Intermolecular Hydrogen Bonding Controlled
Intersystem Crossing Rates of Benzophenone

Ravi Kumar Venkatraman†‡, Surajit Kayal‡, Arvind Barak‡, Andrew J. Orr-Ewing†* and Siva
Umapathy#‡*.

‡Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore
560012, India

#Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore
560012, India

†School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK.

AUTHOR INFORMATION

Corresponding Authors

* Siva Umapathy. Email: umapathy@ipc.iisc.ernet.in.

* Andrew J Orr-Ewing. Email: a.orr-ewing@bristol.ac.uk
ABSTRACT: Solvation plays a critical role in various physicochemical and biological processes. Here, the rate of intersystem crossing (ISC) of benzophenone from its $S_1(n\pi^*)$ state to its triplet manifold of states is shown to be modified by hydrogen-bonding interactions with protic solvent molecules. We selectively photo-excite benzophenone with its carbonyl group either solvent coordinated or uncoordinated by tuning the excitation wavelength to the band center ($\lambda = 340$ nm) or the long-wavelength edge ($\lambda = 380$ nm) of its $\pi^*\leftrightarrow n$ absorption band. A combination of ultrafast absorption and Raman spectroscopy shows that the hydrogen bonding interaction increases the time constant for ISC from < 200 fs to 1.7 ± 0.2 ps for benzophenone in CH$_3$OH. The spectroscopic evidence suggests that the preferred pathway for ISC is from the $S_1(n\pi^*)$ to the $T_2(\pi\pi^*)$ state, with the rate of internal conversion from $T_2(\pi\pi^*)$ to $T_1(n\pi^*)$ controlled by solvent quenching of excess vibrational energy.

TOC GRAPHIC

KEYWORDS Transient absorption spectroscopy; Ultrafast Raman loss spectroscopy; Solvent effects; Kinetic isotope effect; Red-edge excitation effect; Hydrogen bonding.
Benzophenone (Bzp) serves as an archetypal molecular system for understanding the fundamental photochemistry of aromatic ketones. Both Bzp and its derivatives have been studied extensively owing to their technologically relevant applications, which include use as sunscreens, DNA photosensitizers, and photocatalysts. Ultraviolet (UV) excited benzophenone is known to undergo ultrafast conversion from singlet to triplet states, a property which is exploited in some of the above applications, but the intersystem crossing (ISC) mechanism remains the subject of experimental and computational investigations. Here, we examine how the ISC is modified by hydrogen bonding in a protic solvent.

The two lowest singlet and triplet excited states of Bzp have $n\pi^*$ and $\pi\pi^*$ character. A nanosecond time-resolved infrared spectroscopy study indicated that the minima in the potential energy surfaces of the $T_2(\pi\pi^*)$ and $S_1(n\pi^*)$ states are almost isoenergetic. Therefore, after the longest wavelength photo-excitation, hereafter referred to as band I and described as a $\pi^* \leftrightarrow n$ transition localized in the carbonyl group, two plausible pathways from the resulting $S_1(n\pi^*)$ state can populate the lowest triplet excited state, $T_1(n\pi^*)$: i) direct ISC from $S_1(n\pi^*)$ to $T_1(n\pi^*)$; or ii) an indirect process, involving ISC from $S_1(n\pi^*)$ to $T_2(\pi\pi^*)$ with subsequent internal conversion (IC) to $T_1(n\pi^*)$. The latter pathway is more efficient, according to El-Sayed’s rule, because it entails a change in the orbital character during the spin-orbit coupling mediated ISC process. Two recent ab initio molecular dynamics studies obtained contradictory results for the ISC mechanism, one favouring the indirect and other the direct pathway, highlighting the intricacies of a correct theoretical treatment. Furthermore, these simulations were carried out for isolated molecules in the gas-phase, and are therefore removed from the technological applications of Bzp photochemistry which all involve a solvent environment.
Solvent plays an active instead of a mere spectator role in various physicochemical and biological processes, with the diverse solute-solvent interactions broadly classified as non-specific or specific. A recent study of the solvatochromic behaviour of Bzp identified a linear correlation between the shifts in carbonyl stretching band vibrational frequencies observed by Raman spectroscopy and the UV band I ($\pi^* \leftrightarrow n$) electronic transition frequencies with changing solvent polarity. In protic solvents, there are two distinct solvation states, with either a hydrogen bonded (HB) or a dangling carbonyl group of Bzp, and the observed correlation is consistent with selective excitation of Bzp molecules with a dangling carbonyl at the long-wavelength side of band I. In contrast, the shorter wavelength regions of band I correspond predominantly to absorption by Bzp molecules with hydrogen-bonded carbonyl groups, with a minor contribution from excitation to higher vibronic levels of the S_1 state of Bzp with a dangling carbonyl. This interpretation has been confirmed by resonance Raman spectroscopy studies of Bzp solutions in methanol, as reported below. The longer wavelength photo-selective excitation of a distinct solvation state of Bzp is an example of a red-edge excitation effect (REEE). REEE has been explored widely using fluorescence spectroscopy methods, but we exploit it here on the $S_1 \leftrightarrow S_0$ band for Bzp in methanol to examine the photo-induced excited state dynamics using several complementary spectroscopic techniques.

The main objectives of the current study of Bzp in solution are: i) to elucidate the relative importance of the direct and indirect pathways populating the T_1 state of Bzp; and ii) to understand solvation-state selective excitation across band I and its implications for the subsequent photochemistry. To address these objectives, we have carried out a comprehensive analysis of the ultrafast dynamics of Bzp in methanol (chosen as a representative protic solvent).
using steady-state resonance Raman, femtosecond time-resolved electronic and vibrational absorption, and ultrafast Raman loss (URL) spectroscopic experiments.

Detailed descriptions of the various experimental methods adopted in this work are published elsewhere, and the supporting information provides a brief summary of these and the computational methods used. To verify that REEE applies to Bzp in methanol, we carried out resonance Raman spectroscopy experiments because they show selective enhancement of the vibrational modes coupled to the chromophore on resonant electronic excitation. Figure S1 of the supporting information shows Resonance Raman spectra of Bzp in methanol at several different excitation wavelengths across the $\pi^* \leftrightarrow n$ carbonyl band. The spectra reveal two carbonyl peaks corresponding to distinct solvation states, namely the dangling carbonyl (for excitation to longer wavelengths in band I) and the hydrogen-bonded carbonyl (to shorter excitation wavelengths). Figure 1 depicts the band I absorption spectrum (on the right ordinate) and the relative Raman intensities of HB and dangling carbonyl peaks (on the left ordinate) as a function of UV excitation wavelength. The relative intensities were obtained by taking the ratio of the integrated areas of the corresponding two peaks in the resonance Raman spectra, as shown in Figure S1. The intensity ratios were fitted to a sigmoidal function with an inflection point at $\lambda_i = (367 \pm 1)$ nm. The intensity ratio at 398 nm accounts for pre-resonant Raman contributions to the measurements and therefore serves as a baseline offset for estimating relative populations of HB to dangling carbonyl motifs for Bzp. Excitation at longer wavelengths than 367 nm preferentially excites Bzp molecules with a dangling carbonyl, whereas wavelengths below 367 nm (i.e. those in proximity to the peak wavelength, λ_{max}, of the band) favour Bzp with a hydrogen-bonded (to methanol) carbonyl. These observations can be accounted for by a
hydrogen-bond weakening mechanism for the S_1 state of Bzp in methanol, with the vibronic origin of the $S_1 \leftrightarrow S_0$ band shifted to higher energy than for Bzp with a dangling carbonyl.

Figure 1. The effect of hydrogen bonding on the electronic absorption spectrum of benzophenone in methanol. Right ordinate and solid black line: UV-Vis absorption spectrum of Bzp in CH$_3$OH. Left ordinate and solid green circles: Resonance Raman intensity ratios for hydrogen bonded carbonyl (HBC) and dangling carbonyl (DC) groups in dissolved Bzp. A sigmoidal fit to the ratio of resonance Raman intensities (dash-dotted red line) shows an inflection point at 367 nm (open white circle). The arrows depict the 340 and 380-nm excitation wavelengths chosen in the ultrafast spectroscopy experiments. The red and blue Gaussian functions at the bottom represent the FT limited spectral bandwidths (nm) of the 340 and 380 nm excitation pulses, respectively.

We first describe time-resolved electronic absorption spectroscopy (TEAS) of Bzp in methanol, using excitation wavelengths of 380 and 340 nm, as indicated in Figure 1. The Fourier transform (FT) limited bandwidths of these excitation pulses are represented by Gaussian functions in the figure. The chosen centre wavelengths will specifically excite sub-ensembles of HB and non-HB (i.e. dangling carbonyl) Bzp in methanol. Representative TEA spectra of Bzp in methanol obtained at the two excitation wavelengths are shown in Figure 2, and are characterised by two dominant features: i) a band at ~570 nm with a shoulder at ~535 nm at early times (hereafter called band A); and ii) a relatively broad band at ~530 nm, with a shoulder at ~610 nm, which
develops at later times (band B). The latter feature persists up to \(\sim 1.4\) ns, corresponding to the maximum time delay that can be achieved with our ultrafast laser setup.

Figure 2. Time-resolved electronic absorption spectra of Bzp in \(\text{CH}_3\text{OH}\) at two different excitation wavelengths (a) 340 and (b) 380 nm. The corresponding kinetics of three different components obtained from the decay associated spectra of Bzp are shown at excitation wavelengths of (c) 340 nm and (d) 380 nm. (See Figure S2 for decay associated spectra of Bzp in \(\text{CH}_3\text{OH}\)).

To investigate the different contributions to the TEA spectra, a global fitting analysis was carried out with a sequential kinetic scheme. Three different components were obtained for both
excitation wavelengths, as shown in Figure S2. The components are assigned as: i) the S\textsubscript{1} state prepared directly by absorption at the UV laser wavelength; ii) an intermediate excited state species denoted I*; and iii) the long-lived T\textsubscript{1} state. The assignments of features to the S\textsubscript{1} and T\textsubscript{1} states are based on band positions and kinetic behaviour reported in previous publications,2,11-14,22 and will be discussed further below.

For 340 nm excitation [see Figure 2(c)], the S\textsubscript{1} state population decays exponentially to the intermediate with a lifetime of 1.70 ± 0.15 ps, and this intermediate species subsequently decays to the T\textsubscript{1} state with a time constant of 11.7 ± 0.3 ps. In contrast, for 380 nm excitation [see Figure 2(d)], the intermediate grows within the instrument response function i.e. < 0.2 ps [see inset in Figure (2d)] and decays to the T\textsubscript{1} state with a time constant of 11.2 ± 0.2 ps. To confirm that the observed kinetic differences are not due to excess energy deposited in the Franck-Condon modes by the shorter-wavelength pump pulse, we also carried out TEA spectroscopy of Bzp in aprotic dipolar (acetonitrile) and non-dipolar (n-hexane) solvents at different excitation wavelengths. In all cases, the observed kinetics were similar to those for the 380 nm excitation in MeOH (see Table S1), and were found to be independent of excitation wavelength. Since absorption at longer and shorter wavelengths in band I of Bzp in MeOH corresponds to preferential excitation of the dangling and the HB carbonyl structures, respectively, we attribute the slower early time response for 340 nm excitation to HB interactions. To explore this hypothesis further, we compared TEA spectra for Bzp in CH\textsubscript{3}OH and CD\textsubscript{3}OD solvents following excitation at 340 nm.

The time constants obtained with different solvent isotopologues at 340 and 380 nm excitation wavelengths are reported in Table 1. The change of solvent from CH\textsubscript{3}OH to CD\textsubscript{3}OD has greater influence on the faster component of the sequential kinetics, with no significant effect on the slower component (see also Figure S3). In the classical limit (h\textsubscript{HB}v < k\textsubscript{B}T), the kinetic isotopic
effect $\frac{k_H}{k_D}$ is approximately the inverse ratio of the square roots of the effective masses of the atoms involved in the reaction coordinate,44 in this case the H/D-atom of the HB. The observed kinetic isotope effect was obtained to be 1.48 ± 0.22, in accord with this estimation. The rise times of band B in CH$_3$OH and CD$_3$OD solvents are independent of solvent isotopologue within the uncertainties. The HB motion therefore appears to be a critical reaction coordinate bottleneck for the first step in the relaxation of the S$_1$ state of Bzp.

Table 1. Time Constants from TEAS Measurements for Bzp in Methanol and Methanol-d_4 at Different Excitation Wavelengths.

<table>
<thead>
<tr>
<th>Excitation wavelength (nm)</th>
<th>Solvent</th>
<th>Time constant (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>τ_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>τ_2</td>
</tr>
<tr>
<td>340</td>
<td>CH$_3$OH</td>
<td>1.70 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>CD$_3$OD</td>
<td>2.52 ± 0.16</td>
</tr>
<tr>
<td>380</td>
<td>CH$_3$OH</td>
<td>< 0.2</td>
</tr>
<tr>
<td></td>
<td>CD$_3$OD</td>
<td>< 0.2</td>
</tr>
</tbody>
</table>

To investigate further the photochemical dynamics of Bzp, we performed time-resolved vibrational absorption spectroscopy (TVAS) measurements of Bzp in CD$_3$OD (chosen for its IR transparency at the mid-IR probe wavelengths of interest). Figure 3(a) depicts the TVA spectra of Bzp in CD$_3$OD for 340 nm excitation. The prominent peaks at 1470 and 1158 cm$^{-1}$ (marked by asterisks) are assigned in part to the ring C-H rocking mode and ring C-H scissoring modes in the S$_1$ state, on the basis of time-dependent density functional theory (TD-DFT) calculations at the B3LYP/cc-pVTZ level of theory (see the Supporting Information). Further peaks at 1555 and
Figure 3. (a) Time-resolved vibrational absorption spectra of Bzp in CD$_3$OD after 340-nm excitation. The arrows indicate isosbestic points, and the inset color key identifies the time delays (in ps) at which each spectrum was obtained. The time-dependent integrated band intensities of the prominent peaks centered at 1470 and 1158 cm$^{-1}$, and indicated by asterisks in (a), are shown at excitation wavelengths of 340 nm in panels (b) and (d), and 380 nm in panels (c) and (e). The insets show expanded views at early time delays. Solid lines are bi-exponential fits.
1158 cm\(^{-1}\) are also assigned to the S\(_1\) state.

The arrows in Figure 3(a) indicate isosbestic points observed between different vibrational features, suggesting transformation from one species to another. The peak at 1517 cm\(^{-1}\) is assigned to the T\(_1\) state because of its long lifetimes (> 1.4 ns), as shown in Fig S5. This assignment is supported by a previous nanosecond time-resolved IR spectroscopic study of Bzp\(^{22}\) and is further corroborated by TD-DFT calculations. These calculations also suggest that the weak peaks at 1474 and 1167 cm\(^{-1}\) observed at longer times delays derive from the T\(_1\) state. Table S2 provides a summary of various vibrational peaks observed from TVAS experiments and their assignments based on TD-DFT calculations.

Comparison of the early time curvatures of the time-dependent integrated band intensities in the insets to Figures 3(b) and (c) suggests subtly different kinetics of the 1470 cm\(^{-1}\) peak at the two excitation wavelengths of 340 and 380 nm. These differences are also apparent in the corresponding time-dependent data for the 1158 cm\(^{-1}\) peak, as seen in the insets to Figures 3(d) and (e). The evolving band intensities were fitted to bi-exponential functions (see equation S1 of the Supporting Information), and the amplitudes and time constants obtained from the fitting are reported in Table S3. At 340 nm, the fits for the 1470 cm\(^{-1}\) peak data revealed an early rise (with time constant 2.51 ± 0.13 ps) and a later decay (12.1 ± 0.3 ps) which match the corresponding time constants obtained by TEAS for Bzp in CD\(_3\)OD. At 380 nm, an initial instrument response function limited rise (< 0.2 ps) and decay kinetics with time constant 11.0 ± 0.3 ps were obtained, again in accord with TEAS measurements. The time dependences of the 1158 cm\(^{-1}\) feature at the two excitation wavelengths agree with those of the 1470 cm\(^{-1}\) band, as is shown in Figures 3 (d) and (e) and Table S3. The kinetics of other vibrational features are displayed in Figure S5. The negative signals in the transient spectra match the positions of absorption bands
in the steady-state state FTIR spectrum of Bzp in CD$_3$OD and are therefore assigned to the
ground state bleach. They show no recovery within 1.4 ns because of the high quantum yield and
long lifetime of the T$_1$ state.

Two possible mechanisms could plausibly account for the early time rises in the bands centered
at 1470 and 1158 cm$^{-1}$, and the corresponding kinetics observed by TEAS following 340 nm
excitation. The first possibility is vibrational cooling in the S$_1$ state, followed by ISC to the T$_1$
state (a direct mechanism), and the second is motion of an initially formed wave packet from the
Franck-Condon region to an intermediate state (denoted I* in Fig 2, argued later to be the T$_2$
state), followed by relaxation to the T$_1$ state (an indirect mechanism). The first hypothesis is
questionable because the kinetics of Bzp ISC in aprotic solvents are independent of excitation
wavelength, and hence vibrational cooling of S$_1$ (see Table S1). The second interpretation is
supported by the decomposition of the TEA spectra, but requires vibrational absorption bands of
the I* intermediate to contribute to the TVA spectra at 1470 and 1158 cm$^{-1}$ (a reasonable
argument for strongly mixed S$_1$ and I* states). On the basis of recently reported calculations for
Bzp photochemical dynamics,19 and arguments presented below, the most likely assignment of
the intermediate is to the T$_2$(ππ*) state.

The S$_1$/T$_1$(nπ*), and the T$_2$(ππ*) states of Bzp33 and similar aromatic ketones$^{31-32, 42, 45}$ undergo
HB weakening and strengthening, respectively, compared to the ground state (S$_0$). Hydrogen
bonding destabilizes the S$_1$ state, and photo-excitation of Bzp with an HB carbonyl to the S$_1$ state
will induce reorganization along the HB carbonyl solvation coordinate. The different HB
responses of the S$_1$ and T$_2$ state energies initially push these states apart, but affect the S$_1$ and T$_1$
state energies in a similar fashion. Thus, the observed solvent kinetic isotope effect supports the
proposition that \(I^* \) has \(T_2(\pi\pi^*) \) character because HB reorganization is required to bring the \(S_1(n\pi^*) \) and the \(T_2(\pi\pi^*) \) states closer to degeneracy to facilitate the ISC.

Figure 4. Schematic representation of photo-selective excitation of distinct solvation states, corresponding to Bzp with dangling and HB carbonyl groups at 380 and 340 nm respectively, and their associated dynamics. See the main text for further details.

This picture of dynamic solvation effects requires a two-dimensional reaction coordinate for the ISC mechanism of Bzp: one coordinate lies along the intramolecular ISC pathway from \(S_1 \) to the triplet manifold, and the second involves the solvent coordinate, as shown schematically in Figure 4. After 380-nm photo-excitation of Bzp with a dangling carbonyl to the \(S_1(n\pi^*) \) state, the
initial wave packet evolves rapidly from the Franck-Condon region to a crossing with the T\textsubscript{2} state along an almost barrierless pathway, with ISC induced by spin-orbit coupling.44 In contrast, intermolecular HB reorganization acts as a bottleneck for the excited state dynamics of Bzp with an HB carbonyl selected by 340-nm excitation, as underpinned by our measured solvent kinetic isotope effects.

Accordingly, we can explain our observations in terms of the indirect pathway for T\textsubscript{1} population, invoking the T\textsubscript{2}(\pi\pi*) state as an intermediate before relaxation to the T\textsubscript{1} state. This interpretation does not rule out the possibility for a direct S\textsubscript{1} \rightarrow T\textsubscript{1} contribution, but the indirect mechanism is further substantiated by a recent \textit{ab initio} molecular dynamics simulation of Bzp in the gas phase.19

\textbf{Table 2.} Time Constants from URLS Measurements for Changes to the 992 cm-1 Band of the T\textsubscript{1} State of Bzp in Methanol after 340-nm Excitation.

Time constant (ps)	\\ \\
\(\tau_{1}\)	\\ \\
Peak intensity	12.6 ± 1.0
Peak position	14.9 ± 2.1

The slower component of the kinetics, observed for both excitation wavelengths, is assigned to internal conversion between the triplet states. It is at first sight surprising that the T\textsubscript{2} \rightarrow T\textsubscript{1} IC, which occurs with a time constant of \(~ 11\) ps, is slower by an order of magnitude than the ISC rate. However, similar timescales have been reported for IC between the triplet states of various aromatic ketones,45-47 and attributed either to thermal45-46 or kinetic19 equilibrium. For Bzp in solution, we propose that the IC rate will be dictated by the vibrational energy transfer rate to the solvent, which quenches the rapid exchange between the T\textsubscript{2} and T\textsubscript{1} states by relaxation to the
minimum on the T\textsubscript{1} state. We therefore performed additional ultrafast Raman loss spectroscopy (URLS) measurements to determine the VET timescale. The URL spectra and kinetics profiles obtained from band intensities and center positions for the ring breathing vibrational mode in the T\textsubscript{1} state of Bzp (at 992 cm-1) are shown in Figures S6 and S7. The various time constants obtained from the URL spectra are summarized in Table 2. The observed shift of the peak of the 992 cm-1 band is characteristic of VET to a solvent,48 and the kinetics indicate that the T\textsubscript{2} \rightarrow T\textsubscript{1} IC is indeed controlled by loss of the excess vibrational energy in the T\textsubscript{1} state to the solvent environment. The supporting information provides a more detailed discussion.

In summary, we report observation of photo-selective excitation of sub-ensembles of different solvation states of Bzp in methanol, corresponding to either dangling or hydrogen bonded carbonyl groups, by exciting to longer or shorter wavelength in the Bzp $\pi^* \leftarrow n$ electronic excitation band. This photo-selectivity is corroborated by resonance Raman spectroscopy. The S\textsubscript{1}(nπ*) and T\textsubscript{2}(ππ*) states exhibit HB weakening and strengthening mechanisms, respectively, and the hydrogen-bonding solvation coordinate therefore influences the S\textsubscript{1} \rightarrow T\textsubscript{2} ISC rate. We determine the ISC time constants for Bzp in CH\textsubscript{3}OH with dangling and HB carbonyl groups to be < 0.2 and 1.7 ps, respectively. The build-up of the T\textsubscript{1} state population by IC from the T\textsubscript{2} state is slower, with a time constant of ~11 ps because VET from vibrationally hot T\textsubscript{1} levels to the solvent environment is required to quench the kinetic equilibrium between the T\textsubscript{2} and T\textsubscript{1} state populations. The VET to the solvent is revealed directly by ultrafast Raman loss spectroscopy. These findings indicate the pathway to the T\textsubscript{1} state passes mostly through an intermediate with T\textsubscript{2}(ππ*) character, with a rate which is influenced by the micro-solvation environment of the Bzp. The solvent-modified excited state dynamics are significant for the photochemical pathways followed in diverse applications of Bzp. Moreover, the conclusions from this study are
expected to extend to the photochemical properties of other aromatic ketone compounds, and wider classes of molecules with carbonyl functionality.

ASSOCIATED CONTENT

Supporting Information.
The following content is available free of charge. Experimental and Computational Methods. Resonance Raman spectra of Bzp in methanol at various excitation wavelengths. Decay associated spectra of Bzp in methanol at two different excitation wavelengths. Excitation wavelength dependence of time constants from TEAS measurements of Bzp in aprotic solvents. Solvent isotopic effect on the rate of Bzp dynamics. Time resolved vibrational absorption spectra of Bzp in CD₃OD. Vibrational assignments of peaks observed in TVAS experiments. Fits of TVAS peaks at 1470 and 1158 cm⁻¹ to a bi-exponential model. Kinetics of various vibrational peaks observed in TVAS experiments. Kinetics of the ring breathing mode of Bzp in the T₁ state obtained from URLS experiments. Kinetics of population dynamics of the T₁ state and the vibrational energy transfer rate to the solvent obtained from URLS measurements. Further text description of ultrafast Raman loss spectroscopy investigation of vibrational energy transfer rate from the hot T₁ state of Bzp to the solvent.

All experimental data are archived in the University of Bristol’s Research Data Storage Facility (DOI: https://doi.org/10.5523/bris.3n569v5dlhhm020vksoudxclw2m)

AUTHOR INFORMATION
The authors declare no competing financial interests.
ACKNOWLEDGMENT

The Bristol laboratory was established with funding from ERC Advanced Grant 290966 CAPRI, and RKV acknowledges the Royal Society (London, UK) and the SERB (India) for award of a SERB-Royal Society Newton International Fellowship. We thank Philip Coulter (University of Bristol) for help with the experiments and for valuable discussions. SK and AB acknowledge the Council of Scientific and Industrial Research (CSIR) for a research fellowship. SU acknowledges the Defence Research and Development Organisation (DRDO) for financial assistance and the Department of Science and Technology (DST) for a J.C. Bose Fellowship.

REFERENCES

