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Dual-Modal Tactile Perception and Exploration
Nicholas Pestell , John Lloyd , Jonathan Rossiter, and Nathan F. Lepora

Abstract—Tactile sensing is required for human-like control with
robotic manipulators. Multimodality is an essential component for
these tactile sensors, for robots to achieve both the perceptual ac-
curacy required for precise control, as well as the robustness to
maintain a stable grasp without causing damage to the object or
the robot itself. In this study, we present a cheap, 3D-printed, com-
pliant, dual-modal, optical tactile sensor that is capable of both
high (temporal) speed sensing, analogous to pain reception in hu-
mans and high (spatial) resolution sensing, analogous to the sensing
provided by Merkel cell complexes in the human fingertip. We ap-
ply three tasks for testing the sensing capabilities in both modes;
first, a depth modulation task, requiring the robot to follow a tar-
get trajectory using the high-speed mode; second, a high-resolution
perception task, where the sensor perceives angle and radial po-
sition relative to an object edge; and third, a tactile exploration
task, where the robot uses the high-resolution mode to perceive
an edge and subsequently follow the object contour. The robot is
capable of modulating contact depth using the high-speed mode,
high accuracy in the perception task, and accurate control using
the high-resolution mode.

Index Terms—Force and tactile sensing, biomimetics.

I. INTRODUCTION

ROBUST and flexible tactile sensing is considered one of
the major challenges for future robotics. Where robots

are required to physically interact with unknown environments,
tactile sensing can help to minimise the risk of damage to the
environment and the robot, while enabling the robot to under-
stand the physical nature of its surroundings to interact with
the environment in a controlled and intelligent way. For tactile
sensors to be useful, they must be highly accurate, small enough
for integration with robotic manipulators and be sensitive to a
range of tactile features.

This last requirement necessitates multi-modality in future
tactile sensors. As the human fingertip is endowed with a range
of mechanoreceptors for detecting features such as, texture,
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hardness and shape [1], tactile sensors must also be equipped
with technologies capable of sensing in these distinct modes.
There are a handful of tactile sensor with multimodal capabilities
[2]–[5], where the emphasis is on sensing high-resolution e.g.,
point discrimination or force with an additional high-bandwidth
sensing for features such as texture. In some cases temperature
sensing is also an included modality [6].

We have designed and built a tactile sensor using a small
image tracking chip (ADNS-3080 [7]) as an image acquisition
system which offers both a high (temporal) speed (single value
at ∼2000 Hz) and high (spatial) resolution sensing mode (30 ×
30 pixel image, ∼3 Hz). The manufacturing cost of this sensor
are low (∼£100) and the body is completely 3D-printed, making
the manufacturing process relatively simple. We also implement
a novel approach to high-resolution sensing based on using raw
pixel values as features without the need for any image pro-
cessing, distinct from past work with 3D-printed optical tactile
sensors [8]–[13].

The performance of the presented sensor is tested in a
number of tasks. Initially, we verify the performance of the
high-speed mode for controlling the sensor contact depth by
requiring the sensor to follow a target trajectory whilst main-
taining contact with a surface. We then test the performance of
the high-resolution mode at perceiving angle and radial distance
relative to an edge. Robustness of this perception is then con-
firmed in a contour following task. Finally, we combine the use
of the two modalities into a single task of following the con-
tour of a previously unseen object using the high-speed mode
to locate the object depth and edge location (see supplementary
video accompanying this paper).

Traditionally, additional modalities have been focused on
high-frequency sensing for features such as texture. Similar to
the application of a ‘reflex mode’ in [14], here we instead draw
an analogy between high-speed sensing and pain reception. In
[14] the sensor is used purely as a force estimator, whereas, in
the presented study we use both modalities to perceive multiple
dimensions (angle, radial position and depth) and use the per-
ceived state to control the motion of a robot in a closed loop
exploration task.

II. BACKGROUND AND RELATED WORK

A wide variety of tactile sensors have been developed over
the past 30 or so years [15], and a broad spectrum of novel ap-
proaches to transducing tactile information [16]–[18]. Recently,
as the capabilities of dexterous robotic manipulators has been
improving, there has been increasing demand for integration
with robust tactile sensors. These sensors will undoubtedly re-
quire the ability to detect a range of tactile features, necessitating
multimodal tactile sensing. Presently, few of the available tactile
sensors have addressed the requirement for multimodality and
typically they cost thousands of dollars.
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In [2] a multimodal tactile skin is presented that comprises of
flexible polymer materials and metal thin film resistor MEMS
devices. The sensor can measure temperature with a nickel re-
sistance temperature device (RTD), thermal conductivity with
a gold heater and nickel RTD pair and hardness using a nickel-
chrome alloy strain-gauge.

A bio-inspired tactile sensor is presented in [4]. The sensor
comprises of two devices; i) a nine degree of freedom micro-
electromechanical (MEMS) providing information about orien-
tation by means of a magnetometer and accelerometer and rate
of vibrations with a gyroscope; and ii) a deep MEMS barom-
eter which is used for sensing un-localised pressure and high-
frequency pressure changes.

The BioTac [3], [19] is a well known multimodal tactile sen-
sor. It contains an array of impedance electrodes for sensing
static spatial properties at a high-resolution, a hydro-acoustic
pressure sensor, which can be used for high-frequency features
such as texture [20], and a thermistor for sensing temperature
[6]. The BioTac integrates three distinct technologies into one
fingertip-sized sensor. Whilst this is an impressive achievement,
it does increase both complexity and cost, both of which are
major factors when considering that a fully equipped tactile hu-
manoid will likely have five tactile sensors on each hand. Indeed,
all of the aforementioned multimodal devices suffer from this
scaling problem.

As seen with the preceding literature, multimodal tactile sens-
ing is generally applied to sensing with i) high spatial resolution
and ii) high-frequency vibrations for textures or slip. A different
approach to multimodality is taken in [14]. Here, a dual-mode
compliant optical tactile sensor estimates force with two dis-
tinct modes: i) a high-resolution ‘explore mode,’ where image
processing is used to infer motion of the sensor skin from a se-
quence of images from which force is accurately estimated and
ii) a high-frequency ‘reflex mode’ is used for quick reactions
and rough estimation of force. A single optical device is used for
acquiring images which can return data with high-bandwidth at
a cost of resolution or vice versa.

This study presents a sensor which is an evolution of a 3D-
printed optical tactile sensor called the TacTip [8], [11]. Orig-
inally developed in 2009, it is an optical tactile sensor which
draws influence from the structure of the human fingertip. The
TacTip works on the principle of transduction from tactile stim-
ulation through a compliant flesh-like structure to an optical sig-
nal which is captured via a camera system. An array of pins on
the inside of the sensing surface is tracked via an image process-
ing algorithm to reduce dimensionality and the pin deflections
are mapped back to a classification of the tactile stimulation
[21]. Here we aim to address the need for cheap and simple
multimodal sensing by replacing the CCD webcam used in the
TacTip with a tracking image sensor similar to that used in [14].
We adopt the core bio-inspired approach to transduction and
much of the fabrication methods from a series of publications
with the TacTip [9]. We take a completely novel approach to
extracting information from the image, where no-image prepro-
cessing is used to reduce dimensionality; raw pixel values from
a 30 × 30 pixel image are used as features for classification of
tactile stimulation.

Largely unconsidered in robotics, is the modality of pain.
With clear benefits in nature for self-preservation, it is an
idea that could transfer naturally to robotics. In mammalian
physiology, pain sensing is through mechanoreceptor nerve

Fig. 1. Computer modelled cross section view of the sensor assembly. The
two main components are i) the 3D-printed body, housing the ADNS-3080
image tracking system and the PCB LED ring and ii) the 3D-printed tip with a
compliant sensing surface and pins.

endings for type II Aδ sensory nerve fibres. These fibres are
responsible for mediating temperature, pressure, well-localised
‘fast’ pain [22], and are known to be involved in both noxious
and innocuous tactile sensing below the pain threshold [23].
Here we apply a high-speed modality to predict and modulate
contact depth (proportional to pressure) and we draw the anal-
ogy between this modality and pain reception in mammals with
type II Aδ sensory nerve fibres.

III. MATERIALS AND METHODS

A. Sensor design

1) Hardware: The presented sensor, shown in Fig. 1, is com-
prised of two main components: a compliant tip and a rigid
body, housing the optical sensing element and electronics. The
two components interlock via a bayonet fitting.

The tip is 3D-printed and consists of an outer ‘skin’ (Tango
Black+ (Shore A 26-28)) and a rigid bayonet fitting (Vero
White). Both elements are printed as a single part. The skin
is deformable, enabling transduction of tactile information; it
has the added feature of making the sensor compliant which is
important when interacting with delicate or unknown objects.
The inside surface of the skin (Fig. 2) features a concentric pat-
tern of white dots (Vero White) on the end of short pins (Tango
Black+). Once printed, the space between the inside of the skin
and an inserted acrylic lens is manually filled with a clear sil-
icone gel (RTV27905, Techsil UK (∼Shore OO 10)). The gel
provides stiffness to the tip which helps to minimise hysteresis
whilst still enabling compliance. The overall diameter of the tip
is ∼27 mm which is a ∼33% reduction from previous TacTip
versions [8], [10].

The sensor body (ABS thermoplastic) is 3D-printed. It
is responsible for housing the image tracking system. The
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Fig. 2. Computer models of four alternate pin layouts (top row) and respective tip images capture by the ADNS-3080 below. Tip-A features the same pin size and
spacing as the latest TacTip version - diameter ∼1 mm, spacing ∼3 mm; Tip-B - diameter ∼1 mm, spacing ∼4 mm; Tip-C - diameter ∼1 mm; spacing ∼4.5 mm;
Tip-D - diameter ∼1.7 mm, spacing ∼4.5 mm.

specific focal length and view angle of the image tracking sys-
tem resulted in the selected shaft length (∼38 mm) and diameter
(∼23 mm). It also features a bayonet mount for easy replace-
ment of modular tips and houses a PCB ring of six LEDs for
illuminating the inside of the tip.

2) Image Tracking System: The principal novelty of the pre-
sented sensor is the optical sensing element. We use a tracking
image sensor, ADNS-3080, Avago Technologies [7], designed for
use in optical computer mice. The sensor uses Complementary
Metal-Oxide-Semiconductor (CMOS) technology. It combines
an image acquisition system (IAS), acquiring a 30 × 30 pixel
image, and a digital signal processor (DSP), which processes the
images to generate a series of statistics into a single chip [24].
The frequency of the IAS has a default value of 2000 Hz and is
programmable to a maximum value ∼6400 Hz. Importantly, the
sensor has two modes of operation: high-speed statistic mode,
where a single value is available at the IAS frequency; and frame
capture mode, where the sensor sends each pixel value of the 30
× 30 pixel image over the serial interface in sequence, thus forc-
ing a frame rate which is ∼900 times lower than the high-speed
statistic mode.

The presented sensor uses an ADNS-3080 on a breakout-
board with an adjustable lens attachment (focal length =
4.2 mm, view angle = 86◦). The ADNS-3080 is interfaced
with an 8-bit, 16 MHz microcontroller, Arduino Nano (mounted
on the outside of the sensor body), via a 4-wire serial interface
(SPI). Data is then passed to an external PC application (Python,
pySerial) over an asynchronous serial transmission.

3) Robotic System: For all experiments carried out in the
present study we use a six degree-of-freedom robot arm (IRB
120, ABB Robotics) to which our sensor is mounted as an
end-effector. The arm can precisely and repeatedly position the
sensor (absolute repeatability 0.01 mm). A custom 3D-printed
mount is bolted to the rotating (wrist) section of the arm to
which the sensor is attached via a bayonet mechanism.

B. High-Speed Sensing

We use the ADNS high-speed mode, to enable the first distinct
modality (mode-HS) of the presented tactile sensor. The illumi-
nated dots on the inside of the sensing surface provide visual
features which the IAS detects. The DSP generates statistics
based on the motion of these features when the sensing sur-
face experiences stimulation. The statistics are; relative x and
y movement between sequential images, shutter timings, max-
imum pixel value and image quality (a measure of the number
of features present in the image).

This mode of operation offers extremely high frequency be-
cause a single byte of data is used to represent the whole image.
We consider mode-HS as having a response which is analo-
gous to that of free nerve endings of type II Aδ sensory nerve
fibres in human tactile perception which are rapidly adapting
mechanoreceptors responsible for ‘fast’ pain [22].

C. High Resolution Sensing

In this modality (mode-HR), we make use of the whole 30
× 30 pixel image (see Fig. 2). A higher resolution of tactile
sensing, compared with mode-HS, is attainable because of the
increased dimensionality. This comes at a cost of bandwidth
(∼3 Hz) which is significantly lower than mode-HS.

White dots, located on the tip of each pin, provide optical
output for transduction of tactile information, whilst the pins
provide amplification of the signal. This is analogous to the in-
teraction between Merkel cells and intermediate ridges within
the human fingertip [10], where intermediate ridges help to fo-
cus the stress of contact as well as magnifying the signal [25].
The dots move relative to the optical system, due to tactile stimu-
lation, resulting in pixel change. The raw values of all 900 pixels
(6-bit resolution) are used as features for tactile perception. This
is a completely novel approach compared to past work with the
TacTip, where pin deflections were used.
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D. Alternate Pin Layouts

The pin layout used with TacTip in recent work has proven
effective [12], however, in this study we apply a novel approach
of using the raw pixel values instead of pin positions and hence
consider that this may not be the best arrangement of pins. For
example, drastically differing stimulation could result in the
same value for a pixel if different pins are imaged by the same
point on the CMOS array. We therefore hypothesise that a less
dense pin layout will result in fewer pin overlaps and thus better
tactile perception.

Four alternate pin layouts are considered, shown in Fig. 2. Tip-
A features a pin spacing of ∼3 mm and pin diameter of ∼1 mm,
these dimensions were chosen to match the latest TacTip version.
Tip-B and Tip-C have the same pin diameter as the latest TacTip
version but with increased pin spacing of ∼4 and ∼4.5 mm
respectively. Finally, Tip-D has a pin spacing of ∼4.5 mm but
with an enlarged pin diameter of ∼1.7 mm.

E. Task: Contact Depth Control

Here we consider the task of controlling the contact depth, z:
we require the robot to follow a target trajectory where position
is modulated by measurements from the high-speed mode of the
tactile sensor.

1) Data Collection and Calibration: For the four alternate
pin layouts shown in Fig. 2, image statistics were collected for
5 second intervals at constant compressions on a flat stimulus.
Nz = 20 depths were used spanning −5 mm ≤ zi ≤ 0 mm.
Measurements are taken relative to the where the sensor tip
makes initial contact with the stimulus. An average value at each
step is then used to fit a Gaussian process regression (MATLAB,
fitrgp) which is used as calibration in the depth control task.

2) Testing: To test the depth control, a task was created
where the robot is required to follow a sinusoidal target tra-
jectory in z whilst remaining in constant contact with the flat
stimulus used for calibration. The control is a closed-loop sys-
tem using only tactile feedback from mode-HS to modulate the
z-position of the sensor.

Before each step move in z, one sample from the high-speed
mode is taken, after which we estimate the depth according to
the calibration curve. The robot then modulates its z-position
using a control policy, π, by performing a relative move from
the current perceived depth towards a target, which is defined
by sinusoidal trajectory in z,

Δzi = πi [zdec ] = (ztarget,i − zdec), (1)

zdec is the perceived depth and ztarget,i is the target at step i.
Here we use just one sample for predicting the depth in order to
minimise the reaction time and benefit from the high sampling
rate provided by mode-HS.

F. Task: Perception

For high-resolution sensing, using mode-HR, we implement
a biomimetic perception algorithm previously shown to achieve
superresolved acuity with the TacTip [11]. These methods have
successfully been applied to a contour following task [13], and
here we re-implement the same methods, applied to a different
sensor and a different representation of the data (pixel values
instead of pin deflections).

Fig. 3. Sensor mounted as an end-effector on the robot arm used for exper-
iments. The two stimuli used are also shown: circle (right) and non-uniform
volute (left).

1) Data Collection: For each of the four alternate pin layouts
show in Fig. 2 we collect two distinct datasets; the first is used for
training and the second for testing through off-line validation.
The robot makes successive taps onto the stimulus edge and
records 5 frames with the sensor held statically at the bottom of
the tap (∼2 mm of compression of sensing surface). Over the 5
frames, pixel values for all Ndims = 900 are recorded yielding a
total of 4500 sensor values. The stimulus used was a 3D-printed
circular object (diameter = 107 mm) with a 90◦ edge, shown in
Fig. 3.

For each dataset, taps are performed at a discrete set of angles
and radial positions relative to the stimulus edge (the same for
both sets). We use Nθ = 9 angles spanning −40◦ ≤ θi ≤ 40◦
and Nr = 21 radial positions spanning −10 mm ≤ rl ≤ 10 mm
centred on the edge of the stimulus, yielding a total of Nθ,r =
189 positions per dataset.

2) Decision Making: We adopt a standard ‘histogram’ like-
lihood model [12]. The data, d, is considered as a time series of
sensor values,

d = {sk (j) : 1 ≤ j ≤ Nsamples , 1 ≤ k ≤ Ndims}, (2)

j denotes the time sample and k denotes the sensor dimension
(pixels). After each test tap, Nθ,r likelihoods are calculated, one
for each position, using a measurement model of the training
data.

logP (d|rl , θi) =
Ndims∑

k=1

N samples∑

j=1

logPk (sk (j)|rl , θi)
NsamplesNdims

, (3)

where θn and rl are competing angle and radial position hypoth-
esis respectively. The probabilities, Pk (sk (j)|rl , θi) are found
with a histogram method applied to training data for each class.
The samples, sk , are binned into Nbins = 100 equal intervals.
This is transformed to a probability distribution by normalising
over the total number of samples at each class.

Pk (sk |rl , θi) = Pk (b|rl , θi) =
nkli(b) + ε

∑Nb in s
b=1 nkli(b)

, (4)
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Fig. 4. Image quality statistic plotted against depth of compression on a flat stimulus for the four pin layouts shown in Fig. 2. The raw data (shown in grey) was
recorded at constant depths with a 0.25 mm separation for 5 seconds at each depth. The red markers show the mean value at each depth and the line is a Gaussian
regression fit.

where n(b) is the total number of sample counts in bin b. Using
a constant offset, ε << 1, avoids taking the log of zero.

A decision regarding the sensor state is made each time new
sensory data becomes available. The decision is made according
to a maximum-likelihood criterion.

θdec = arg max
θi

P (d|θi) = arg max
θi

Nr∑

l=1

P (d|θn , rl), (5)

rdec = arg max
rl

P (d|rl) = arg max
rl

Nθ∑

i=1

P (d|θi, rl). (6)

Likelihoods, P (d|θi) and P (d|rl), are found by marginalising
the joint likelihood over radial position and angle respectively.

To test the perception, we perform off-line validation, com-
puting average angle and radial errors, eθ , er , with 10,000 sam-
ples randomly selected from the test set.

G. Task: Contour Following

In the presented exploration task, the robot is required to fol-
low the edge of an unknown object using only tactile feedback.
Tactile contour following requires both sensitive and robust per-
ception. It is therefore an ideal task to measure the performance
of the high resolution sensing modality.

1) Data Collection and Training: For training the robot we
use the same training dataset as in Section III-F1. The procedure
for building the likelihood model is also the same.

2) Testing: We implement a ‘tactile servoing’ approach for
robot control throughout the contour following task which was
initially implemented with the TacTip [13]. Here we outline the
approach, for a detailed description of the methods, we refer the
reader to the original text [13].

The robot is controlled through a perception-action cycle.
The sensor is tapped onto the stimulus edge where 5 frames
are recorded. The sensor angle and radial position, relative to
the stimulus edge, are then perceived according to the procedure
described in Section III-F2. This perception informs the actions
to select via a deterministic control policy.

The method for controlling the robot involves an action se-
lection policy, where the sensor attempts to maintain an optimal
position for perception. For the purpose of tactile contour fol-
lowing, action selection defines two procedures: i) tactile servo-
ing, which attempts to maintain a constant angle, θfix , relative
to the stimulus edge based on the perceived edge angle θdec and
ii) radial repositioning, where the sensor relocates perpendic-
ularly to the perceived edge towards a pre-set fixation ra-
dial displacement, rfix . The two policies are described by the

Fig. 5. Sensor trajectory in z (blue) and target (red) vs. time. Blue markers
show the sensor position at each step.

following two equations respectively:

Δθ = πθ [P (d|rl , θn )] = [gθ (θfix − θdec)]i , (7)

Δr = πr [P (d|rl , rl)] = [gr (rfix − rdec)]l , (8)

where gθ and gr are the angular and radial gain factors respec-
tively (set to 0.5 or 1 in previous work [13]) and [.]l and [.]i
shows that the action is rounded down to the nearest class. Here
the fixation points are chosen as the centre of the perceptual
ranges, θfix = 0 and rfix = 0.

Supplementary to action selection is an exploration policy.
Also defined by perception, the robot moves the sensor in a di-
rection tangential to the perceived edge angle by a fixed amount,
Δe = 3 mm, and therefore follows the contour.

IV. RESULTS

A. Contact Depth Control

Of the five statistics, only image quality provided a useful
response. All other measures were unresponsive when exposed
to tactile contact which is consistent with observations made
previously [14]. Fig. 4 shows the image quality (grey) plotted
against contact depth for the four considered pin layouts. Also
displayed is the average value for image quality at each step (red
markers) and a Gaussian process regression (black line), fitted
to the average values.

The sensor exhibits no noticeable relationship between image
quality and contact depth with Tip-A. Tips B-D exhibit a general
relationship of decreasing image quality with increasing contact
depth. We note that only Tip-B shows a monotonic relationship
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Fig. 6. Change in pixel intensity for 100 selected pixels, plotted in different colours, against angle (top) and radial distance (bottom) for the four pin layouts
shown in Fig. 2. The values are plotted as relative to the values at class zero for both angle and radius, (θ = 0, r = 0), above and below respectively. The pixels
are selected for each plot to display maximum variance.

over the full range. Furthermore, the range of sensor output is
significantly higher for Tip-B (∼43) than Tip-C (∼13) or D
(∼24). Hence, we conclude that the best pin layout for depth
control, when using image quality, is given by Tip-B.

To test the performance of our depth control method we
tasked the robot with following a predefined z-trajectory (see
Section III-E2). We use Tip-B for this test since it was found
to have the best relationship between image quality and depth
(Fig. 4). Results are shown in Fig. 5.

The sensor successfully follows the target to within ∼1.1 mm
and a mean absolute discrepancy of 0.37 mm. Divergence from
the target is mainly observed at the maximum z-position which
may be explained by hysteresis: magnified by a fast step rate,
the compliant tip requires time to equilibrate after each step.
Also, sensor noise (see Fig. 4) may have a negative impact on
accuracy of the prediction. The effect of noise would be reduced
by using the mean of multiple samples at each step, however,
this reduces the speed of prediction.

It is worth noting that the step rate here is defined, not only
by the sensor bandwidth but, more directly, by latency in the
robot control system: a finite amount of time is required for the
client to send control commands over a network to the robot
server and for the robot to execute that command. We therefore
stress that the use of mode-HS minimises the response time and
a lower bandwidth device would reduce the step rate.

B. Location and Angle Perception

Data collected with mode-HR through the procedure de-
scribed in Section III-F1 for the four tips are shown in Fig. 6.
Here we show the change in pixel intensity, relative to values
at θ = 0◦ and r = 0 mm above and below respectively, for 100
selected pixels, shown in different colours (pixels selected to dis-
play maximum variance). The plots show significant variation
in pixel values across the sample range, suggesting that pixels
are sufficient for tactile perception. Tip-A appears to exhibit the
most variation whilst Tip-C exhibits the least.

We computed error values as absolute discrepancies in per-
ceived angle and radius with the ground truth, averaged over
multiple test runs, as a function of angle and radial position;
eθ (θ, r) = 〈| θdec − θ |〉 and as a function of radial position;
eθ (r) =

∑Nθ

i=1 eθ (r, θi)/Nθ . All four tips achieved good per-
ceptual accuracy using the perception method described in

Fig. 7. Angular perception errors, with angle and radial position, eθ (θ, r)
(top) and with radial position, eθ (r) (bottom) for tips A and B. Above errors
are a heat map: 70◦ (black) - 0◦ (white).

TABLE I
MEAN ANGLE AND RADIAL ERRORS IN AN OFF-LINE PERCEPTION TASK

Mean angle error, eθ (degrees) Mean radial error, eθ (mm)

Tip-A 0 0.06
Tip-B 1.4 0.07
Tip-C 0.4 0.01
Tip-D 1.5 0.06

Values were computed ignoring the radial position classes −10 ≤ r ≤ −8.

Section III-F2. These error values are shown for tips A and
B in Fig. 7. We note that there is near perfect angle perception at
positions r ≥ −8 mm. Below −8 mm the sensor taps are in free
space, hence perceptual performance here is poor. Tip-B expe-
riences some loss of perceptual accuracy as contact is further
onto the stimulus, as expected because less of the edge is felt by
the sensor. All average angular and radial errors were below 2◦
and 0.1 mm respectively. The values for all four pin layouts are
shown in Table I.

C. Contour Following

The perception is tested in a general contour following task
to examine the robustness to previously unseen stimulation.
According the procedure described in Section III-G2, the robot
is required to follow the contour edge of a circular object (di-
ameter 110 mm) using the same training dataset as used in
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Fig. 8. Trajectories for a contour following task around a circle (diameter
110 mm) (blue curve) for four pin layouts. Radial and angular gains are 0.5.

TABLE II
MEAN ANGLE AND RADIAL ERRORS FOR THE FOUR ALTERNATE PIN LAYOUTS

IN A CONTOUR FOLLOWING TASK

Mean angle error, eθ (degrees) Mean radial error, eθ (mm)

Tip-A 14.3 3.40
Tip-B 7.6 2.56
Tip-C 5.1 2.57
Tip-D 7.8 2.29

Section IV-B. A radial fixation point centred on the range,
rfix = 0 was chosen. This location is validated by the results
from the perception task (Section IV-B). We performed the task
with all four tips and the results are shown in Fig. 8.

Good performance was found with radial and angular gains
gr , gθ = 0.5 and exploration steps e = 3 mm. All four tips suc-
cessfully completed the task. Visual inspection of the trajectories
shows minimal variation in performance: the worst performing
was Tip-A whilst the best performing was Tip-D. Absolute er-
rors in angular and radial perception are shown in Table II.
The perceptual accuracies appear to confirm the performance in
contour following. Interestingly, this result counters the angular
perception results from Section IV-B, suggesting that, whilst
Tip-B may under-perform when perceiving angles that have
previously been observed, the perception with this tip may gen-
eralise better than Tip-A to perceive stimulation that is dissimilar
to the training set.

D. Combined Modality Control

To demonstrate the benefits gained from dual-modality we
design a task where the robot uses both modes. Using Tip-B,

Fig. 9. Trajectory for contour following task on a non-uniform volute (blue
curve). Radial and angular gains are set to 0.5.

the robot must follow the edge of a previously unseen stimulus,
trained only with the circle shape used for previous experiments.
A non-uniform volute shape (see Fig. 3) is used, where the radius
of curvature varies from 20 mm to 50 mm.

The exact height of the volute is unknown to the robot, as well
as the location of the edge. To successfully apply the training
data to the unseen object, the sensor must attain the same relative
height. This is achieved with the use of mode-HS. First, the robot
moves the sensor down to a rough approximation of centre of
the test object. The image quality measure is monitored and
initial contact is detected by applying a threshold criterion. After
contact is detected, the sensor height is modulated to the correct
depth according to (1). The robot then locates the edge of test
object by monitoring image quality whilst moving in the x, y-
plane. The edge is detected when image quality rises above a
threshold.

Once the edge is detected, the robot follows the contour ac-
cording to the procedure used in earlier tasks. Results of contour
following on the volute, with an automated dual-mode approach
to depth and edge location, are shown in Fig. 9.

The robot successfully detects initial contact and locates the
edge of the volute using mode-HS. The robot then correctly
follows the contour, suggesting that the depth is modulated ac-
curately and general training data can be applied to the methods
in order to follow the contour of an unknown, non-uniform shape
using the second modality.

V. DISCUSSION

In this study, we presented a novel, dual-modal, optical tactile
sensor, without image processing or a high-resolution imaging
system. The sensor was tested in a series of tasks, aimed at as-
sessing its ability to use a high-speed modality for depth mod-
ulation and a second, high-resolution modality for perceiving
angle and radial position relative to an edge. We examined the
robustness of the high-resolution perception in a tactile contour
following task, using the methods developed in [13]. Finally,
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we presented a task requiring both modalities, where the robot
follows the contour of a previously unseen object, where the
exact object location and depth was unknown.

The sensor achieved good accuracy in both the depth con-
trol and angle and radial position perception tasks. The high-
resolution sensing was robust enough for successful contour
following around the circle and this generalised to the non-
uniform shape after using the high-speed modality to find the
object’s height and locate the edge.

We compared the performance of four alternate pin layouts
in the depth control, perception and contour following tasks.
Interestingly, there was little variation in performance between
the four pin layouts within the high-resolution mode when per-
ceiving angle and radial position. This was a surprising result;
however, our study was limited to concentric patterns of pins
which, whilst necessary for the TacTip, could be replaced by
an arbitrary pattern in the case where raw pixel values are used
as features. Hence, further study may elicit a more optimal pin
design. The pin layout had a large influence on the high-speed
sensing modality: Tip-B showed the most sensitivity in the im-
age quality statistic to tactile stimulation. Image quality is a
measure of the number of features present in the frame [7]. It
appears to be maximised when pins are at the optimum distance
from the lens and reduces as the pins move out of focus. We
suggest that Tip-B has the best balance between pin spacing,
number of pins and pin size for the image quality algorithm
to detect each pin as a separate feature. The ADNS-3080 may
struggle to separate the pins of Tip-A, for example, as separate
features, whilst tips C and D have fewer pins, yielding a lower
overall value in image quality.

Furthermore, the technology used in the presented sensor
has enabled dual-modality on a single integrated chip mak-
ing it a cost effective and compact option for future pro-
gression in tactile sensing. Here we focus on using the high-
speed mode as a depth control sensor which is necessary to
achieve robust tactile sensing in unknown environments. We
also stress the importance of a high-speed modality in mod-
ulating contact depth (related to pressure) in minimising the
risk of sensor damage. Pain reception, in nature, provides a
rapid response to stimulation when compared to more sen-
sitive or higher resolution tactile modalities. Indeed, the re-
sponse to pain is often a reflex, where the stimulation signal
bypasses the brain and directly excites motor control, demon-
strating that a rapid response to compromising environments is
necessary.

The presented sensor is an encouraging progression for op-
tical tactile sensing. Importantly, this study demonstrated that
image processing is unnecessary for optical tactile sensors and
accurate and robust perception is attainable with very low-
resolution images when using raw pixel values as features. This
has implications for future technologies such as reducing cost
and miniaturisation.
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