applied
[10]. This mask is then subtracted from the bounding box.
CCA is applied to this image, and the label containing the
initial coordinates is tightly bound and sent to the tracking
algorithm.

This implementation is based on the algorithm shown in
Algorithm 1, as a series of procedures applied to the frame,
where the user defines an initial coordinate belonging to the
object, and the distance between the camera and the ground is
known. Besides this, the outputs of these stages are shown in
Fig. 2. It can be seen how this implementation is able to tightly
bound the selected object using the required input information.

III. Templates

A template is a representation of the important charac-
teristics in a region of the image [5]. The main idea when
tracking an object is to compare a model template with several
templates created from a region of interest (ROI) of the current
frame, and the area from the ROI that presents the highest
similarity represents the object.

Two different templates are stored and used by the algo-
rithm. The first one is known as the model and this will
hold salient characteristics of the object. The tracking to be
explained in this paper presents a dynamic model template
generation. This template is updated according to the maxi-
mum similarity metric resulting from comparing the object’s
model with the current templates during the run time of the
application. This is done to account for changes in perspective
of the object in the camera field of view.

The following assumptions are made when creating the
initial model template to ensure an ideal extraction of the
features:

• The initial position of the object in relationship to the
camera coordinates system is known at the start of the
tracking application.

• The object can be completely covered by a bounding box
in the image.

• The bounding box dimensions are set such that it doesn’t
include any other objects.

The second template is known as current and is created from
the ROI of the frame to be analysed. Ideally, it will include
the characteristics of the object in its new position together
with its environment.

To avoid recalculations, the features are initially extracted
from the ROI and then divided into sub-sections, based on
the dimensions of the object. These subdivisions represent the
current templates, and from these the one with the highest
similarity score with the model is the new position of the
object.

To extract features from the image, the Harris corners edge
detection algorithm is used. Generally speaking, corners are
areas in an image that present significant variation in densities
[11]. This feature extractor is distinctive compared with others
because of its simplicity and its robustness to neither rotations
nor illumination differences between images [12]. To account
for this problem, the dynamic model update proposed in
this paper changes the representation of the object for such
occasions.

(a) (b)

Fig. 3: (a) Example of an image with (b) corresponding
template using Harris corners. Image taken from data set
UAV123 [7].

The corners extracted using the specified algorithm are set
to have a relatively large block size. With this the features
are more general, and the matching implementation produces
more reliable results. An example of the feature extraction
implemented is shown on Fig. 3.

IV. Region of Interest (ROI)

The ROI is defined as the search block in the image. This is
a smaller sample of the frame, where the object is most likely
to be given its location in the previous frame.

When selecting the location of the ROI, the previous area
is extended in all directions creating a bounding box bigger
than the object [4]. With this, the probability of the object in
its new location being covered by this area tends to unity.

The size of this area greatly impacts the performance
(frames per second) of the algorithm. Intuitively, the bigger



this area, the more calculations are needed to detect the
similarities of the current templates with the model template.
In order to select the smallest extension to create the ROI, the
camera frame rate needs to be taken into account. The higher
this is, the smaller the extension can be. This phenomenon
can be attributed to the fact that if the camera frame rate is
high, the object’s change of position can be more precisely
covered between subsequent frames. This represents a trade-
off, between precision and performance.

V. Normalised cross correlation as TemplateMatching

Normalised cross correlation (NCC) can be defined as a
measurement of similarity between two signals. In the imple-
mentation defined in this paper, this measurement is used to
assign a score comparing the template T (x′, y′) and several
regions in the area of interest ROI(I(x, y)). The maximum
response defines the new location of the object. NCC calcu-
lations are expressed in Equation 1.

In the Equations 2 to 5, T (x, y) and ROI(x, y) represents the
values of the template image and ROI image respectively in
the coordinates x and y. The score obtained using normalised
cross correlation is represented in Fig. 4 as the shaded area
for a point (x,y).

R(x, y) =

lt∑
x′=0

bt∑
y′=0

(T (x′, y′) − T ) · (I(x + x′, y + y′) − I(x, y))
αT · αI(x, y)

(1)
where:

T =
1

bt · lt

lt∑
a=0

bt∑
b=0

T (a, b) (2)

I(x, y) =
1

br · lr

lt∑
a=0

bt∑
b=0

ROI(a + x, b + y) (3)

αT =

√√√ lt∑
a=0

bt∑
b=0

T (a, b)2 (4)

αI(x, y) =

√√√ lt∑
a=0

bt∑
b=0

ROI(a + x, b + y)2 (5)

Fig. 4: Example of template matching in area of ROI.

VI. UsingMatchMetric Results forModel Template Update
and Dynamic ROI Selection

The maximum response value returned by the NCC calcu-
lations may not represent the new location of the object. This
is usually due to partial or complete occlusion of the tracked
object. This produces a noticeable decrease of the maximum
similarity metric of a frame in relationship with the others.
Following this idea, the use of different score areas can be
used to define different ”action ranges” to find the new object
location and the update of the model templates.

In order to decrease memory writes for new model tem-
plates, a response range is set which represents an area in the
similarity metric which defines when to update the model.

As the first similarity score generally defines a ”good
match”, then there is no need to update the model template
for the next iteration. When the defined metric starts to drop,
then it can be said that the object is changing its perspective in
relationship to the camera and an update is needed to account
for this variation.

Constant model updates cause the implementation to be-
come sensitive to partial occlusion. This phenomenon occurs
when sections of the tracked object are obstructed leaving
others visible for the camera [13]. Given this update area, the
model template can retain a good representation of the object
even when it is partially occluded.

When updating the model template, a consideration for
cases in which the object does not present relevant changes in
perspective needs to be made. Or in a worse case scenario, the
changes are not completely covered between frames causing
the similarity metric to drop considerably between consecutive
frames, and with this skipping the model update area. To
account for these cases, a default update region is set. This
will update the model template in cases where there has not
been an updated in a relatively long time.

When the matched metric decreases by a noticeable amount,
it can be due to occurrence of an undefined object interfering
between the camera line of sight and the tracked object [4],
causing complete occlusion. To account for this problem, the
new location given by the maximum response is ignored, and
the previous location is kept. Besides this, the area of the ROI
is extended, in order to account for movement of the object
while it was being occluded. After a new match is found with a
reliable maximum response, the ROI area is reset to a constant
value.

The results of this implementation can be seen in Fig. 5.
This shows that the tracking algorithm is able to identify
occlusion scenarios and keep previous locations of the object.
Besides this, Fig. 6 demonstrates the dynamism on ROI
selection for such cases, increasing the search area to account
for object’s movement while occluded.

VII. Results

One important aspect of this implementation is that the
NCC calculations are performed on a GPU using CUDA. The
platform chosen for this is an NVIDIA Jetson TX1, mainly
because of its size and power consumption (less than 10 watts).



Fig. 5: Example of object being partially and completely
occluded

Fig. 6: ROI extension implementation example, showing re-
sponses at the moment the object is occluded

This can easily be incorporated into the UAV, and with this all
the calculations can be made on-board. To avoid recalculating
the responses for the same frames, the frame rate of the
application is locked to be the same as the camera. In this case
the camera used is a Creative Model VF0790, which presents
a frame rate of 30 frames per second, and the application is
able to analyse each frame.

The algorithm described in this paper is able to perform real-
time tracking with reliable results up to a bounding box of 144
by 144 pixels. The results shown in Fig. 7 were obtained when
realising tracking on a video given by a data set called UAV123
[7]. This eliminated the restriction set by the camera frame
rate, given that on each iteration a new frame was analysed.

An example of the implementation described is shown
in Fig. 8, clearly demonstrating the effects of the dynamic
model template update and ROI selection. The target object
presents complete and partial occlusion during the application
on this scenario, for which the algorithm is shown to be able
to perform a continuous tracking under such circumstances.
Besides this, frames 312 to 440 show the effects of the region
defined for updating the model template, allowing a constant
representation of the object under perspective changes, and
avoiding a continuous feature update.

The combination of the algorithms described in this paper
permits easy implementation into a UAV, allowing the user to
select any object on a video stream, to then be followed by the
tracking system. Because of this a wide range of applications
can be defined for the procedures described. These include
its incorporation with a flight controller for autonomous UAV
movements, for which the user is able to define an object

16
x1

6
32

x3
2

48
x4

8
64

x6
4

80
x8

0
96

x9
6

11
2x

11
2

12
8x

12
8

14
4x

14
4

16
0x

16
0

17
6x

17
6

19
2x

19
2

20
8x

20
8

22
4x

22
4

20

40

Bounding Box Sizes in Pixels

Fr
am

es
pe

r
se

co
nd

Fig. 7: Scatter plot expressing the resulting frequency of the
implementation with different bounding box sizes.

for the UAV to follow. Considering the results obtained on
the NVIDIA Jetson TX1 platform, this algorithm can be
implemented on-board producing reliable and real-time results.

Besides this, the tracking implementation can be incor-
porated into surveillance systems, in which the user selects
an object to be tracked across a video sequence. For this
a modification should be made to achieve tracking across
images from different sources. Knowing the position of each
camera in relationship with each other in the environment, it is
possible to create a wider view of the tracking space, allowing
continuous tracking with non-mobile video sources.

VIII. FutureWork

The feature extraction defined is applied using OpenCV,
representing a linear implementation of the Harris corners edge
detection. Therefore, one improvement to be made is to create
a parallel feature extraction to improve the performance of
the algorithm. The sliding window approach used in the Harris
corners algorithm allows easy portability for GPU calculations.
Besides this, the performance of the method defined can be
compared using different parallel feature extraction algorithms
across different scenarios. Defining the most efficient and ac-
curate implementation for template matching tracking systems.

Further improvement can be achieved by implementing fea-
ture decomposition on the template creation. This is achieved
by selecting important regions of the templates that correctly
define the target object. Increasing the application’s efficiency
as the similarity metric is implemented on smaller areas of the
templates.

In order to increase the reliability of the tracking system,
a variable bounding box needs to be incorporated to cover
the object during tracking. The algorithm described presents
a constant bounding box, which is able to keep a good
representation of the object because of the dynamism in
updating the model template. Nevertheless, a more accurate



Fig. 8: Example of application being implemented on real
tracking scenario. Frame number on video sequence estab-
lished at the bottom left of each image. Video sequence taken
by the authors.

feature extraction to define the model can be achieved by
ensuring a tightly bounded box for the object during tracking.

IX. Conclusion
The implementation presented in this paper describes an

algorithm which combines object selection and tracking. This
yields a complete program, which can be incorporated into an
UAV. The idea behind this combination is to cover the several
assumptions made by the tracking algorithm.

The segmentation algorithm proposed in this paper segments
a single object. The algorithm only examines the image within
its current bounding box estimate, allowing more complex
computation at latter stages. Increasing the overall perfor-
mance and accuracy of the segmentation process.

Regarding the tracking implementation, this paper describes
a modified template matching implementation, which presents
a dynamic template update. This algorithm is able to avoid
updating the model template on each iteration. With this, a
solution for complete and partial occlusion is presented.
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