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Super-resolution imaging based on localising individual molecules is becoming increasingly widespread. While 

methods to localise molecules from the raw fluorescence data have been extensively analysed8, 10, 33, the 

subsequent interrogation of the point pattern data has been relatively under-studied. We have demonstrated a 

new, Bayesian cluster analysis algorithm for SMLM data.  

Unlike previously demonstrated methods based on the generation of cluster maps which involve an interpolation 

algorithm to generate the surface19, the new method is not prone to artefacts in sparse data sets, e.g. from low 

copy-number proteins. The method also has the possibility to allow faster imaging as less localisations are 

required to accurately identify and characterise clustering. Increasing the speed of SMLM data acquisition and 

processing has been one of the major goals to move the technique into the domain of live cell imaging33. 

The algorithm is only weakly sensitive to the prior settings and this is a major advantage over previous methods, 

where the initial choice of spatial scale and threshold has a large effect on the final results. In addition, here, all 

ROIs are analysed with the parameters which are estimated to be optimal for that specific region, rather than 

diverse regions being treated equally. The method is the first to take full account of the localisation precisions 

rather than treating all localisations as exact. We have stress-tested the algorithm under challenging conditions, 

for example, finding the detectability limit to be around 6 localisations per cluster. We hypothesise that a 

Bayesian model that explicitly targets small features would be more successful in detecting small multimers. 

Indeed, an interesting avenue of future research would be to develop a number of different models to capture 

the diversity of point patters observed in SMLM data, including fibres, meshes, areas of exclusion and so on. 

It is well known that raw SMLM data can exhibit artefacts, due to the photophysical nature of the process22, 23, 34, 

whereby individual molecules can re-excite and thus generate multiple localisations. In addition, due to the 

stochastic nature of the activation process, it is possible for several PSFs to overlap at the detector, causing errors 

in the extracted coordinates. Our algorithm does not attempt to correct or to be robust to multiple-blinking 

effects. If there is suspicion that these have not been adequately addressed by the localisation software, then the 

output of our algorithm should be interpreted with caution. In our case, we acquired experimental data using 

PALM, for which multiple blinking can be corrected. This is because of the different timescales of molecular 

photo-conversion and photo-blinking. In other experimental conditions, for example, when using small molecule 

dyes, such corrections may not be possible. Therefore, the outputs of the algorithm may contain artefacts, in 

particular, spurious clusters. Our algorithm remains a valuable exploratory tool for such data. 

Our method therefore allows the accurate and principled quantification of clustering behaviour in SMLM data in a 

manner that is more automatic, robust and objective than previously possible. In this initial case, we focused on a 

model consisting of circular, Gaussian distributed clusters overlaid on a CSR background. In future, it will be 

possible to create generative models with different clustering characteristics. Evaluation of SMLM data against 

such models may allow a better understanding of the biophysical principles underlying protein clustering.  

 



 

 

 

METHODS 

Methods and any associated references are available in the online version of the paper at 

 http://www.nature.com/naturemethods/. 

Note: Supplementary information is available on the Nature Methods website. 
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