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1. Introduction

As the most abundant natural polymer 
worldwide,[1�4] cellulose has numerous 
advantages, including low cost, sustain-
ability, renewability, biocompatibility, and 
biodegradability.[5] It is however not used 
in large-scale industrial composite applica-
tions because it cannot be melt-processed 
and is insoluble in nearly all aqueous and 
organic solvents.[6] This insolubility is due 
to its complex intra- and intermolecular 
hydrogen bonding network[7,8] and, pos-
sibly, hydrophobic interactions.[9,10] The 
use of traditional aromatic and halo-
genated solvents for cellulose has been 
reduced noticeably in organic synthesis 
and industrial chemical processes due to 
their safety requirements.[11] Ionic liquids 
(ILs) are considered as a new class of sol-
vents for cellulose due to their chemical 
and thermal stabilities,[12,13] reusability,[14] 
and dissolution performance.[15�19] A 

speci�c IL, 1-ethyl-3-methylimidazolium diethyl phosphate 
(EMImDEP), has been selected as a solvent in this study due 
to its numerous advantages, including low melting point,[20,21] 
high hydrogen bond acceptor capability,[22] as well as its com-
paratively low viscosity (284 cP at 40 �C).[23] These properties 
of EMImDEP can enhance the �ber spinning process in order 
to produce high-performance cellulose �bers,[24] despite some 
moderate hazards including acute toxicity (e.g., oral, dermal, 
and inhalation), skin irritation and sensitization, as well as spe-
ci�c targeted organ toxicity under a single exposure.Dimethyl 
sulfoxide (DMSO) is a low-cost, nontoxic polar aprotic sol-
vent, which is miscible in a wide range of solvents including 
ILs.[6,25,26] Working as a co-solvent with an IL, it can reduce 
the dissolution time, and temperature (T),[27] as well as the 
viscosity of cellulose solutions without precipitation,[25] thus 
improving dissolution.[6,26] The addition of DMSO can improve 
the breakdown of the ionic association of EMIm�DEP� by sol-
vation of the cation EMIm� and anion DEP�.[28] The more the 
ions are dissociated, the more active EMIm� and DEP-ions 
are available to deconstruct the hydrogen bonding network of 
cellulose, while also forming new hydrogen bonds with cellu-
lose[6,7,26,29�34] thus improving its dissolution.[35] Moreover, with 
the addition of low-cost DMSO, the expense of the cellulose 

Fibers

There is a need to develop high-performance cellulose �bers as sustainable 
replacements for glass �bers, and as alternative precursors for carbon �laments. 
Traditional �ber spinning uses toxic solvents, but in this study, by using dime-
thyl sulfoxide (DMSO) as a co-solvent with an ionic liquid, a novel high-perfor-
mance �ber with exceptional mechanical properties is produced. This involves 
a one-step dissolution, and cost-effective route to convert high concentrations 
of low molecular weight microcrystalline cellulose into high stiffness cellulose 
�bers. As the cellulose concentration increases from 20.8 to 23.6 wt%, strong 
optically anisotropic patterns appear for cellulose solutions, and the clearing 
temperature (Tc) increases from �100 �C to above 105 �C. Highly aligned, stiff 
cellulose �bers are dry-jet wet spun from 20.8 and 23.6 wt% cellulose/1-ethyl-
3-methylimidazolium diethyl phosphate/DMSO solutions, with a Young�s 
modulus of up to �41 GPa. The signi�cant alignment of cellulose chains along 
the �ber axis is con�rmed by scanning electron microscopy, wide-angle X-ray 
diffraction, and powder X-ray diffraction. This process presents a new route to 
convert high concentrations of low molecular weight cellulose into high stiff-
ness �bers, while signi�cantly reducing the processing time and cost.
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solvent can be signi�cantly decreased due to a reduced quan-
tity of EMImDEP (currently �50 times more expensive per 
liter) required for dissolution.

2. Results and Discussion
In this study, stiff cellulose �bers were manufactured from 
optically anisotropic solutions by dissolving low molecular 
weight microcrystalline cellulose (degree of polymerization � 
200�220;[36,37] molecular weight equivalent �75 240 g mol�1), 
which is usually used for low mechanical property applications 
(medical tablets, foodstuffs, etc.). Critically, we use DMSO as 
a co-solvent with EMImDEP to achieve this, generating a new 
approach to dissolution and the formation of high-performance 
�bers.

To compare the cellulose dissolving capability, Kamlet�Taft 
parameters of EMImDEP/DMSO mixtures with different 
ratios were investigated at 10�70 �C (Figure 1; Figure S1,  
Supporting Information). The two essential characteris-
tics required to improve the dissolution of cellulose are the 
increased hydrogen bond accepting ability (�) and decreased 
hydrogen bond donating ability (�). As a reasonable empirical 
descriptor, net basicity (� ��� as a function of �)[38�40] at 70 �C 
(the closest T to our dissolution T) was investigated with �tting 
accuracy as shown in Figure 1, indicating a best mass fraction 
of EMImDEP/DMSO � 7:3 (Figure 1). The concentrations of 
microcrystalline cellulose (20.8 and 23.6 wt%) were optimized 
to achieve optically anisotropic solutions contributing to the 
alignment of cellulose chains. Similarly, multiple �ber extru-
sion/winding draw ratios (DR � 3.5, 4.0, 4.5, and 5.0) were 
used to further improve this alignment during the dry-jet wet 
spinning of our stiff cellulose �bers. This study presents a con-
trollable and cost-effective route to produce high-performance 
engineering cellulose �bers using an IL/co-solvent system.

The 20.8 and 23.6 wt% cellulose solutions were observed 
using a polarized optical microscope at various temperatures 

(T � 25�105 �C) to investigate their anisotropic behavior 
(Figure S2, Supporting Information). For both solutions, strong 
optical planar textures were observed, which are typical signa-
tures of anisotropy. These were observed at 25 �C and dimin-
ished gradually as T increased. The diminishing textures indicate 
the nematic cellulose solutions approach to an isotropic transi-
tion, which is attributed to the reduced resistance (generated 
by shear viscosity) on the orientation of cellulose chains to the 
migration into a random state.[7,24,41] The anisotropy pattern 
�nally disappeared at a clearing temperature (Tc)[42] of 100 �C 
for the 20.8 wt% solution (Figure S2, Supporting Informa-
tion). However, it remained strong at 105 �C for the 23.6 wt% 
solution (Figure 2a), which is higher than has been previously 
reported,[24,42,43] indicating better self-accessibility of cellulose 
chains dispersed in EMImDEP. The difference in Tc for cellulose 
solutions also suggests that during the �ber spinning process 
at 100 �C in this study, the 20.8 wt% �bers were produced from 
isotropic solutions, while the 23.6 wt% �bers were produced 
from an anisotropic solution. That could explain the signi�cantly 
higher mechanical properties of �bers produced at 23.6 wt% cel-
lulose compared to those produced at 20.8 wt%.

When the cellulose/EMImDEP/DMSO solution is extruded 
through the nozzle during �ber spinning, a predominantly 
shear-free uniaxial extensional �ow and a shear �ow occur 
simultaneously within the spin-line of the solution dope before 
entering the coagulation bath. A rheological study in shear is 
the simplest method to reveal the properties of the �ber spin-
ning solution,[47] as well as helping to improve the �ow rate 
control in a �ber manufacturing process.[48] The steady shear 
viscosity (�) curves as a function of the shear rate (�) are shown 
in Figure 2b for 20.8 and 23.6 wt% cellulose/EMImDEP/DMSO 
solutions. The shapes of both curves are typical for polymer 
solutions, with a Newtonian region at low shear rates and a 
reducing viscosity with an increasing shear rate. The values of 
zero-shear viscosity were found to be 39.2 and 72.8 Pa s for the 
20.8 and 23.6 wt% solutions, respectively.

Scanning electron microscope (SEM) images were taken 
to examin the cross sections (perpendicular to the �ber axis) 
and the outer surfaces of the cellulose �bers (Figure 2e and 
Figure 3; Figure S5, Supporting Information). Smooth outer sur-
faces were observed for 20.8 wt% �bers (Figure 3a(1),(2)), while 
striations along the �ber lengths were observed for 23.6 wt% 
�bers, especially at high DR (Figure 3a(3),(4); Figure S5,  
Supporting Information). These striations could be an indica-
tion that orientation of the �laments occurred, producing a 
�brillar morphology; this can be modulated by varying the cel-
lulose concentration and DR.[49] The striations on the surface of 
the 23.6 wt% �ber could potentially contribute to their physical 
bonding with resins in composite materials. All cross sections 
appear to be circular (Figure 3b) without any visible large-
sized voids (Figure 3c). Surrounded by a thin skin of material 
(Figure 3c), the core structures throughout the cross sections 
appear uniform and independent of the blend ratio of cellulose 
and EMImDEP/DMSO (Figure 3b), indicating their compat-
ibility. This compatibility could crucially contribute to the full 
stretching of macromolecular cellulose chains in the �bers; 
increasing the number of hydrogen bonds between cellulose 
and water during coagulation, while restraining the diffusion 
velocity of water to generate uniform �ber structures.[50�52] The 
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Figure 1. Net-basicity � �� � plotted against � for EMImDEP/DMSO  
solvent mixtures with various DMSO ratios (0, 10%, 30%, 50%, 70%, 
90%, and 100%) at 70 �C. Error bars are determined from �ts to the 
underlying data.
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Figure 2. a) Typical polarized optical microscopic images of 23.6 wt% cellulose/EMImDEP/DMSO solutions at T � 25�105 �C. b) Viscosity �ow curves 
for 20.8 and 23.6 wt% cellulose/EMImDEP/DMSO solutions at 100 �C. c) Typical tensile stress�strain curves of 20.8 and 23.6 wt% cellulose �bers 
produced using different draw ratios (DR) (3.5, 4.0, 4.5, and 5.0). d) Young�s modulus (E), speci�c Young�s modulus (Es), breaking stress (�*f), and 
breaking strain (�*f) of 20.8 wt% (DR � 4.0) and 23.6 wt% cellulose �bers (DR � 5.0) compared to our previously produced 18.0 wt% cellulose �bers 
(DR � 5.3), commercial cellulose �bers and E-glass. e) Morphology of outer surfaces, cross sections, and cross sections under higher SEM magni�ca-
tion of 23.6 wt% cellulose �bers (DR � 5.0). f) Wide-angle X-ray diffraction (WAXD) patterns of 23.6 wt% cellulose �bers (DR � 5.0). g) WAXD radial 
data for 23.6 wt% cellulose �bers (DR � 3.5, 4.0, 4.5, and 5.0). h) Powder X-ray diffraction (XRD) spectra highlighting crystalline diffraction peaks (110),  
(110), and (200) and the amorphous phase of 23.6 wt% cellulose �bers (DR � 4.5).








