
Peer reviewed version
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.orggeochem.2018.03.012

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0146638018300639. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Archaeal and bacterial glycerol dialkyl glycerol tetraether (GDGT) lipids in environmental samples by high temperature-gas chromatography with flame ionisation and time-of-flight mass spectrometry detection

Sabine K. Lengger a,b,* , Paul A. Suttonb , Steven J. Rowlandb , Sarah J. Hurleyc , Ann Pearsonc , B. David A. Naafs d , Xinyue Dang d , Gordon N. Inglisa and Richard D. Pancost a

a Organic Geochemistry Unit and The Cabot Institute, School of Chemistry, University of Bristol, Bristol, UK.
b Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK.
c Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
d State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074 China.

*Corresponding author: School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom. Telephone: +44(0)1752 585 966, Email: sabine.lengger@plymouth.ac.uk

https://doi.org/10.1016/j.orggeochem.2018.03.012

Abstract

Archaeal isoprenoidal glycerol dibiphytanyl glycerol tetraether lipids (iGDGTs) and their non-isoprenoidal branched bacterial analogues (brGDGTs) have widespread applications in biogeochemistry and paleothermometry. Analysis of GDGTs usually involves separation using high performance liquid chromatography, typically coupled via atmospheric pressure chemical ionisation to mass spectrometric detection in selected ion-monitoring mode (HPLC-APCI-MS). However, reliable determination of ratios and, in particular, quantification by this technique, can be challenging due to differences in ionisation efficiencies of the various compounds. Quantification of GDGTs also relies on external calibration of the relative response to an internal standard with authenticated GDGTs, which are often not readily accessible. Here, we tested the suitability of high temperature gas chromatography with flame ionisation detection (HTGC-FID) for the determination of concentrations and tetraetherlipid-based ratios in marine and terrestrial samples. For this, we identified GDGTs in environmental samples using HTGC coupled to time-of-flight mass spectrometry (HTGC-MS). Using a purified GDGT standard, we show we can quantify GDGT-0 in environmental samples by GC-FID. Some GDGT-based ratios measured by HTGC-FID exhibited a linear correlation (1:1) with HPLC-MS derived ratios and weight-based ratios of mixtures of purified standards. However, ratios relying on minor isomers, such as TEX86 and MBT/CBT have many unresolved challenges for determination by HTGC. Detection limits were higher than for HPLC-MS. However, the advantages of employing HTGC-based methods include: 1) the independence from MS tuning-related differences in ionisation energies; 2) the potential for direct comparison with other, non-GDGT based biomarkers; and 3) a more complete insight into biomarker distributions in environmental samples by the extension of the temperature range. Quantitative elution of GDGTs from a HTGC column as demonstrated herein, will also enable their analysis by compound-specific isotope ratio mass spectrometry.
1. Introduction

Archaeal isoprenoidal glycerol dibiphytanyl tetraether lipids and the non-isoprenoidal, branched bacterial analogues (Fig. 1: 1A - iGDGTs; 1B - brGDGTs), are important classes of microbial biomarkers. Variations in their distributions serve as proxies for palaeo-temperature (Schouten et al., 2002; Weijers et al., 2007), organic matter sources (Hopmans et al., 2004), and soil pH (Weijers et al., 2007), reviewed by Pearson and Ingalls (2013) and Schouten et al. (2013b).

Due to the relatively high molecular masses of GDGTs (Fig. 1; 1000 to more than 1300 Da), analysis is usually carried out using high performance liquid chromatography coupled with mass spectrometry via atmospheric pressure chemical ionisation (i.e., HPLC-APCI-MS; Hopmans et al., 2000; Schouten et al., 2007; Knappy et al., 2009) or electrospray ionisation interfaces (Zhu et al., 2013). Alternatively, chemical degradation of the ether bonds (Fig. 1) is applied to obtain hydrocarbons (biphytanes or branched alkanes), which are then analysed using gas chromatography coupled with MS (GC-MS; Sehgal et al., 1962; De Rosa and Gambacorta, 1988; Schouten et al., 1998). However, due to the loss of structural information about the collocation of the biphyanes, it is not possible to use these moieties in proxy applications to reconstruct temperature or pH, and inconsistent reaction yields preclude their application as a quantitative proxy for organic matter (OM) sources. Biogeochemical applications to date therefore are generally limited to HPLC-APCI-MS, which is often carried out in selected ion monitoring (SIM) mode (Schouten et al., 2007). This approach relies on measurement of the signal intensities of protonated molecules [M+H]+ relative to an internal standard (Huguet et al., 2006), often producing semi-quantitative results due to the scarcity of authentic standards for external calibrations. Relative ionisation efficiencies for brGDGTs vs. iGDGTs, in particular, can deviate and are largely dependent on tuning or instrument sensitivity, resulting in discrepancies in relative abundances (Schouten et al., 2009, 2013a). This is problematic, given the use of ratios between br- and iGDGTs in order to distinguish OM sources (Branched over Isoprenoid Tetraether index, BIT; Hopmans et al., 2004). Recent efforts have been made towards improved chromatography (Hopmans et al., 2016), but also MS methods with higher mass-resolution such as time-of-flight secondary ion-MS (Sjövall et al., 2008), laser desorption coupled to Fourier-transform ion cyclotron resonance MS (Wörmer et al., 2014), and hybrid ion trap-orbitrap MS (Jensen et al., 2015). These methods allow the assignment of molecular formulae with high confidence; yet they are not quantitative; and are unable (without using chromatographic

![Figure 1. Structures of GDGT molecules analysed in this study. A: iGDGTs, B: brGDGTs.](image-url)
We hypothesise that HTGC-FID, which has only been reported in limited cases to date, could provide a useful alternative for quantification of GDGTs. HTGC-FID was used by Nichols et al. (1993) for analysing GDGTs of a culture of Thermoplasmataceae. Weijers et al. (2006) and Pancost et al. (2001, 2008) used HTGC-FID for analysis of archaeal lipids in a microbial mat from a methane seep. However, in these cases, identification of the peaks was only inferred from retention times, based on the reasoning that increasing cyclisation would increase retention times, as observed with analogous biphytanes and by comparison to distributions determined by HPLC-APCI-MS. Sutton and Rowland (2012) were the first to analyse trimethylsilylated ethers of iGDGTs in lipid extracts of an archaeal culture (Thermococcus waiotapuensis) using HTGC coupled with time-of-flight-MS (HTGC-Tof-MS), and obtained electron ionisation (EI) mass spectra of such compounds for the first time, also including a spectrum of an unidentified, but potentially GDGT-like compound in a marine sediment. Here, we apply the HTGC-MS method of Sutton and Rowland (2012) for analysis of environmental samples. We report, for the first time, the mass spectra and retention orders of the most abundant br- and iGDGTs in a marine sediment, a peat, and a cold seep microbial mat. We use HTGC-FID for quantification of GDGTs, as well as to determine ratios used as environmental proxies which we compare to values determined via HPLC-APCI-MS. Our demonstration of a reliable HTGC-FID method for quantification of GDGTs has extensive applications. It will enable quantitative comparisons with other biomarkers and allow an evaluation of relative concentrations independent from mass spectrometric tuning settings. Further, the achievement of quantitative elution of GDGTs from a HTGC column should enable their analysis by compound-specific isotope ratio mass spectrometry.

2. Methodology

Samples used for GDGT identification

GDGT-0 and crenarchaeol standards (Fig. 1A) were purified previously from marine sediments, with concentrations confirmed both gravimetrically and by quantitative combustion to CO₂ (Pearson et al., 2016). Environmental samples consisted of: 1) an extract of an in-house prepared mixture of Paleogene marine sediments from Deep Sea Drilling Project (DSDP) Sites 179 and 341, and from a section across the Creataceous/Palogene boundary at mid-Waipara, New Zealand (Taylor et al., 2013, 2018); 2) an extract of a peat from a Welsh ombrotrophic bog, Cors Caron (Hornibrook and Bowes, 2007); and 3) a carbonate sample derived from methane seep in the Dnieper mouth of the Black Sea (Roberts et al., 2008). Samples used for comparison of GDGT-derived ratios All samples and relevant references for the determination of GDGT-derived ratios are summarised in Table 1. Marine surface sediments used for BIT index comparison (Hopmans et al., 2004) were collected from the Baltic Sea during the METROL project (Aquilina et al., 2010, Table 1) and showed a large range of values (BIT 0.07 to 0.82). Samples used for the determination of the methylation index of branched tetrathethers and the cyclisation ratio of branched tetrathethers (MBT/CBT, Weijers et al., 2007) were from soils (Dang et al., 2016), peat (Naafs et al., 2017) and lignites (Inglis et al., 2017) as outlined in Table 1, and again represent a large range. A sample from a Cretaceous sediment (Naafs et al., 2016) and the marine sediment mixture was used to determine the TetraEther indeX of tetraethers consisting of 86 carbon atoms, TEX₈₆ (Schouten et al., 2002).

Extraction, purification and derivatisation

Samples were freeze-dried and extracted by Soxhlet extraction in dichloromethane/methanol (DCM/MeOH, 2:1, v:v) or a modified Bligh Dyer extraction (Bligh and Dyer, 1959; Lengger et al., 2012) to obtain a total lipid extract (TLE). All samples, except for the Dnieper cold seep, where the TLE could be analysed directly, were fractionated over alumina using n-hexane (apolar fraction), n-hexane/DCM (9:1, v:v, ketone fraction) and DCM/MeOH (1:1, v:v, polar fraction). Some of the samples had been subjected to different elution steps prior to elution of the polar fraction (Aquilina et al., 2010). The polar fractions were subsequently purified over silica with hexane/ethyl acetate (1:2, v:v), dried under a gentle flow of N₂, and one aliquot was derivatised to their trimethylsilyl (TMS) derivatives by heating (70 °C, 1h) with a mixture of N,O-bis(trimethylsilyl) trifluoroacetamide/trimethylchlorosilane (BSTFA/TMCS; 99:1, w/w; 50 µL) and pyridine (50 µL). The reactants were evaporated to dryness under a gentle stream of N₂ (40 °C) and dissolved in 50 µL of cyclohexane for analysis by HTGC-FID (1.0 µL injection) and further diluted as required for HTGC-MS (0.5 µL injection volume). Another aliquot was dissolved in 50-500 µL volumes of n-hexane/propan-2-ol (99:1, v:v, HPLC grade, Rathburn Chemicals, Walkburn, UK), filtered over a 0.45 µm PTFE filter (Thermo Fisher Scientific, Rockwood, TN, USA) and analysed by HPLC-APCI-MS using conditions as described by Hopmans et al. (2016).

Quantification

The GDGT-0 and crenarchaeol standard (Pearson et al., 2016) was used in varying concentrations from 0.56 to 140 µg/mL. A mixture of three triacylglycerols (TAGs) was used as an internal standard comprising trimyristin (C₃₃, tripalmitin (C₃₆) and tristearin (C₃₉), which were added to samples or to the purified GDGT-0 and crenarchaeol standard, prior to derivatisation with BSTFA/TMCS.

HTGC-FID

An HP-5890 Series II GC equipped with a cool-on-column inlet (manual injection) and flame ionisation detector was fitted with a VF5-HT capillary column (7 m or 15 m x 0.25 mm x 0.1 µm; Agilent Technologies UK Ltd., UK). The 15 m column was used when better separation of the lower molecular weight compounds was desired, and the 7 m column was used for quantification of iGDGTs and measurement of the ratios of iGDGTs and brGDGTs. Analysis on the 15 m column employed a temperature ramp from 58 °C (1 min hold) to 400 °C at 10 °C/min (10 min hold) and a flow of helium with a constant pressure of 20 psi. With the 7 m column, the starting and final temperatures were the same but a 15 °C/min temperature program and a constant pressure of 15 psi was employed in order to achieve a carrier gas flow that is sufficient for quantita-
tive elution of GDGTs. A final temperature of 400 °C was used to elute iGDGTs on the flat isothermal baseline. iGDGTs were baseline separated on a short column but brGDGTs co-eluted in one peak. Thus, in order to achieve chromatographic separation of the closely eluting isomers of brGDGTs, an HP 5890 Series IIa gas chromatograph with equilibrated pressure control (EPC) was fitted with a 30 m column and a 1 m x 0.25 mm HT-deactivated silica tubing guard column (Zebron Z-Guard, Phenomenex, UK). Analysis on the 30 m column employed a constant flow of 2 mL/min He, and a temperature ramp from 70 °C (1 min hold) to 400 °C at 3 °C/min (10 min hold). The longer column with a constant carrier gas flow resulted in baseline resolution of the brGDGTs with 0, 1 and 2 rings and allowed integration of the different isomers within these peaks.

The FID used H2 and air at pressures of 12 and 20 psi on the HP 5890 Series II and Series IIa, respectively, and was operated at 400 °C which was crucial for avoiding condensation of the compounds with high molecular weights on cold spots before reaching the flame for combustion. A mixture of ten n-alkanes ranging from C14 to C60 (all Sigma Aldrich, Gillingham, UK) with similar concentrations and eluting at temperatures up to 340 and 400 °C (on the 7 m and the 15 m / 30 m columns, respectively), was injected at regular intervals to monitor the chromatography (peak shapes) and quantitative elution (typical responses for the 7, 15 and 30 m columns, are shown in Supplementary Fig. S1).

HTGC-TOF-MS

Analysis was carried out using conditions described by Sutton and Rowland (2012). In brief, an Agilent 6890 gas chromatograph fitted with cool-on-column inlet (track oven, +3 °C) and a VFS-h Pt ultimetal capillary column (15 m x 0.25 mm x 0.1 µm; Agilent Technologies UK Ltd., UK) was interfaced via a custom transfer line to a BenchTOF-dxTM reflectron time-of-flight mass spectrometer (Almsco International, Llantrisant, UK). The chromatographic column was connected via a Siltite mini-union to the mass spectrometer using HT-deactivated tubing (nom. 2 m; Zebron Z-Guard, Phenomenex, Macclesfield, UK). Samples (0.5 µL) were manually injected, and the column oven was programmed from 40 to 430 °C at 20 °C/min, with helium used as the carrier gas (constant flow mode, 2.5 mL/min). The transfer line was maintained at 430 °C and the ion source (El mode, 70 eV) temperature at 380 °C. Data were recorded from m/z 50–1800.

Data analysis

HTGC-FID chromatograms were recorded using Clarity software (DataApex, Czech Republic) and HTGC-MS chromatograms were recorded using ProtoTOFTM (Version 1.1.1 Build 7). Integrated areas were obtained from the HTGC-FID chromatograms via Clarity and the open source program CHROMuLAN (PiKRON Ltd., Czech Republic). Data analysis of the peak areas was conducted using R and a built-in linear regression model lm. Residuals were plotted using ggplot2:::fortify function as the difference between the measured and the fitted values (y - ŷ), to investigate whether deviations in values from a 1:1 relationship showed dependencies on their magnitude. The critical level (1.67 σ, LC) and limit of detection (3.3 σ, LD), based purely on the standard deviation σ of a blank on the GC (0.08, 0.16 mV, respectively) and the correlation of peak height with injected amounts of GDGT-0 (Suppl. Table 1), result in a theoretical LC and LD of 2.77 and 2.81 ng injected on-column. As quantification, however, was based on comparison to an internal standard, LC and limit of detection (LD) were rather determined as 1.67 and 3.3 σ of the concentration of a typical sample (Bernal, 2014), which is a conservative approach. BIT, TEX86 and MBT/CBT values were determined according to the following equations:

\[\text{BIT} = \frac{\text{brGDGT} - \text{Ia} + \text{Iia} + \text{Illa}}{\text{brGDGT} - \text{Ia} + \text{Ila} + \text{Illa} + \text{Crenarchaeol}} \]

(Hopmans et al., 2004, Eqn. 1),

\[\text{TEX}_{86} = \frac{\text{GDGT} - 2 + \text{GDGT} - 3 + \text{Cren}}{\text{GDGT} - 1 + \text{GDGT} - 2 + \text{GDGT} - 3 + \text{Cren}} \]

(Schouten et al., 2002, Eqn. 2),

\[\text{MBT} = \frac{\text{brGDGT} - \text{Ia} + \text{Ia} + \text{lc}}{\text{brGDGT} - \text{Ia} + \text{Ila} + \text{Illa} + \text{Illa} + \text{Illa}} \]

(Weijers et al., 2007, Eqn. 3),

\[\text{CBT} = -\log \left(\frac{\text{brGDGT} - \text{Ib} + \text{Iib}}{\text{brGDGT} - \text{Ia} + \text{Illa}} \right) \]

(Weijers et al., 2007, Eqn. 4).

(Numbers and letters refer to compound structures in Fig. 1. In all cases, the brGDGTs refer to isomers with methyl groups at the 5- or the 6-position; De Jonge et al., 2014).

3. Results and Discussion

Identification and analysis of iGDGTs, pure standards and environmental samples

The purified standards GDGT-0 and crenarchaeol (Pearson et al., 2016) eluted near or at the maximum temperature (400–430 °C) when examined by HTGC-FID (Fig. 2A) and HTGC-TOFMS (Supplementary Fig. S2). GDGT-0 eluted first; its mass spectrum (Supplementary Fig. S2B), although weaker, was similar in key aspects to that obtained from a lipid extract of *T. waiotapuensis* (Sutton and Rowland, 2012). It showed peaks at m/z 1442 (monoisotopic mass of bis-TMS-derivatised GDGT-0 1445 Da), most likely derived from the molecular ion of the bis-trimethylsilylated compound after loss of hydrogens. It also showed peaks corresponding to [M–2(CH3)1+1H] at m/z 1354, possibly [M–CHO(CH3)2]+ at m/z 1341 (with some H-transfers) and [M–2Si(CH3)+2H] at m/z 1301. Further, fragmentation of the molecule by lateral cleavage into two symmetrical fragments of m/z 722 was observed, although in lower abundance than observed by Sutton and Rowland (2012), who analysed a thermophilic archaeon. The lower abundance of fragments derived from lateral cleavage in the marine GDGT-0 might be related to the parallel arrangement of the biphytanyl chains on the glycerol as opposed to an antiparallel arrangement, in line with recent suggestions (Liu et al., 2018). Asymmetrical cleavage would have resulted in m/z 825 and 619, ions which are present but not prominent. Ions at m/z 129/130/131 were observed, corresponding to the glycerol carbon backbone and a OTMS group [CH3CH2CH3OTMS+].
Figure 2. Partial HTGC chromatograms, showing elution of iGDGTs (and other compounds): A) a 1:1 mixture of GDGT-0 and crenarchaeol purified by preparative HPLC as analysed on a 7 m column, B) sample from a methane seep; C) marine sediment mix, including triacylglycerols added as standards, with enlarged iGDGT-region (insert) and, for comparison, the EIC m/z 129 obtained via HTGC-TOFMS. Other compounds detected are indicated. Retention times vary slightly due to shortening of the GC-column as a routine maintenance and lower flow rates necessary for HTGC-TOFMS.
The mass spectrum of the later-eluting crenarchaeol (Supplementary Fig. S2C) was also weak but contained a molecular ion at ca. \(m/z \) 1435 and a peak at \(m/z \) 1291, consistent with \([M^- - 2 Si(CH_3)] + 2H\] for crenarchaeol. This GDGT contains the same number of carbon atoms as GDGT-0, but possesses five rings and thus ten fewer hydrogen atoms. Crenarchaeol is asymmetrical (one biphytanylic chain containing two cyclopentyl and one containing two cyclohexyl moieties). Cleavage akin to the symmetrical cleavage observed in GDGT-0 would thus result in fragments with an \(m/z \) of 716 and 718; however, these are not obvious in the spectrum obtained.

TMS-derivatised GDGTs can be seen clearly by an extracted ion current of the abundant ion at \(m/z \) 129 (Supplementary Fig. S2A). Further, a peak of \(m/z \) 217 is observed in these spectra and those of GDGTs from the environmental samples, as well as by Sutton and Rowland (2012) and could derive from transfer of a TMS group to one of the carbons of the glycerol backbone resulting in \(CH_3CHC(OSi(CH_3))_3^- \) as is observed with hydroxy-fatty acids (Rontani and Aubert, 2004).

In the sediment from the cold seep, the fragments \(m/z \) 1301, 1299, 1297 and 1296 corresponding to \([M^- - 2 Si(CH_3)] + 2H\] confirmed the presence of GDGT-0 and, most likely, GDGT-1, GDGT-2 and GDGT-3 (FID trace Fig. 2B, spectra Supplementary Fig. S3A-C-E), respectively. This was in agreement with HPLC-APCI-MS measurements of the same sample (Supplementary Fig. S4A). These compounds elute later than GDGT-0, but earlier than crenarchaeol, consistent with the increasing cyclisation and thus inferred decreasing vapour pressures (Gliozzi et al., 1983). GDGT-1, -2 and -3 showed the same fragmentation patterns as GDGT-0, corresponding to the losses of TMS and hydrogen rearrangement, as well as the glycerol fragments at \(m/z \) 129/130. Both GDGT-1 and GDGT-2 showed fragments at \(m/z \) 720 (monocyclic biphytane), also including \(m/z \) 722 (for GDGT-1 / -2, one acyclic biphytane) at low abundance.

Other compounds identified included mono- and diether lipids, archaeol and \(sn2\)-hydroxyarchaeol (Fig. 2B).

In the marine sediment mix, compounds with retention behaviour and mass spectra identical to those of GDGT-0 and crenarchaeol were observed as the largest iGDGT peaks (Fig. 2C, S3A,B), and these identities were confirmed by co-injection with purified GDGT-0 and crenarchaeol. A peak eluting after crenarchaeol in the GC-FID chromatogram was tentatively identified as crenarchaeol isomer (Fig. 1). This was further supported by the very high intensities of this peak in a sediment that was known to contain a large amount of this compound (Naafs et al., 2016), and this peak was thus tentatively assigned as crenarchaeol isomer. This identification could not be confirmed by MS due to its very low volatility. GDGT-1, -2, and -3 were also present in the marine sediment mix, as evident from the HPLC-APCI-MS chromatogram (Supplementary Fig. S4B). In the HTGC-FID and HTGC-TOFMS chromatograms, these peaks could be identified based on co-elution with the GDGTs present in the seep sample, and based on their mass spectra, although spectra were weak due to the low abundance of the compounds. Crucially, these identifications and distributions were consistent with the HPLC-APCI-MS data (Supplementary Fig. S4A). A number of other small peaks in this region were observed. These could be due to H-GDGTs or different regio-, stereo-, or other isomers of the GDGTs (Schouten et al., 2013b; Liu et al., 2016). Lower molecular weight compounds identified were fatty acids, \(n \)-alkanols, sterols, diether lipids, and alkenones (Fig. 2C). Further analyses of more concentrated GDGT-fractions by HTGC-MS are thus of particular interest, as the separation that is complementary to that achieved by HPLC could provide crucial information for identification of GDGT-isomers.

Identification and analysis of brGDGTs in peat

In the peat extract, a small amount of GDGT-0 was observed by HTGC-FID (Fig. 3). A much larger peak eluting at 380 °C was found to represent acyclic brGDGTs (Fig. 1B), which co-eluted in one peak (Fig. 3C). While the major iGDGTs possess increasing numbers of rings (Fig. 1A), which are expected to have a large effect on volatility and thus retention (Gliozzi et al., 1983), the major acyclic brGDGTs differ in only one or two additional methyl branches (14 to 28 mass units, 1-2% of the total molecular mass), such that the observed incomplete resolution was expected. Identification was based on mass spectral fragmentation patterns of brGDGTs, which were similar to those of the iGDGTs: The mass spectra showed evident ions of most likely TMS-derivatised brGDGTs (\(m/z \) 1194, 1180 and 1166 for brGDGT-Ia, -Ib, and -Ic, respectively, Fig. S6), as well as ions with the corresponding losses of \(2 Si(CH_3)\) groups and a transfer of 2 or 3 hydrogens (\(m/z \) 1050, 1036, 1022, Fig. S6) and those corresponding to the TMSO group and the three carbons of the glycerol moiety (\(m/z \) 129/130/131, Fig. S6). Retention times of the acyclic brGDGTs were reversed compared to HPLC retention times and increased with increasing molecular weight. Cyclic brGDGTs (Fig. 1B) were found to elute after the non-cyclic GDGTs (Fig. 1B) and a spectrum of the most abundant cyclic brGDGT was obtained (brGDGT-Ib, \(m/z \) 1164/1163, fragmenting to \(m/z \) 1019/1020, Fig. S6). Other cyclic brGDGTs were present in low abundances but could be seen in the extracted ion current of \(m/z \) 129 (Fig. 3C).

HPLC-APCI-MS revealed that the peat possessed a distribution of brGDGTs dominated by brGDGT-Ia, IIa and IIIa (Fig. 1B), with minor amounts of the cyclic brGDGTs Ib and Ic, IIb and IIId (Supplementary Fig. S5). Analysis on a 30 m column with a 2 m precolumn enabled the partial resolution of these three major brGDGT isomers with zero, one, and two cyclic moieties (Fig. 3B); relative distributions were similar to those observed by HPLC-APCI-MS. Optimised chromatography, in particular a slow temperature ramp (3 °C), in addition to a retention gap of 2 m deactivated HTGC-tubing, allowed the partial resolution of three peaks within the first two peak clusters, which were tentatively identified as acyclic isomers with different methylation patterns (Ia, IIa, IIId, Fig. 1B). The abundances determined by HTGC methods agreed well with the results from HPLC-APCI-MS, as apparent from the single ion chromatograms and the reconstructed TIC of the \([M+H]^+\) of the brGDGTs (Supplementary Fig. S5). However, the HTGC-method was not capable of separating the 5- and 6-methylated isomers of the brGDGTs. Compounds detected in the lower molecular weight range included stigmastanol and stigmasterol, as well as various other triterpenoids and a series of fatty acids. Two unidentified compounds, most probably higher plant triterpenoids, eluted in the higher mass region and were also seen in the extracted ion current of \(m/z \) 129 (Fig. 3C). While this most likely represents the mass fragment of the glycerol TMS-ether produced under
Figure 3. Partial HTGC chromatograms, showing elution of brGDGTs (and other compounds): A) Peat sample as analysed on a 30 m column; sterols and triterpenoids are also indicated; B) an enlarged region showing elution and separation of different brGDGTs; C) TIC and extracted ion current for m/z 129, showing the brGDGTs and GDGT-0 in the peat sample analysed by HTGC-TOFMS using a 15 m column.
Figure 4. Quantification of GDGT-0. A) Correlation of Peak area ratios GDGT-0/trimyristin (normalised on μg trimyristin injected) with the amount of GDGT-0 injected in μg; B) Crenarchaeol/GDGT-0 peak area ratios determined from three mixtures of purified compounds of different relative composition (GDGT-0/Crenarchaeol = 1:1, 1:3.1, and 4:1.2); C and D show chromatograms of the peat and marine standards with added TAG standards.
EIMS conditions, (CH₃)₂SiOCH₂CH₂⁺, it is also a common fragment produced by A-ring cleavage in sterols and terpenols (Brooks et al., 1968; Goad and Akilisa, 1997).

Quantification of GDGTs by GC-FID

Due to lack of sufficient quantities of tetraether standards, the internal standards tested for quantitative estimation of GDGTs were three triacylglycerols (TAG): trimyristin (C₃₃₆), tripalmitin (C₄₄₆) and tristearin (C₄₇₈). The robustness of TAGs quantification via HTGC has been demonstrated previously (Buchgraber et al., 2004). The compounds required warming to ~40 °C in order to ensure quantitative dissolution of the C₃₃₆ TAG. TAGs appear suitable for quantification of GDGTs, as they elute only slightly earlier than brGDGTs, but later than the majority of other biomarkers, resulting in less likelihood of co-elution with other compounds. This became particularly important when a 7 m column with decreased resolving power was used. Even though all three TAGs are in principle suitable as internal standards, in this case, trimyristin (C₃₃₆) was used for all calculations, due to the lack of solubility issues and co-eluting compounds in all analysed samples.

GDGT quantification was explored using a solution with a known concentration of GDGT-0 purified from marine sediments (Pearson et al., 2016). Since only small amounts of this standard were available, we conducted only a limited number of quantification experiments. Mixtures of known concentrations of the GDGT-0 standard and TAGs (C₄₄₆, C₄₇₈ and C₃₃₆, dissolved to 0.56–140 µg/mL of GDGT-0 and 10–100 µg/mL TAG) were injected. These yielded a linear response across two orders of magnitude of variation in GDGT-0 concentration (Area ratio vs injected amount), with a slope of 1.067, an intercept of -0.003 ng and an R² value of 0.99 (Fig. 4A, Suppl. Table 1). The typical relative standard deviation of the peak area ratios was tested with one sample (5.6 µg/mL) and determined as 1%. This confirms that, even though the GC reaches temperatures of 400 °C, the areas achieved by HTGC-FID for GDGT-0 are directly proportional to its concentration in the same way as triacylglycerols (TAGs).

However, crenarchaeol elutes with a longer retention time than GDGT-0. Three mixtures of GDGT-0 and crenarchaeol were injected to test the effect of high temperatures and possible band broadening effects in the isothermal region on the quantification of the late eluting crenarchaeol. The GDGT-0/Crenarchaeol ratios of these mixtures, ranging from 0.31 to 2.3, were reasonably well reproduced by the HTGC-FID analyses (Fig. 4B), but crenarchaeol abundances were underestimated by an average 14%, implying that some caution is necessary in the isothermal region. This underestimation was more important at low crenarchaeol concentrations (one-tailed t-test statistically significant at the 95% confidence level, df = 4, for the 2.3 GDGT-0/Crenarchaeol-ratio).

Addition of a TAG standard to the marine and peat mixes (Fig. 4CD) allowed the determination of GDGT-0 and crenarchaeol concentrations in samples with 16 (GDGT-0, marine), and 21 ng (crenarchaeol, marine) injected on column, with standard deviations of 1.3 ng (GDGT-0) and 1.4 ng (crenarchaeol) (n=3). This implies a critical level (LC) of 2 ng and a limit of detection (LD) of 4 ng injected on-column (Bernal, 2014) in real samples, which corresponds to an LD of as low as 20 ng GDGT extracted (extraction techniques were not evaluated here, but have been discussed elsewhere; e.g., Lenger et al., 2012; Chaves Torres and Pancost, 2016). These values are higher than for HPLC-APCI-MS (ca. 0.25 ng on column LD; Huguet et al., 2006), which employs single ion monitoring with increased sensitivity. The FID-response is linear across the whole temperature range, i.e. between TAGs and GDGT-0 and even between GDGT-0 and crenarchaeol. This suggests that brGDGTs, with retention times approximately equal to those of the triacylglycerides, should also show similarly stable response factors. Consequently, using the same method, mean brGDGT concentrations were determined in the peat extract and were 60 (±5) µg/mL for the acyclic and 10 (±4) µg/mL for the cyclic brGDGTs (n=4). Disadvantage of the HTGC-FID quantification method, in addition to lower sensitivity, is the potential co-elution of other compounds of high molecular weight.

However, HTGC-FID is less dependent on the potentially variable relative response factors between standards and GDGTs that are observed when using HPLC-APCI-MS (Huguet et al., 2006). Most crucially, the determination in a single analysis of abundances of GDGTs and lower molecular weight biomarkers could improve the reliability of some proxies, such as the ratio of archaeol to GDGT-0 (ACE) in hypersaline systems (Turich and Freeman, 2011). In addition, quantitative elution from a HTGC-column could, in the future, enable the use of GC coupled to stable isotope ratio monitoring for the determination of δ¹³C and δ¹⁸H values of GDGTs and other analytes.

Biomarker ratios as determined by HTGC – potential and limitations

Branched over isoprenoid tetraether index (BIT)

The BIT index describes the relative amounts of brGDGTs compared to crenarchaeol, with the former being more common in terrestrial and the latter more common in marine environments (Hopmans et al., 2004). BIT indices determined from the same samples have been shown to vary between different laboratories, particularly in the intermediate value range (Schouten et al., 2013). The extraction and HPLC-APCI-MS protocols and equipment used in this study were similar to those used in the round robin experiments (Schouten et al., 2009, 2013a). Here, mixtures of extracts of the peat sample with a BIT of ~1 (only minor amounts of crenarchaeol) and the marine sediment mixture (BIT = 0.1) were analysed using LC-APCI-MS and HTGC-FID, to determine whether the two methods yielded comparable BIT indices. The resulting areas were normalised on the molecular weight of brGDGTs and crenarchaeol in order to reflect the fact that, by definition, BIT is a molar index (Schouten et al., 2013a). Molar BIT indices obtained using HTGC-FID (7 m column method) were well correlated with the values obtained by HPLC-APCI-MS, though slightly higher (Fig. 5A, BITgc=0.945 x BITlc–0.12, R² = 0.98, n=14 with three of those duplicates). A number of sediment extracts from the Baltic Sea (Aquílina et al., 2010) with a large range of BIT-values (0.07–0.82, Table 1) were also analysed. They showed a similar correlation between HPLC-APCI-MS and HTGC-FID determined values (Fig. 5B, BITgc=0.979 x BITlc–0.05, R² = 0.93). Residuals for both datasets were unstructured (Fig. 5C). However, in the case of very low crenarchaeol concentrations, HTGC-FID analyses approached the limit of quantification for crenarchaeol and
Figure 5. GDGT-based ratios used in environmental reconstruction, comparing values determined by both HTGC-FID and HPLC-APCI-MS. A) BIT ratios in mixtures of peat and marine standard; B) BIT ratios in samples from the Baltic Sea; C) residual mean error for a linear regression of all BIT samples shown in A and B as plotted versus reconstructed BIT value; D) MBT and E) CBT indices determined from various soil and peat samples. All samples and ratios summarised in Table 1 and Supplementary Table 2. 1:1 ratios, linear regressions and 95% confidence intervals are shown.
resulted in elevated BIT values (e.g. 1.0 vs. 0.82, Table 1). We thus report reliable BIT determination, particularly at high and intermediate crenarchaeol concentrations. These results, with an average BIT difference of 0.08 units and a maximum detected difference of 0.18 units, compare favourably to results from inter-lab studies using HPLC-MS techniques, which demonstrated a general limit of reproducibility of 0.410 BIT units (Schouten et al., 2009), and 0.15 BIT units (Schouten et al., 2013). Therefore, the application of the HTGC-FID method for BIT index determination, in addition to HPLC-APCI-MS, could allow screening for BIT indices in laboratories that only have GC-FID systems before external analysis. It could improve reproducibility and should render the application of correction factors (Schouten et al., 2009) based on mixtures of pure compounds less necessary.

Paleotemperature proxies (MBT/CBT and TEX\textsubscript{150})

In order to investigate the suitability of the HTGC approach for determination of MBT ratios, we analysed 5 peats and soils from a global dataset using both approaches (Table 1). As discussed above, brGDGTs are not fully resolved via HTGC-FID, but a suitable resolution for independent integration was obtained using a 30 m column (Fig. 3AB). BrGDGTs were separated into three groups of peaks, based on the number of rings (Fig. 3B). These groups were baseline resolved on a 30 m column, but individual acyclic and cyclic isomers were only partially resolved. Because the C-5 and C-6 methylated isomers could not be separated, we could not compare the more recently established temperature calibrations, e.g. \textit{MAT}\textsubscript{mr} (De Jonge et al., 2014). MBT indices generally agreed between the two methods (Fig. 5D, MBT\textsubscript{fID} = 1.14 x MBT\textsubscript{LC} – 0.13, R²=0.98). However, the degree of cyclisation, CBT (Fig. 5E), deviated more strongly from a 1:1 correlation (CBT\textsubscript{fID} = 0.707 x CBT\textsubscript{LC} – 0.12, R²=0.87). This is not surprising, as MBT is governed by the major isomers of brGDGTs and is less affected by the generally less abundant cyclic brGDGTs and therefore by the higher limit of quantification of the HTGC approach. In contrast, CBT is governed by the cyclopentane ring-bearing components which are present in relatively low abundance. TEX\textsubscript{150} determinations were also attempted using all samples of marine provenance. Abundances of the compounds used in this proxy were only high enough in a sample from a Cretaceous marine sediment (Naafs et al., 2016) and an in-house generated marine standard from recent marine sediments (Table 1). In these analyses, TEX\textsubscript{150} values deviated by between 0.01 and 0.07 units from the values determined by LC-MS. This is comparable to the reproducibility determined in inter-laboratory studies (0.050–0.067, Schouten et al., 2009 and 0.233–0.53, Schouten et al., 2013). However, the low abundances of the compounds used to determine the TEX\textsubscript{150} ratio in some marine sediment extracts will render a robust determination of TEX\textsubscript{150} values difficult when using HTGC-FID. The high retention time of the isomer of crenarchaeol in conjunction with the slight discrimination against GDGTs eluting at higher temperatures (Fig. 4B) further complicates the use of this technique for TEX\textsubscript{150} determinations. This approach is thus not of high enough sensitivity for robust TEX\textsubscript{150} determinations but could be of use as a screening methodology or to determine other ratios such as GDGT-0 / (GDGT-0 + crenarchaeol).

In summary, HTGC-FID can be used to detect suitably derivatised GDGTs. It is possible to use HTGC-FID to determine biomarker ratios of the most abundant GDGTs such as those used to calculate BIT (or MBT) indices. When ratios rely on compounds present in minor amounts such as the crenarchaeol regioisomer for TEX\textsubscript{0} and cyclic brGDGTs for CBT, the use of HTGC-FID is possible in some cases but produces larger errors. Further, HTGC-columns differ depending on the purpose of the analysis, with longer columns required for separation of brGDGTs, and shorter columns to allow elution of iGDGTs. Moreover, HTGC methods are not capable of separating 5- from 6-methylated brGDGTs, of importance in alkaline soils (De Jonge et al., 2014), thus either requiring a pH correction according to Weijers et al. (2007), or restricting use of HTGC to settings where these are known not to occur (e.g., acidic peats, Naafs et al., 2017). Even given those caveats, it is important to note that HTGC-FID lacks the resolving capacity of HPLC-MS approaches and is currently inferior in determining those parameters used in palaeoenvironmental reconstruction. This method, however, could provide new and complementary approaches for identification of GDGTs, families of isomers, and by extension isomers heretofore not identified by HPLC-MS.

4. Conclusion

The development of HTGC methods, coupled to TOFMS and FID, enabled the identification and quantification of GDGT-lipids in environmental samples. Spectra of five iGDGTs and four brGDGTs as TMS-ethers were obtained for the first time by HTGC-TOFMS, employing electron ionisation, and showed consistent fragmentation patterns. Quantification of GDGTs based on an internal standard was fairly robust, with only the latest eluting GDGTs potentially showing discrimination, especially at lower concentrations. Thus, the HTGC-FID approach would alleviate the need for frequent external calibrations with difficult to obtain standards, enable single-analysis comparisons of GDGT abundances with those of other compounds usually analysed by GC such as sterols, hopanols, or etherlipids such as archaeol, and present a fairly robust quantification method which could potentially improve inter-lab comparability. Currently, HTGC-methods are only suitable in a very limited amount of cases for the determination of the widely used GDGT-based ratios BIT, MBT/CBT and TEX\textsubscript{150}, but could allow the use of HTGC as a screening method. HTGC methods also can be used as a complementary method in the investigation of GDGT-structures and isomers. In addition, the separation and quantitative elution of GDGTs by HTGC, should enable the development of GDGT-specific isotope analyses based on continuous flow methodologies (i.e., HTGC-IRMS).

Acknowledgements: The authors would like to thank F. Sales Freitas for assistance with METROL samples. S.K.L. was funded by a Rubicon Grant 825.14.014 from the Netherlands Organisation for Scientific Research (NWO). R.D.P., B.D.A.N. and G.N.I. acknowledge support from ERC (Advanced Grant T-GRES, project reference 340923, to R.D.P.) A.P. and S.J.H. acknowledge support from US NSF Grants OCE-1129343 and EAR-1349126, and from the Gordon and Betty Moore Foundation (to A.P.). We are very grateful to the associate editor, and C. de Jonge and an anonymous reviewer for their comments, which greatly helped to improve the manuscript.
Table 1. Provenance of samples used and results for the relative abundances of GDGTs as determined by GC as well as the ratios calculated by GC and LC. In brackets, mol-based values for BIT are given acc. under the assumption of a unit-carbon response of the FID. 1 Aquilina et al., 2010, 2 Taylor et al., 2013, 2018 3 Inglis et al., 2017, 4 Naafs et al., 2017, 5 Dang et al., 2016, 6 Naafs et al., 2016.

<table>
<thead>
<tr>
<th>Reference / Provenance</th>
<th>Relative abundance / %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>brGDGTs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sk 808-5</td>
<td>Skagerrak1</td>
</tr>
<tr>
<td>351 GC 14</td>
<td>Western Baltic1</td>
</tr>
<tr>
<td>GTVC59 #31</td>
<td>Kattegat1</td>
</tr>
<tr>
<td>H820-3</td>
<td>Skagerrak</td>
</tr>
<tr>
<td>GTVC59 # 59</td>
<td>Kattegat1</td>
</tr>
<tr>
<td>GTGC28 #3</td>
<td>Skagerrak1</td>
</tr>
<tr>
<td>GTGC28 #1</td>
<td>Skagerrak1</td>
</tr>
<tr>
<td>GTGC28 #7</td>
<td>Skagerrak1</td>
</tr>
<tr>
<td>H876-4</td>
<td>Skagerrak1</td>
</tr>
<tr>
<td>H836-2</td>
<td>Skagerrak1</td>
</tr>
<tr>
<td>Marine sediment DSDP 179, 341, mid-Waipara K/Pg1</td>
<td>GC</td>
</tr>
<tr>
<td>MBT/CBT</td>
<td></td>
</tr>
<tr>
<td>Schoeningen Eocene lignite1</td>
<td>GC</td>
</tr>
<tr>
<td>Iberia, 221 Z20 Peat sample4</td>
<td>GC</td>
</tr>
<tr>
<td>Iberia, 221 Z40 Peat sample4</td>
<td>GC</td>
</tr>
<tr>
<td>EH-8 Chinese soil3</td>
<td>GC</td>
</tr>
<tr>
<td>EH-26 Chinese soil3</td>
<td>GC</td>
</tr>
<tr>
<td>Peat standard Cors Caron</td>
<td>GC</td>
</tr>
<tr>
<td>FSEB Indonesian peat4</td>
<td>GC</td>
</tr>
<tr>
<td>TEX86</td>
<td>GDGT-1</td>
</tr>
<tr>
<td>DSDP 398-2304 Cretaceous marine sed.5</td>
<td>GC</td>
</tr>
<tr>
<td>DSDP 179, 341, mid-Waipara K/Pg6</td>
<td>GC</td>
</tr>
</tbody>
</table>

Note: In brackets, mol-based values for BIT are given acc. under the assumption of a unit-carbon response of the FID.

