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Quantification of the Effect of Array Element
Pitch on Imaging Performance

Paul D. Wilcox and Jie Zhang

Abstract� This paper investigates how the pitch of elements
in periodic ultrasonic arrays is related to their imaging perfor-
mance, with particular emphasis on imaging artifacts (grating
lobes) arising from discrete spatial sampling. Although the
classical Nyquist rules for array element pitch are well known,
they only provide the limiting condition needed to eliminate
grating lobes from an array with an in�nitely large aperture at a
single frequency. Physical arrays have �nite-sized apertures and
most applications employ broadband pulses. For these reasons,
grating lobe artifacts are always present at some level, and
practical array design is, therefore, based on suppressing grating
lobe artifacts to a level appropriate to a given application. In this
paper, a theoretical framework is developed that enables the point
spread function of a periodic imaging array to be decomposed
into the sum of contributions from a main lobe and different
orders of grating lobes, thus allowing grating lobe artifacts to
be unambiguously quanti�ed. Numerical simulations are used to
analyze the performance of 1-D linear arrays in both far-�eld
(steering only) and near-�eld (focusing only) scenarios, and design
guidelines are deduced. It is shown that in general, the classical
Nyquist rules are overly conservative and that the pitch of
an array can be increased without signi�cantly compromising
image quality, provided that certain constraints on ray angles are
implemented in the imaging algorithm. Experimental examples
are shown that illustrate the practical application to arrays in
two con�gurations.

Index Terms� Nondestructive testing, ultrasonic transducer
arrays, ultrasonic imaging.

I. INTRODUCTION

ULTRASONIC arrays are widely used in medical [1]–[3]
and nondestructive testing (NDE) [4]–[9] applications.

They can be used simply as a tool for translating an ultrasonic
aperture over a target or to perform dynamic steering and/or
focusing of an ultrasonic beam. However, for periodic arrays,
including the ubiquitous 1-D linear array, there is a lack
of quantitative understanding of the effect of array element
width and pitch. The concept that the element pitch should
satisfy some rules to avoid the appearance of imaging artifacts
(grating lobes) is well known but the interpretation of such
rules is unclear and frequently violated without significantly
deleterious effects. For example, the “half-wavelength rule”
[10] for the upper limit on element pitch is the logical
extension of Nyquist sampling theory to the spatial domain.
However, this rule is often not adhered to even at the ultrasonic
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wavelength at the center frequency of an array, let alone at the
upper limit of the array bandwidth. The objective of this paper
is to quantitatively relate the array element pitch to the quality
of image obtained and hence determine appropriate rules for
specifying array element pitch in practical applications.

There are two drawbacks of using overly conservative
array element pitch. First, there is the physical challenge of
manufacturing array elements of the necessary size. Second,
an increased number of elements is required to populate
a given size of spatial aperture and this brings attendant
problems of physical connectivity and data throughput. Both
problems are especially acute for 2-D arrays.

In this paper, the imaging performance of periodic arrays
is quantitatively analyzed. In Section II, a general model is
developed that enables the point spread function (PSF) of an
array to be written as a sum over contributions due to the
main lobe and different orders of grating lobe. Expressions
are derived for both far-field and near-field operations. In the
special case of far-field, single-frequency operation, it is shown
how the analysis relates to classical rules that predict whether
grating lobe peaks exist and their position if they do exist.
However, even in this case, effects such as the finite size of
array aperture, the angular extent of the imaging region, and
the nonuniform directivity of array elements mean that actual
amplitude of grating lobe artifacts observed is considerably
more complicated. In Section III, the models developed in the
previous section are used to perform numerical simulations to
quantify the imaging performance of arrays in both far-field
and near-field operations. In the case of the latter, an imag-
ing algorithm is considered where focusing is performed in
transmission and reception over a specified aperture angle
range, as conclusions from this case yield important insights
that can be readily extended to other cases. The simulations
allow quantitative design guidelines to be elucidated that relate
element pitch to the amplitude of grating lobe artifacts and
(in the case of near-field operation) imaging resolution. The
application of the design guidelines to real experimental data
in two practical scenarios is presented in Section IV.

II. THEORETICAL DEVELOPMENT

The purpose of the theoretical development presented here
is to obtain an expression for the PSF of a periodic array in
a form that enables artifacts in the PSF due to spatial under-
sampling to be explicitly identified.

In general, to obtain a PSF, it is necessary to model the
process of elastic wave excitation, detection, and scattering
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in an unbounded, homogenous isotropic medium containing a
single point target. The necessary modeling could be achieved
using any suitable direct numerical simulation technique
(e.g., finite elements or finite difference methods). How-
ever, even packages such as k-wave [11], POGO [12], and
PZ-Flex [13], [14] that are optimized for wave propagation
simulations are extremely computationally expensive, and for
the simple problem at hand, they are unnecessary. More suit-
able are programs such as field II [15] and FOCUS [16], [17]
which are designed to predict ultrasonic fields and scattering
from targets in otherwise homogeneous media. Field II uses
the concept of one-way spatial impulse response developed
by Tupholme [18] and Stepanishen [19] in conjunction with
reciprocity and convolution to determine the overall response
of a transducer to a point target when it is excited with
a particular input signal. FOCUS uses either the fast near-
field method or the angular spectrum method to calculate
the pressure field from single transducers and phased arrays.
However, while these are essential tools for the design of
arrays and imaging algorithms for specific applications, they
do not allow the separation of grating lobe artifacts from other
imaging artifacts and this motivates the method described in
this section.

As far as possible, the method is developed using a gen-
eral vector notation that is applicable to either a 2-D wave
scattering model describing the operation of a periodic 1-D
linear array, or a 3-D wave scattering model describing the
operation of a periodic 2-D array. For clarity, the latter case
will be described, with any specialization necessary for the
2-D case noted where appropriate.

A. General Framework

Consider a planar periodic array with a total of N identi-
cal elements that is operating into a homogeneous isotropic
medium as shown in Fig. 1(a). The medium may be either
solid or fluid; in both cases, only a single-wave mode in the
medium is considered. The array elements are assumed to be
reciprocal, in that they have the same angular sensitivity in
both transmission and reception. The normal to the plane of
the array is denoted by the unit vector �n. Unit vectors �p1 and
�p2 are the lattice vector directions, and p1 and p2 are the
element pitches in the lattice vector directions.

In its most primitive form, the final electrical output from
an array can be represented as a matrix of the time, t ,
domain responses from each possible transmit–receive element
combination fi j (t) or its frequency, �, domain equivalent
Fij (�). Here, the subscripts i = 1, . . . , N and j = 1, . . . , N
are the indices of the transmitter and receiver elements in the
array, respectively. In the NDE community, it is increasingly
common to experimentally acquire fi j (t) directly, a process
referred to as full matrix capture (FMC), and perform all
imaging in postprocessing. In medical imaging, differential
movement within the target over the timescale of acquisi-
tion precludes FMC in many cases. Whether FMC is per-
formed or not, fi j (t) provides the fundamental data from
which all other data can be derived (assuming linearity of the
ultrasonic field in the medium). It will be assumed here that

Fig. 1. Vector notation used in the theoretical framework for (a) near field
and (b) far field.

fi j (t) is analytic (i.e., it comprises both the real physically
recorded data and an imaginary component in quadrature as
obtained through the Hilbert transform). With this in mind,
the output of most linear imaging algorithms can be written
in the following time-domain form

I (r) =
N�

i=1

N�

j=1

fi j (�i j (r))ai j (r) (1)

where |I (r)| is the image amplitude at position r, and �i j (r)
and ai j (r) are the time delay and amplitude weighting that
describe the imaging algorithm. Note that because fi j (t)
are analytic functions, the underlying image quantity I (r) is
also complex valued, but its magnitude |I (r)| is a positive,
real-valued envelope suitable for display and interpretation.
Imaging algorithms that cannot be described in this form are
those in which multiple values at different points in time from
the same fi j (t) contribute to the same image point (as is
the case when multiple plane-wave excitations are used [9])
and algorithms where one or both of �i j (r) and ai j (r) are
frequency dependent. Both of these additional possibilities for
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linear imaging can be accommodated if (1) is instead written
in the frequency domain

I (r) =
� N�

i=1

N�

j=1

Fij (�)Aij (r;�)d� (2)

where the imaging algorithm is now encapsulated in the
complex coefficient Aij (�; r). For the subset of linear imaging
algorithms that can be expressed in the time domain by (1),
the associated frequency-domain coefficient Aij (r;�) =
ai j (r) exp[i��i j (r)].

Consideration is now confined to the most common type of
imaging algorithms where the same transmit and receive focal
laws are used. This implies that Aij (r;�) � Ai (r;�)A j (r;�).
For single scattering that can be described by a scalar function,
the PSF can be used to assess the performance of the array and
imaging algorithm. The PSF, P(r, q), is the image, I (r), that
results from an isolated, omni-directional point target (i.e., a
target that scatters equally in all directions for all directions of
incident wave) at position q. The scattering coefficient of the
target is unity. Although the scattering of elastic waves (even
in the single-scattering regime) cannot strictly be described by
a scalar function, the PSF remains a useful tool for assessing
imaging performance.

To predict the PSF, an expression is needed for the FMC
data, Fij (q;�), resulting from an isolated point target at q.
The incident ultrasonic displacement field at q due to point
excitation at a position u on the surface of the array is denoted
by G(u � q;�), which can be loosely described as Green’s
function of the system. This has the form

G(x; �) = D0(�x; �)
1

(k|x|)�
exp(�ik|x|) (3)

where D0(�x; �) describes the directivity of a point source on
the surface of the array (throughout this paper, a circumflex
accent over a vector denotes a unit vector in the same
direction, e.g., �x = x/|x|), and k = �/c is wavenumber
where c is the speed of sound in the medium. For a fluid,
D0(�x; �) is independent of direction. For an elastic half
space (the most relevant for direct-contact NDE applications),
exact expressions for D0(�x; �) for both longitudinal and shear
waves exist [20]; however, a reasonable approximation for
the longitudinal wave radiation pattern in an elastic solid is
a simple cosine dependence on angle, i.e., D0(�x; �) = �x × �n.
� describes the rate of reduction in amplitude due to beam
spreading and is equal to 0.5 in 2-D and 1 in 3-D. The point
scatterer at q may be regarded as a secondary source; the
response to which at position v on the surface of the array
is also given (by reciprocity) as G(v � q; �). The incident
ultrasonic displacement field at q due to excitation by the i th
array element is obtained by integrating G(u � q; �) over
u � �i , where �i is the area of the i th element. Similarly,
the response of the j th receiving element is obtained by
integrating G(v � q; �) over v � � j , enabling the FMC data
for a point target at q to be written as

Fij (q;�) = F0(�)
�

�i

G(u � q; �)du ×
�

�j

G(v � q; �)dv

(4)

where F0(�) is a function that encapsulates the combined
effects of the frequency spectrum of the time-domain electrical
signal sent to a transmitting array element, together with the
frequency response of the transmitting and receiving elements.
Substitution in (2) enables the PSF to be written as

P(r, q) =
�

F0(�)

�
N�

i=1

Ai (r; �)
�

�i

G(u � q; �)du

�2

d�.

(5)

Let ui be the position of the center of the i th array element
as shown in Fig. 1 and let the elements in the array have
identical shapes so �i = �+ui . The substitutions u�

i = u�ui

and qi = q � ui are made in the integral over the element
(so du = du�

i and G(u � q; �) = G(u�
i � qi; �) and the area

of integration becomes �). In practice, the imaging region of
practical interest for an array, while not in the far field of the
whole array, is almost invariably in the far field of individual
elements. Hence, |qi| � |u�

i| and G(u�
i � qi; �) may be

replaced by the far-field approximation [21]

G
�
u�

i � qi; �
� �= D0( �qi; �)

1

(k|qi|)�

× exp(�ik|qi|) exp
�
ik �qi × u�

i
�
. (6)

The integration over the area of an element yields the far-
field element response

�

�i

G(u � q;�)du =
�

�
G

�
u�

i � qi; �
�
du�

i

= D( �qi; �)B(qi; �) exp(�ik|qi|) (7)

where D( �qi; �) and B(qi; �) describe, respectively, the overall
directivity of an element and loss in amplitude due to beam
spreading

D( �qi; �) = D0( �qi; �)
�

�
exp

�
ik �qi • u�

i

�
du�

i

B(qi; �) =
1

(k|qi|)�
. (8)

The result of the integral over the area of an ele-
ment has analytical solutions in certain cases [22], [23]:
for elements in a 1-D array of width a1, the result
is a1sinc((1/2)ka1 sin �q • �p1); for rectangular elements of
dimension a1 × a2 in a 2-D array, the result is
a1a2sinc((1/2)ka1sin �q • �p1)sinc((1/2)ka2 sin �q • �p2).

Consideration is now restricted to imaging algorithms in
which the imaging function conjugates the phase associated
with the assumed propagation delay to and from each imaging
point, i.e., Ai (r; �) = Wi (r) exp(ik|ri|), where ri = ui�r,
and Wi (r) is a real-valued function describing the weighting
of the contribution from each element, sometimes referred to
as apodization or aperture shading [24]. In the case of far-
field operation, this type of imaging algorithm is simply beam
steering. In the case of near-field operation, it corresponds
to focusing at the image point in both transmission and
reception, as is the case in, e.g., the total focusing method
(TFM) [25], [26], inverse wavefield extrapolation method [27],
and wavenumber method [28].
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Substitution of the far-field element response (7) and the
weighting Ai (r; �) = Wi (r) exp(ik|ri|) into the general
expression for PSF (5) yields the PSF for this type of imaging
algorithm

P(r, q) =
�

F0(�)

�
N�

i=1

Wi (r; �)D( �qi; �)B(qi, �)

× exp[ik(|ri| � |qi|)]

�2

d�. (9)

For the purposes of transforming the summation over ele-
ments to an integration, two new continuous functions are now
defined: the sampling function E(u) and the apodization func-
tion W(u, r). The sampling function describes the position of
element centers in an infinitely large periodic array

E(u) =
��

a=��

��

b=��

�(u � u0 � ap1 �p1 � bp2 �p2) (10)

where u0 is the position of a reference element. The apodiza-
tion function W(u, r) has the property that W(ui, r) =
Wi (r) within the aperture of the array and W(u, r) = 0
outside the aperture; hence, the nonzero values of the product
E(u)W(u, r) describes the position of the element centers in
a finite-sized array.

Therefore, the general form of the PSF for a periodic array
can finally be written as

P(r, q) =
�

F0(�)
��

E(u)W(u, r)D( �q�; �)B(q�; �)

× exp[ik(|r�| � |q�|)]du
	2

d� (11)

where r� = r � u and q� = q � u.
To summarize the terms in (11): F0(�) is the combined

frequency response of input signal, transmitter array element,
and receiver array element; E(u)W(u, r) describes the spatial
sampling and apodization of the array; D( �q�; �) describes
the physical directivity of array elements; B(q�; �) describes
the beam spread associated with wave propagation; and the
exponential term describes the phase shifts associated with
wave propagation and the imaging algorithm.

In Sections II-B–II-E, the above expressions are manipu-
lated in a manner that allows explicit separation of grating
lobe artifacts due to spatial under-sampling.

B. Far-Field Analysis

Consider the case when |r| = |q|, and both are much larger
than the extent of the array aperture, W(u, r) �= 0, as shown
in Fig. 1(b).

If the coordinate origin is taken to be the center of the array
aperture, then for all points within the aperture |r| � |u|. In
this case, the following far-field approximations (see [21]) with
respect to the overall array aperture (rather than individual

elements) can be made

exp(ik|r�|) �= exp(ik|r|) exp(�ik �r • u)
exp(�ik|q�|) �= exp(�ik|q|) exp i(k �q • u)

D( �q�; �) �= D( �q; �)
B(q�; �) �= B(q; �)

exp[ik(|r| � |q|)] = 1 (12)

With these approximations, the following expression for the
far-field PSF as a sum over lobes can be obtained using the
method described in Appendix A:

PFF(r, q) =
�

m,n
PFF

mn(r, q) (13)

where

PFF
mn(r, q)

=
�

F0(�)



D( �q; �)B(q; �)

×
�

W(u, r) exp(iks • u)�mn(u)du
�2

d�. (14)

In (14), s = qt � rt, where qt and rt are the components
of, respectively, the target direction �q, and image direction �r
that lie in the plane of the array [as shown in Fig. 1(b)], and
the term

�mn(u) =
4�2

p1 p2
exp



2� i

�
m

�p1

p1
+ n

�p2

p2



• u

�
(15)

contains a scale factor and the phase perturbation associated
with the grating lobe order. Each lobe in the response is
associated with an integral over the aperture of the array,�

(• • • )du. For the main lobe, �00(u) = (4�2/p1 p2) is
constant and the integral results in constructive interference
when the image direction is close to the target direction, i.e.,
�r 	 �q and, hence exp(iks • u) 	 1 in (14). For grating lobes,
�mn(u) adds a phase perturbation across the aperture causing
constructive interference to potentially occur in some other
image direction, i.e., �r �= �q. In the far-field case, the inte-
gral over the aperture has the form,

�
(• • • ) exp(iks • u)du,

of a spatial Fourier transform from the u to the ks domain.
Furthermore, the form of the function �mn(u) means that in
the transform domain, the grating lobes are shifted copies of
the main lobe. This means that the result in (14) can also be
written as

PFF
mn(r, q) =

�
F0(�)[D( �q; �)B(q; �)Wmn(ks, r)]2d�

(16)

where

Wmn(ks, r) =
4�2

p1 p2
W



ks � 2�

�
m

�p1

p1
+ n

�p2

p2



, r

�
(17)

where W(ks, r) is the spatial Fourier transform of the array
aperture function W(u, r) in the ks domain. The function
W(ks, r) tends to 0 away from the origin at ks = 0; hence,
for m �= 0 and/or n �= 0, Wmn(ks, r) describes an offset
version of the same function centered at some other point
in the ks domain. In terms of the resulting PSF, W00(ks, r)
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Fig. 2. Example of grating lobe decomposition of PSF for a 12-element array imaging a target at a depth of 8	c. (a) �1 order lobe. (b) 0 order lobe.
(c) +1 order lobe. (d) Superposition of �1, 0, and +1 order lobes using (18). (e) Direct prediction of PSF using (9). (f) Direct prediction of PSF using the
FMC array data set obtained from field II [15].

corresponds to the main lobe, while Wmn(ks, r) for m �= 0
and/or n �= 0 corresponds to a grating lobe. This means that
in the far-field case, it is straightforward to predict the position
and peak amplitude of grating lobes.

C. Near-Field Analysis

A similar mathematical treatment can be used to express the
near-field PSF as a sum over different lobes. This is described
in detail in Appendix B and leads to the following:

P(r, q) =
�

m,n
Pmn(r, q) (18)

where

Pmn(r, q)

=
�

F0(�)

�

D( �q�; �)B(q�; �)

× exp[ik(|r�| � |q�|)]W(u, r)�mn(u)du
�2

d�

(19)

and �mn(u) again contains a scale factor and the phase
perturbation associated with the grating lobe order. As in the
far-field case, there is an integral

�
(• • • )du over the aperture

associated with each lobe in the response. Again, for the main
lobe, �00(u) = 4�2/p1 p2 is constant and the integral results
in constructive interference occur when the image point and
target are close, i.e., r 	 q hence exp[ik(|r�| � |q�|)] 	 1.
All nonzero values of m or n result in a phase perturbation
in the integral over the aperture causing imaging artifacts
due to the spatial under-sampling, which are the near-field

equivalent of grating lobes. In contrast to the far-field case,
the integral over the aperture cannot be interpreted as a spatial
Fourier transform. Hence, numerical integration is required to
determine the location and intensity of grating lobe artifacts.

D. Demonstration

An example of the decomposition into different lobe orders
is shown in Fig. 2. Note that in (16) and (19), the combined
frequency response F0(�) is arbitrary. Here, as an exam-
ple, the demonstration of the effect of signal bandwidth on
image grating lobe performance is performed on an input
signal which is a five-cycle, Gaussian-windowed toneburst,
with an ultrasonic wavelength at the center frequency of 	c.
A 12-element linear array with pitch equal to 	c is used to
image a target at a depth of 8	c. Fig. 2(a)–(c) shows the
contributions to the PSF from grating lobe orders �1, 0,
and +1, respectively. These are computed using (19), and
Fig. 2(d) shows their superposition to form the overall PSF
according to (18). For comparison, Fig. 2(e) shows the exact
PSF obtained directly from (9), which is in close agreement
with the result in Fig. 2(d). In addition, an independent
validation was performed to increase the confidence of model
derivation. In the validation, an FMC array data set was first
simulated using field II [15]. Field II is a 3-D model, hence
to obtain results suitable for comparison with a 2-D model,
an array with elements that were 15	c long perpendicular to
the imaging plane was modeled. The analytic form of the
FMC data set output from field II was obtained by the Hilbert
transform. This was used as fi j (t) in (1) to generate the
corresponding PSF, with ai j (r) = 1 and �i j (r) = (di + d j )/c
where di, j = |r � ui,j|. The result is shown in Fig. 2(f).



WILCOX AND ZHANG: QUANTIFICATION OF THE EFFECT OF ARRAY ELEMENT PITCH 605

Fig. 3. Visualization of grating lobes in ks plane. (a) 2-D array exhibiting
grating lobes. (b) Hexagonally sampled 2-D array with no grating lobes.

This is in extremely good agreement with the results
in Fig. 2(d) and (e).

E. Classical Far-Field Rules

It is instructive to relate the previous analysis to the classical
rules for array design. These are based on the contents of the
integral in (16) at a single frequency. For brevity, the factors
that are not a function of frequency are dropped to leave the
single-frequency far-field lobe contributions as

�PFF
mn(r, q; �) = [D(q; �)Wmn(ks, r)]2. (20)

The range of possible values of |ks| is bounded: because
s = qt � rt, |qt | < 1 and |rt | < 1, the largest possible
value of |ks| must be less than |ks|max = 2k. Grating lobe
artifacts in the PSF occur if there are contributions in the
region |ks| < 2k from any �PFF

mn(r, q;�) other than
�PFF
00 (r, q;�). This can be visualized in the ks plane, examples

of which are shown in Fig. 3.
The general condition that must be satisfied to avoid grating

lobes is, therefore,
����2�m

�p1

p1
+ 2�n

�p2

p2

���� > 2k (21)

or
����m

�p1

p1
+ n

�p2

p2

���� >
2

	
(22)

for all pairs of m and n except (m, n) = (0, 0). For the
cases (m, n) = (–1, 0) and (m, n) = (0,–1), this condition
leads, respectively, to p1 < 	/2 and p2 < 	/2; these are
the classic half-wavelength rules [10], [29]. For a periodic
2-D array, these must be satisfied by both lattice vectors, which
implicitly means that the case (m, n) = (–1,–1) also satisfies
the grating lobe condition. However, for periodic 2-D arrays,
an extra condition is required for the case (m, n) = (–1,
1)
and this is

�
1

p2
1

+
1

p2
2

�2
�p1 �p2

p1 p2
>

2

	
(23)

An example where the criteria p1 < 	/2 and p2 < 	/2
are satisfied but (23) is not satisfied is shown in Fig. 3(a).
In the limiting case of p1 = p2 = 	/2, (23) leads to �p1 �p2 =
1/2, which means an angle of 60° between the lattice vectors.
This is so-called hexagonal sampling, the most efficient 2-D
sampling scheme [10], [29] and is shown in Fig. 3(b).

The direction of potential grating lobes can be readily
determined from the ks plane. Consider a target direction �q.
The main lobe is in image direction �r = �q (i.e., at ks = 0
in Fig. 3). Assuming the only sampling criteria not satisfied
isp1 < 	/2, the nearest grating lobe is at ks = 2� �p1/p1,
which means that the in-plane component of the grating lobe
direction r(g)

t is related to the in-plane component of the target
direction qt by

r(g)
t = qt �

2� �p1

kp1
= qt �

	 �p1

p1
. (24)

From this, the grating lobe direction itself �r(g) can be
obtained. It is instructive to consider the simple case of a
spatially under-sampled 1-D array with pitch p1 > 	/2, lattice
vector �p1 = [1, 0, 0]T , and a target at an angle 
 � 0° relative
to the array normal. In this case, qt = [sin 
, 0, 0]T and
r(g)

t = [sin 
g, 0, 0]T , where 
g is the grating lobe direction,
which from (24) is then given by 
g = sin�1(sin 
 � 	/p1).

A simple relaxation to the half-wavelength pitch rule can be
achieved by limiting the maximum angle between the image
direction �r and the array normal �n. If the maximum image
angle is 
max relative to the array normal direction, then |rt| �
sin 
max(note that the target direction �q cannot be controlled in
a similar manner). Therefore, |ks|max = k(1 + sin 
max) rather
than 2k and the requirement to avoid grating lobes given by
(22) and (23) become instead

����m
�p1

p1
+ n

�p2

p2

���� >
1 + sin 
max

	
(25)

and
�

1

p2
1

+
1

p2
2

�2
�p1 �p2

p1 p2
>

1 + sin 
max

	
. (26)

Here, this is termed the modified Nyquist rule.
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III. SIMULATION RESULTS

A. Quantification of Far-Field Performance

The classical rules for far-field operation summarized in
Section II-E are binary conditions: they are either satis-
fied or they are not. In practice, grating lobe artifacts are
always present [since the Fourier transform of the aperture of a
finite-sized array W(ks) extends at some level throughout the
ks domain]. Hence, practical rules require a subjective decision
on the amplitude of grating lobe artifacts that are acceptable
and, in general, numerical analysis of the governing equations.

Here, only 1-D arrays are considered, so Pmn � Pm and
p1 � p. The maximum grating lobe artifact to main lobe
amplitude is defined as a metric

MFF
G (r) =

max
q

��PFF
1 (r, q) + PFF

�1(r, q)
��

PFF
0 (r, q = r)

. (27)

It should be stressed that MFF
G (r) is based on specifying the

image position r and then searching the space of all possible
target locations q to find the one which gives the largest
possible grating lobe amplitude at r. This is subtly different to
specifying a target location and then searching for the largest
grating lobe artifact in the image, which is a more common
way of visualizing grating lobes via a PSF. The reason for the
choice used here is that the imaging region (i.e., the choice
of r) can be controlled whereas the location of possible targets
cannot be.

B. Quantification of Near-Field Imaging Performance

Equation (18) enables the PSF of an array to be computed
and the contributions from spatial under-sampling identified
separately. However, to draw conclusions regarding the opti-
mal pitch for an array, it is necessary to first define metrics that
enable the imaging performance to be assessed. Again, only
1-D arrays are considered, so Pmn � Pm and p1 � p. Two
separate metrics are used to independently assess resolution
and image artifacts due to grating lobes. The resolution metric
MR(r) uses a measure of the area of the main lobe of the PSF,
obtained by dividing the main lobe volume by its peak value

MR(r) =
����

�
P0(r�, q = r)dr�

P0(r, q = r)

���� . (28)

Note that MR(q) is a function of main lobe only and is
independent of the element pitch; however, MR(q) is a func-
tion of element width (due to the element directivity function)
and in most real arrays, the element width is intentionally set
equal to (or almost equal to) the element pitch.

As in the far-field case, the image artifact metric MG (r)
again uses the ratio of the maximum amplitude of the contri-
bution from first-order grating lobes to the amplitude of the
main lobe peak

MG (r) =
max

q
|P1(r, q) + P�1(r; q)|

P0(r, q = r)
. (29)

C. Reduction of Parameter Space for Near-Field Imaging

The above metrics allow the quality of a PSF to be repre-
sented by two numbers, but the parameter space for near-field
imaging remains large: the PSF is dependent on the target
position, the number, size, and pitch of elements in the array,
the input signal spectrum F0(�), and any apodization applied
in the imaging algorithm itself. To draw general conclusions,
it is necessary to significantly reduce the parameter space.
Here, the following steps are taken to reduce the number of
parameters.

1) All distances are normalized to the wavelength 	c at the
center frequency of the array.

2) The array element width is assumed equal to the
pitch p.

3) The array can have an unlimited number of elements.
4) The input signal spectrum is described by a Gaussian

function with a fixed bandwidth.
5) The imaging algorithm is the TFM [25] but with an

apodization rule that limits the contributions from array
elements to those where the angle to the image point
relative to the array normal is less than a specified value
� referred to henceforth as the aperture angle limit:

W(u, r) =

�
1, �r� • �n � cos �
0, �r� • �n > cos �

. (30)

Such a rule was introduced previously to suppress backscat-
ter when imaging planar composites [30]. This rule means
that the total angle subtended by that active aperture at the
imaging point is constant and equal to 2�. This is equivalent
to a constant f -number of 1/(2 tan �).

It is worth noting that although the array can have an
unlimited number of elements, the number of elements used
to form the image at any point is finite due to the aperture
angle limit. The steps above reduce the number of independent
parameters to three: the array element pitch to wavelength ratio
p/	c, the aperture half angle �, and the image point depth to
wavelength ratio z/	c.

D. Far-Field Results

First, some example far-field, single-frequency results of a
1-D linear array with aperture size 20	c obtained using (20)
are presented in Fig. 4. The “perfect” far-field PSF is shown
in Fig. 4(a): the array sees the target in the correct direction
with no artifacts over the complete range of angles from
�90° to 90°. The effect of modest under-sampling is shown
in Fig. 4(b), in which the effect of array element directivity
is ignored (i.e., elements are assumed to be omni directional).
In this case, grating lobes become visible at �90° when the
image angle exceeds a certain value. This value can be found
to be 19.5° by rearranging the classical far-field expression
(24) and setting 
g to �90°. Image angle limits of –19.5°
are shown by the dotted lines in Fig. 4(b)–(d). However,
it can be seen in Fig. 4(b) that imaging operation within
these limits only ensures that the peak of potential grating
lobes is excluded. The finite size of the array aperture means
that the grating lobes have finite width. In this case, the limit
on maximum imaging angle to maintain grating lobe artifacts
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Fig. 4. Far-field PSFs for (a) over-sampled array (pitch = 	 /4), ignoring
element directivity, single-frequency operation, (b) under-sampled array (pitch
= 3	 /4), ignoring element directivity, single-frequency operation, (c) under-
sampled array (pitch = 3	 /4) with element directivity included, and (d) under-
sampled array (pitch = 3	 /4) for broadband pulsed operation. In all cases,
the array aperture length is equal to 20	 (20	c in the case of pulsed operation).
The dotted lines in (b)–(d) indicate the theoretical image angle limits at –19.5°
predicted by (24) and the dashed lines indicate the actual angle limits required
to keep the grating lobe level to below 40 dB relative to the main lobe.

below, for example, �40 dB, is the considerably smaller range
of –11.5° and is indicated by the dashed lines Fig. 4(b).

Fig. 4(c) shows the results for the same array but this time
including the effect of element directivity resulting from the
elements having finite width (equal to the element pitch) and
the inherent directivity associated with out-of-plane excitation
of a solid half space. This results in a natural suppression
of signals from targets at large angles, which, in contrast to
the effect of finite-size aperture, acts to increase the imaging
angle range. In this case, for a main lobe to grating lobe
ratio of 40 dB, the maximum imaging angle range is –21.5°
indicated by dashed lines.

Finally, the effect of broadband pulsed operation can be
included. Throughout this paper, a standard broadband pulse
is used that is a Gaussian-windowed five-cycle toneburst, with
the number of cycles defined by the �40-dB points of the
window. In this case, it is necessary to form the PSF as a
function of both angle and radial distance using (16). This is
because the maximum grating lobe artifacts do not necessarily
occur at the same radial distance as the target. In order to
present the resulting PSF in a consistent format with the single-
frequency cases, the radial dimension of the PSF is collapsed
and replaced with the peak amplitude along that dimension.
The result is shown in Fig. 4(d). Because the grating lobe
position is a function of frequency, the effect of using a
broadband pulse is to blur the grating lobe artifacts out and
reduce their peak amplitude relative to the main lobe. This
enables the maximum imaging angle to be further extended to
–24.5° , indicated by dashed lines in Fig. 4(d).

Fig. 5 shows a graph of maximum allowable steering angle
versus element pitch in wavelengths for various cases. The
classical half-wavelength rule (22) is indicated by the vertical
gray line and the modified Nyquist rule (25) by the gray
dash-dotted line. The solid black line shows the numerically
calculated far-field steering angle limit required to maintain
the grating lobe level 40 dB below the main lobe as defined
by (27). This calculation is for an array with a finite-size
aperture of length 20	 and takes account of the element
directivity. Two competing effects cause this curve to depart
from the curve of the modified Nyquist rule (25), in which
it intersects at �0.7	 and a steering angle of �25°. For
element pitches greater than �0.7	, the physical directivity of
the elements provides a natural suppression of grating lobe
artifacts and hence enables a greater steering angle to be
obtained than that predicted by (25). However, for pitches
below �0.7	, the finite width of grating lobes cause artifacts
that exceed the 40-dB criterion to occur before the center of
the grating lobe comes into view. This results in a reduction
in the maximum steering angle compared to that predicted
by (25). It is interesting to note that this curve actually passes
the classical Nyquist criterion at �68°; in other words, a pitch
of less than half a wavelength is required to steer beyond
this angle and suppress grating lobe artifacts below 40 dB.
Finally, the black dotted line shows the equivalent, numerically
calculated result when the array is under broadband pulsed
operation (a five-cycle, Gaussian-windowed toneburst) rather
than single-frequency operation. Again, this curve intersects
curve for the modified Nyquist rule (25) at a pitch of �0.7	c

and a steering angle of �25°, with a similar but larger
departure to the single-frequency result on either side of this
point. For pitches above �0.7	c, the finite bandwidth causes a
blurring and consequent suppression of the peak grating lobes,
which is increased compared to the single-frequency case,
as evident by comparison of Fig. 4(c) and (d). At pitches below
�0.7	c, performance becomes limited by the finite width of
grating lobes.

E. Near-Field Results

The following near-field results are all obtained by simu-
lations, based on (18) and the numerical integration of (19).
As described above, the number of independent parameters
governing near-field performance are reduced to three: p/	c,
�, and z/	c. Again, the input signal is assumed to be a
Gaussian-windowed, five-cycle toneburst. The range of p/	c

considered is 0.4 to 3 in 0.1 increments and the range of �
considered is 5° to 45° in 1° increments.

There is an important, counter-intuitive consequence of the
aperture angle limit that warrants some explanation before
presenting the results. For a given aperture angle limit �,
the aperture size D is proportional to the depth of the image
point according to D = 2z tan �, while the near-field depth
zNF of an aperture is proportional [21] to D2 and given
by zNF = D2/(4	c) = (z2 tan2 �)/	c. However, near-field
operation requires z < zNF. Hence, the image depth at
which near-field operation is possible is obtained by setting
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Fig. 5. Graph of maximum far-field steering angle and near-field aperture angle limit as functions of element pitch to wavelength ratio for various rules. The
finite-sized aperture array considered has an aperture size of 20	 (20	c in the case of broadband pulsed operation), and the pulse considered is a five-cycle,
Gaussian-windowed toneburst.

zNF = z = zmin to obtain

zmin(�) =
	c

tan2 �
. (31)

Hence, when an aperture angle limit is applied, near-field
operation is only possible at depths z > zmin(�). This in
contrast to imaging with a fixed aperture size D, where near-
field operation requires z < zmax(D) where zmax(D) =
D2/(4	c).

Since this paper is concerned with near-field operation,
the main consideration must be image depths where z >
zmin(�). In the first instance, imaging performance is con-
sidered at a depth that is a prescribed multiple of zmin(�),
which reduces the number of independent parameters to two:
p/	c and �. The smallest zmin(�) occurs at the largest aperture
angle � = 45° , where zmin(�)/	c = 1. However, the PSF of a
target at this depth would not be fully separated from the plane
of the array (as the depth extent of the PSF is approximately
equal to the number of cycles in the time-domain signal 5
multiplied by half the wavelength). To allow the PSF to be
separated from the array at � = 45°, the target depth is set to
be z = 4zmin(�). The resulting behavior of MR and MG as
functions of p/	c and � is shown in Fig. 6(a) and (b). The
result in Fig. 6(b) shows an increased level of image artifacts
for increased p/	c or increased �. From the point of view
of determining a practically useful design rule, a relationship
between the aperture angle � and the pitch pmax needed to
achieve a given value of MG is desirable. Plane waves of
wavelength 	 incident on an array at angle � have a spatial
period on the plane of the array equal to 	/ sin �. For this
reason, the proposed form of an empirical expression relating
pitch to aperture angle limit is

pmax(�)
	c

=
c1

sin �
(32)

where c1 is a constant that depends on the desired level
of grating suppression. For MG = �40 dB, it has been
empirically determined that c1 = 0.5. The corresponding line
is superposed on the results in Fig. 6(a) and (b) and can
be seen to provide a good fit to the �40-dB threshold in
Fig. 6(b). This line is also shown as the black dashed line
in Fig. 5 to compare the predication from the other models.
It is shown that the aperture angle limit in near field can be
relaxed based on (32).

Having established relationships for MR and MG at specific
depths related to the near-field length, it is now appropriate
to see how these results are affected by the actual depth of
the image point. To this end, � and z/	c are now used as
independent parameters, the latter over the range 5–50 in
increments of 1, and the pitch p/	c is set to pmax(�)/	c

according to (32). The results are shown in Fig. 6(c) and (d),
which also show the minimum image depth for near-field
operation zmin(�) and the actual image depth 4zmin(�) used to
generate the results in Fig. 6(a) and (b). Considering Fig. 6(c)
first, it is clear that the resolution metric MR is almost
completely independent of depth for z > zmin. Conversely,
the artifact metric MG shown in Fig. 6(d) is a function of
depth; however, it decreases monotonically with depth for
z > zmin. At z = 4zmin, MG has dropped to �40 dB, which
is expected as these were the image depth and value of MG

used to compute the maximum pitch pmax(�).
Fig. 6(e) shows the resolution MR plotted as a function

of aperture angle for all the points in Fig. 6(a) and (c) that
satisfy p � pmax(�) and z � zmin. For these points, MR

has negligible dependence on p/	c or z and is essentially a
function of � only. With this in mind, additional near-field
results have been generated for the extended aperture angle
range, 45° < � � 60°, using p = pmax(�) and z = 12zmin,
and these points are also included in Fig. 6(e). From the point



WILCOX AND ZHANG: QUANTIFICATION OF THE EFFECT OF ARRAY ELEMENT PITCH 609

Fig. 6. Near-field model results. (a) MR and (b) MG as functions p/	c and � for an image point at depth z = 4zmin(�). (c) MR and (d) MG as functions
of z/	c and � for arrays with pitch p = pmax(�). (e) MR as a function of � for all results in (a) and (c) that satisfy p � pmax(�) and z � zmin, together
additional near-field results for the extended aperture angle range, 45° < � � 60°, obtained using p = pmax(�) and z = 12zmin. The dashed lines in (a) and
(b) show the fit relationship pmax(�)/	c calculated from (32). The dotted lines in (c) and (d) are the minimum image depth for near-field operation, zmin(�),
from (31) and the dashed lines in (c) and (d) are 4zmin(�). The solid line in (e) shows the fit relationship MR (�) calculated from (33).

of view of developing a design rule, it is desirable to obtain a
simple empirical relationship between MR and �. Noting that
the resolution of an imaging system is inversely proportional
to the numerical aperture sin �, the proposed form of such an
expression is

MR(�) =
r1

sin �
(33)

where r1 = 0.3 has been determined by fitting to the data
points in Fig. 6(e). The resulting curve is plotted as a solid
line. This provides a good fit to the data points up to � �= 55°
(equivalent to f -numbers greater than 0.35). Beyond this
point, the resolution actually worsens slightly. Up to this point,
the lateral size of the PSF is controlled mainly by interference
effects and axial size of the PSF is controlled mainly by
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the spatial length of the broadband pulse. However, at larger
aperture angles, the lateral size of the PSF also increasingly
influenced and ultimately compromised by the spatial length
of the pulse. It is worth noting that such large aperture angles
can rarely be achieved in real applications as the maximum
depth that could be imaged with such a large aperture angle
from a given length of array is low. Of much more practical
importance is the resolution performance at angles up to �=
25° ( f -numbers greater than unity).

IV. EXPERIMENTAL EXAMPLES

The previous analysis has quantified the effect of grating
lobes due to spatial under-sampling in both the far- and near-
fields of an array. For the latter, it was chosen to impose an
aperture angle limit on the imaging algorithm to reduce the
parameter space. In this section, this technique is applied to
experimental data obtained in two configurations.

A. Equipment and Sample

An aluminum sample of depth 50 mm is used for all tests
with the geometry shown in Fig. 7(a). The longitudinal wave
speed in the sample is c = 6300 m • s�1. The salient feature
of the sample is a row of 1-mm-diameter side-drilled through-
hole (SDH) targets with a pitch of 10 mm at a depth of 20 mm.
Perpendicular to the imaging plane, the thickness of the sample
is 20 mm. A 5-MHz, 64-element array manufactured by
Imasonic, Besançon, France, with a nominal center frequency
fc = 5 MHz is used for all experiments. FMC is performed
using a commercial array controller device (MicroPulse FMC
manufactured by Peak NDT Ltd., Derby, U.K.) which is then
processed off-line in MATLAB (Mathworks, Natick, MA,
USA). The physical pitch of the array is 0.63 mm, which is
equal to half of the wavelength, 0.5	c, of longitudinal waves
in aluminum at the nominal center frequency of the array.
However, by collecting FMC data and summing the data from
groups of contiguous elements, it is possible to synthesize
FMC data from virtual arrays with 32 elements at 2 × 0.63 =
1.26 mm (1	c) pitch and 21 elements at 3 × 0.63 = 1.89 mm
(1.5	c) pitch.

B. Normal-Incidence Direct-Contact Imaging

In the first example, the array is used in direct contact with
the sample as shown in Fig. 7(b) with coupling provided by
a thin layer of ultrasonic coupling gel. In this and subsequent
diagrams and images, the dotted and dashed lines are drawn
from the extremes of the array aperture inclined at the aperture
angle limit. If the aperture angle limit is imposed in the
imaging algorithm, the dashed lines indicate the extent of the
area that can be imaged; for points outside this region, there
are no ray paths to any element in the array at angles that
satisfy the aperture angle limit. The triangular area between
the dotted lines in the sample is the area where points are
imaged with the maximum possible aperture permitted by the
aperture angle limit. The resolution within this region should
be constant and determined by (33). Between the dotted and
dashed lines are regions where points are imaged with less than
the maximum possible aperture so the resolution deteriorates.

Fig. 7. (a) Sample geometry. Experimental configurations for (b) normal-
incidence direct contact and (c) normal-incidence immersion. The dashed lines
in (b) and (c) indicate the extremes of the region that is imaged and the
dotted lines indicate the extremes of the area within which focusing over the
maximum possible aperture permitted by the aperture angle limit is obtained.

Fig. 8(a)–(c) shows the results of processing the data
obtained from the 0.5	c, 1	c, and 1.5	c pitch arrays with the
conventional TFM algorithm (i.e., using the full array aperture
at each imaging point). The image in Fig. 8(a) shows the
best resolution of the point targets including those outside
the footprint of the array. It can be seen from the images
in Fig. 8(b) and (c) that the performance of the conventional
TFM algorithm deteriorates rapidly as the array element pitch
is increased first to 1	c and then to 1.5	c, with substantial
artifacts appearing. In Fig. 8(b), most of the artifacts are
grating lobe effects associated with the reflection from the
back wall of the sample, while in Fig. 8(c), artifacts from the
SDHs themselves are also visible at depths of z < 20 mm
directly below the array. Such images are unusable for most
practical purposes.

The effect of applying aperture angle limits is now consid-
ered. Equation (32) is used to calculate the appropriate angle
limits shown in Table I, and the resulting images are shown
in Fig. 8(d)–(f). Note that in the case of the array with 0.5	c

pitch, the aperture angle limit is 90°, i.e., no aperture angle
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Fig. 8. Experimental results from direct-contact imaging. (a)–(c) Processed using the conventional TFM algorithm. (d)–(f) Processed using TFM with aperture
angle limits of 30°, 30°, and 19.5°, respectively. The images were obtained using (a) and (d) complete FMC data from a physical 64-element array with
0.63-mm (0.5	c) pitch; the same FMC data spatially down-sampled to represent (b) and (e) thirty-two-element array with 1.26-mm (1	c) pitch and (c) and
(f) 21-element array with 1.89-mm (1.5	c) pitch.

TABLE I

DATA FOR NORMAL-INCIDENCE DIRECT-CONTACT IMAGING

limit is required. Since this would lead to an identical result to
that shown in Fig. 8(a), an image based on an aperture angle
limit of 30° is instead shown in Fig. 8(d). The imposition of
this aperture angle limit reduces the observable region, but
the central three targets in Fig. 8(d) are in or very close to
the region where they are visible over the complete specified
aperture angle range. As expected from (33), the resolution of
these targets with a fully sampled array and an aperture angle
limit of 30° is very similar to that obtained without a limit,
i.e., Fig. 8(a). For the arrays with pitches of 1	c and 1.5	c,
comparison of Fig. 8(e) and (f) with Fig. 8(b) and (c) shows
that the grating lobe artifacts have been eliminated throughout
the observable region. In Fig. 8(e), the resolution of the visible
targets is indistinguishable from that in Fig. 8(d), despite the
array having twice the pitch and half the number of elements.
The result in Fig. 8(f) does show a noticeable loss of resolution
as the required aperture angle to suppress grating lobe artifacts
at this element pitch is now only 19.5°.

C. Normal-Incidence Immersion Imaging

A common inspection configuration in industrial inspections
for NDE is to use a layer of liquid couplant between the array
and the component under inspection (the sample) to allow the
array to be scanned. An equivalent algorithm to the TFM for
immersion imaging, the immersion TFM, can be defined that

is focused in both transmission and reception at every image
point. The necessary phase delays for such an algorithm are
obtained using the technique described in [31] to efficiently
calculate the ray path between each array element and each
image point, taking account of refraction at the couplant–
sample interface. In most cases, the ultrasonic waves in the
coupling liquid have a considerably lower ultrasonic velocity
than those in the sample. According to Snell’s law, this means
that at the interface between couplant and sample, there is
a significant amplification of the angle of a ray relative to
the surface normal. The following propositions are made for
extending the previously described techniques to immersion
inspection.

1) The presence of grating lobe artifacts in the image
depends on the angle of rays in the couplant relative
the array normal and to the ultrasonic wavelength in the
couplant according to (32).

2) The image resolution is determined by the angular range
of rays reaching the image point in the sample and the
ultrasonic wavelength in the sample according to (33).

3) Beyond the relevant critical angle, there are no physical
ray paths between an array element and a point in the
sample; this sets an implicit limit on the angles of rays
that are considered in reconstruction, even without the
imposition of an explicit aperture angle limit.

These propositions could be applied to determine either the
required pitch of an array to achieve a given resolution, or the
appropriate aperture angle limit to apply to an array with a
given pitch. Here, the latter is considered, and water is used
as the couplant, in the normal-incidence configuration shown
in Fig. 7(c). At the center frequency of the array, fc = 5 MHz,
the wavelength in water is 	W = cW/ fc = 0.3 mm, where cW
is the speed of sound in water and is taken to be 1480 m • s�1.
The appropriate aperture angle limits are shown in Table II.
The first critical angle in water at a water–aluminum interface
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Fig. 9. Experimental results from normal-incidence immersion imaging. (a)–(c) Processed using the conventional immersion TFM algorithm. (d)–(f) Processed
using immersion TFM with aperture angle limits of 13.6°, 6.7°, and 4.5°, respectively, based on the angle of rays in the couplant relative to the array element
normal. The images were obtained using (a) and (d) complete FMC data from a physical 64-element array with 0.63-mm (2.1	W ) pitch; the same FMC
data spatially downsampled to represent (b) and (e) thirty-two-element array with 1.26-mm (4.2	W ) pitch and (c) and (f) 21-element array with 1.89-mm
(6.3	W ) pitch.

is given by Snell’s law as 
1 = arcsin((cW/c) sin 90°) =
13.6°.

For the particular case of immersion imaging at normal
incidence, there is an interesting phenomenon that arises from
the form of the empirical equations (32) and (33) which govern
the aperture angle limit to avoid grating lobes in the couplant
and the resolution obtained for a given aperture angle limit in
the sample. At normal incidence, both of these are functions
of the sine of the angle of rays relative to the surface normal;
however, the ratio of the sines of these angles is in turn
governed by Snell’s law. Assuming a couplant with a lower
ultrasonic, a smaller aperture angle limit must be imposed on
a given array when it is used in immersion rather than in direct
contact. However, Snell’s law amplifies the angle in the sample
and the aperture angle achieved in the sample remains exactly
the same as would be achieved in direct contact.

The resulting images are shown in Fig. 9, using the same
format as in Fig. 8 with the top row of images corresponding
to direct application of the immersion TFM algorithm and the
lower row corresponding to the immersion TFM algorithm
with appropriate aperture angle limits. Although the array
with 2.1	W pitch is significantly spatially under-sampled in
water, the image without aperture angle limits in Fig. 9(a)
exhibits negligible grating lobe artifacts. This is because the
maximum angle of rays relative to the array normal required
for the normal-incidence immersion TFM algorithm cannot
exceed the first critical angle in water of 13.6° associated with
the water–aluminum interface. In other words, the immersion
TFM algorithm provides an implicit aperture angle limit
anyway which substantially suppresses grating lobe artifacts

TABLE II

DATA FOR NORMAL-INCIDENCE IMMERSION IMAGING

in the sample compared to what might be expected for the
pitch of array. When an explicit aperture angle limit of 13.6°
is applied, the result is unchanged as shown in Fig. 9(d). For
the arrays with pitches of 4.2	W and 6.3	W , the results are
similar to those for direct contact. Without an explicit aperture
angle limit, significant grating lobe artifacts are present and
these are completely suppressed when the appropriate aperture
angle limit is imposed. Furthermore, the resolution achieved
is almost identical to that achieved by the same array in direct
contact for the reasons explained above. For the 4.2	W pitch
array, the loss in resolution compared to a 2.1	W is minimal
but for a 6.3	W pitch array, the loss in resolution is noticeable.

V. CONCLUSION

An analytical model has been developed that enables ultra-
sonic array images to be decomposed into a sum over different
grating lobe orders. The model has enabled explicit separation
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of artifacts due to spatial under-sampling in both far- and near-
field cases under both single frequency and broadband (pulsed)
operation. Numerical simulations have enabled the following
conclusions to be drawn.

1) Both the classical (half-wavelength rule) and modified
Nyquist spatial sampling criteria are inadequate for the
purposes of practical array design. They both provide
binary conditions that can only be fully satisfied by an
infinitely long array operating at a single frequency. For
an array with a finite-sized aperture under broadband
operation, grating lobe artifacts are always present at
some level.

2) For arrays operating under far-field conditions where
only beam steering is performed, both the classical
and modified Nyquist criteria are confounded because:
i) finite aperture size increases the angular extent of
grating lobes; ii) broadband operation causes angular
smearing of grating lobes; and iii) directivity of finite-
width array elements suppresses high-angle grating
lobes. Under near-field focused operation, the situation is
complicated further as focusing implies a steering angle
that varies over the array aperture.

3) Metrics have been defined that quantify the maximum
amplitude of grating lobe artifacts in the imaging region
and (in the case of near-field focused operation) the
imaging resolution.

4) Simulations have shown that in general, larger array
element pitches can be employed than predicted by
the Nyquist criteria without significantly compromising
imaging performance.

Practical guidelines for array design are summarized below.
These are based on broadband pulsed operation using a five-
cycle Gaussian-windowed toneburst and assume a 40-dB main
lobe to grating lobe artifact ratio is desired. In these guidelines,
wavelength refers to the wavelength of ultrasonic waves at the
center frequency of the toneburst.

1) Under far-field operation, the relationship between ele-
ment pitch and maximum steering angle for an array
with a 20-wavelength aperture is indicated by the black
dotted line in Fig. 5. As a rule of thumb, an array with
half-wavelength pitch permits steering up to about 45°
and one with wavelength-pitch permits steering up to
15°.

2) Under near-field focused operation, an array with half-
wavelength pitch will not produce grating lobe artifacts
anywhere in the imaging region. For larger pitch arrays,
an upper aperture angle limit � (equivalent to a lower
limit on f -number) should be imposed in the imaging
algorithm to ensure grating lobe artifacts are eliminated.
However, this also has the effect of limiting the region
that can be imaged. (It is analogous to the maximum
permissible steering angle in far-field operation.) The
relationship between aperture angle and element pitch
is given empirically by (32) and is shown by the black
dashed line in Fig. 5.

3) The aperture angle limit governs the resolution of the
imaging algorithm according to the empirical relation

(33), with a larger aperture angle providing better
resolution. However, the rate of resolution improve-
ment decreases with increasing aperture angle and
above about 30° (equivalent to f -numbers below unity),
the improvement is somewhat marginal. The element
pitch associated with an aperture angle limit of 30° is,
from (32), equal to one wavelength.

To put the last number into context, a periodic 1-D array with
a pitch of 1 rather than 0.5 wavelengths requires 50% fewer
elements to populate an aperture of a certain size and the
resulting FMC data set is 75% smaller. For a periodic 2-D
array, the equivalent reduction in element count is 75% and
the reduction in FMC data set size is 94%, i.e., more than one
order of magnitude. A pitch of one wavelength is proposed
as a sensible compromise in array design in that it enables
high resolution images to be achieved with significantly lower
element counts than a fully sampled array.

For an array that is immersion coupled to a sample,
the imaging resolution is determined by the angular aperture
achieved at the imaging point in the sample. Conversely,
the presence of grating lobe artifacts is determined by the
angle of rays in the couplant relative to the array normal and
their wavelength. In most practical scenarios, the couplant has
a lower ultrasonic velocity than the sample. For an array with
a given pitch, the shorter ultrasonic wavelength in the couplant
means that a smaller aperture angle limit must be imposed in
immersion to avoid grating lobes than would be required in
a direct-contact configuration. The appropriate angle limit can
be calculated according to (32) using the ultrasonic wavelength
in the couplant. However, the angle of rays passing from
the couplant into the sample is amplified due to refraction
at the interface according to Snell’s law. This means that the
aperture angle achieved at an imaging point in the sample is
higher than the aperture angle limit imposed in the couplant.
Hence, even if an array is significantly under-sampled relative
to the ultrasonic wavelength in the couplant, high-resolution
imaging in immersion is still possible. In fact, the ratio of
array pitch to ultrasonic wavelength in the sample remains
the governing parameter for image resolution in a normal-
incidence immersion configuration.

APPENDIXES

A. Far-Field Analysis

The general PSF (11) can be written as P(r, q) =�
F0(�) �P(r, q;�)d�, where �P(r, q;�) can be regarded as the

PSF associated with continuous-wave operation at single fre-
quency. With the far-field assumptions given in (12) �P(r, q;�)
becomes

�PFF(r, q;�)

=


D( �q; �)B(q; �)

�
E(u)W(u, r) exp[ik( �q � �r)•u]du

�2

.

(A.1)

The target direction �q can be written as �q = qn+qt , where
qn = ( �q• �n) �n is the component normal to the plane of the array
and qt is in the plane of the array, as shown in Fig. 1(b).
In the complex exponent in (A.1), �q • u can be written as
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�q • u = (qn + qt ) • u = qt • u. Similarly, the look direction �r
can be split intonormal and in-plane components, rn and rt ,
so that �r • ui = rt • ui . Defining s = qt � rt means that

�PFF (r, q;�)

=



D
�
�q;�

�
B (q;�)

�
E (u) W (u, r) exp (iks • u) du

�2

.

(A.2)

The integral with respect to u can be recognized as a
spatial Fourier transform, F{•} =

�
(•) exp(iks • u)du, from

the u to the ks domain. The Fourier transform of the product
of functions E(u)W(u) is equal to the convolution of their
individual transforms�

E(u)W(u, r) exp(iks × u)du

= E(ks)
W(ks, r) =
�

E(� )W(ks � � , r)d� (A.3)

where E(ks) = F{E(u)} and W(ks, r) = F{W(u, r)}. The
shifted function W(ks � � , r) can be written in terms of the
original function W(u, r)

W(ks � � , r) =
�

W(u, r) exp(�i� • u) exp(iks • u)du.

(A.4)

The Fourier transform of the sampling function E(u) given
by (10) is a periodic array of delta functions in the transform
domain with the same lattice vectors but reciprocal spacing

E(ks) =
4�2

p1 p2

�

m,n
�
�

ks � 2�m
�p1

p1
� 2�n

�p2

p2



. (A.5)

Strictly there is a leading exponential term, exp(�iks • u0)
in eq. (A.5) that results in a phase shift depend on where the
reference array element is relative to the coordinate origin.
If the origin is at the center of the array, it will correspond to
either an array element position, or the midpoint between two
adjacent element positions in one or both of the lattice vector
directions. This means that the reference element position can
always be written as u0 = a1p1/2 + a2p2/2, where a1 and
a2 are integers. Consequently, at the position of every delta
function in the ks plane, exp(�iks • u0) = 1, so this term is
dropped.)

Substitution of the expressions for E(ks) and W(ks � � , r)
into the convolution integral enables the shifting property of
the delta functions to be exploited
�

E(� )W(ks � � )d�

=
4�2

p1 p2

�

m,n

�
W(u, r) exp

�
�2� i

�
m

�p1

p1
+ n

�p2

p2



•u




× exp(iks • u)du (A.6)

Therefore

�PFF(r, q;�)

=

�

D( �q; �)B(q;�)
�

m,n

�
W(u, r) exp(iks • u)�mn(u)du

�2

(A.7)

where

�mn(u) =
4�2

p1 p2
exp



2� i

�
m

�p1

p1
+ n

�p2

p2



•u

�
(A.8)

describes the grating lobe order. For brevity, the integral over
the aperture can also be written as an appropriately shifted
copy of the Fourier transform of the aperture function

�PFF(r, q;�) =

�

D( �q; �)B(q;�)
�

m,n
Wmn(ks, r)

�2

(A.9)

where

Wmn(ks, r) =
1

4�2 W
�

ks � 2�m
�p1

p1
�2�n

�p2

p2
, r



. (A.10)

The overall PSF is then

�PFF(r, q;�)

=

�

D( �q; �)B(q;�)
�

m,n
Wmn(ks, r)

�2

= [D( �q; �)B(q;�)]2
�

m1,n1,m2,n2

Wm1n1(ks, r)Wm2n2(ks, r).

(A.11)

If it assumed that the peaks in Wmn(ks) for different values
of m and n are well separated, then

Wm1n1(ks)Wm2n2(ks)

=

�
Wm1n1(ks)2, m1 = m2, n1 = n2

0, otherwise.
(A.12)

The final expression for the far-field PSF of a periodic array
is then

PFF(r, q) =
�

m,n
PFF

mn(�r, �q) (A.13)

where

PFF
mn(r, q) =

�
F0(�)[D( �q; �)B(q; �)Wmn(ks, r)]2d�.

(A.14)

For comparison with the near-field PSF, it is also instructive
to express the far-field result in the same form

PFF
mn(r, q) =

�
F0(�)

×



D( �q; �)B(q; �)
�

E(u)W(u, r)

× exp(iks • u)�mn(u)du
�2

d�. (A.15)

B. Near-Field Analysis

As in the far-field case, the general PSF (11) is first
written as P(r, q) =

�
F0(�) �P(�r, �q;�)d�, where �P(�r, �q;�)

is the PSF associated with continuous-wave operation at single
frequency. Next, the array aperture is divided into subapertures
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of area � j . The integral over the array aperture is then written
as the sum of integrals I j (r, q,�) over the subapertures, so that

�P(r, q;�) =

�

�
�

j

I j (r, q,�)

�

�
2

(B.1)

where

I j (r, q;�) =
�

W j (u, r)E(u)D( �q�; �)B(q�; �)

× exp[ik(|r�| � |q�|)]du (B.2)

in which W j (u, r) is the apodization function of the j th
subaperture and is equal to the overall apodization function
W(u), for u � � j and 0 elsewhere. The size of each aperture
is sufficiently small that both r and q are in its far field. Let
u j be the center of the j th aperture and define r j = r � u j

and q j = q � u j . The integration variable over a particular
subaperture is changed to u� = u � u j and the far-field
condition implies |u�| � |q�uj| and |u�| � |r�uj|. The
usual far-field approximations then enable the integral over
a subaperture to be written as

I j (r, q; �)
= D( �qj; �)B(qj; �) exp[ik(|rj| � |qj|)]

×
�

W j (u� + uj, r)E(u� + uj) exp[iku� • sj]du� (B.3)

where sj= qjt � rjt, and qjt and rjt are the components of
the target and image-point direction vectors, �qj and �rj, in the
plane of the array. As in the case of the far-field analysis
of an entire array aperture, the integral is the spatial Fourier
transform from the u� domain to the ksj domain. The result
is the spatial convolution of W j (ksj) = F{W j (u�+uj)} and
E(ks) = F{E(u�+uj)}. The latter is given by

E(ksj) =
4�2 exp (iksj • uj)

p1 p2

�

m,n
�
�

ksj � 2�m
�p1

p1
�2�n

�p2

p2



.

(B.4)

As the area � j of the subaperture becomes smaller
W j (ksj) � � j W(u j ) and hence the subaperture integral
becomes

I j (r, q;�) = D( �qj; �)B(qj; �)� j W(uj, r)
�

m,n
�mn(uj)

(B.5)

where the term

�mn(uj) =
4�2

p1 p2
exp



2� i

�
m

�p1

p1
+ n

�p2

p2



• uj

�
(B.6)

describes the grating lobe order. Therefore, (B.3) becomes

�P(r, q;�)

=

�

�
�

j

D( �qj; �)B(qj; �)

× exp[ik(|rj| � |qj|)]� jW(uj, r)
�

m,n
�mn(uj)

�2

. (B.7)

In the limit as �i is allowed to tend to 0, the summation
over j once again becomes an integral over u to leave

�P(r, q;�) =

�
�

m,n

�
W(u, r)D( �q�; �)B(q�; �)

× exp[ik(|r�| � |q�|)]�mn(u)du

�2

. (B.8)

The near-field PSF expression is then

P(r, q) =
� �

�

m,n

�
W(u, r)D( �q�; �)B(q�; �)

× exp[ik(|r�| � |q�|)]�mn(u)du

�2

d�. (B.9)

If it is again assumed that there is no overlap between the
different lobes (i.e., the cross terms are 0), then the PSF can
be approximated as

P(r, q) =
�

m,n
Pmn(r, q) (B.10)

where

Pmn(r, q)

=
�

F0(�)

�

W(u, r)D( �q�; �)B(q�; �)

×exp[ik(|r�| � |q�|)]�mn(u)du
�2

d�. (B.11)
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