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Abstract

Background: DNA methylation levels are known to vary over time, and modelling these

trajectories is crucial for our understanding of the biological relevance of these changes

over time. However, due to the computational cost of fitting multilevel models across the

epigenome, most trajectory modelling efforts to date have focused on a subset of CpG

sites identified through epigenome-wide association studies (EWAS) at individual time-

points.

Methods: We propose using linear regression across the repeated measures, estimating

cluster-robust standard errors using a sandwich estimator, as a less computationally in-

tensive strategy than multilevel modelling. We compared these two longitudinal

approaches, as well as three approaches based on EWAS (associated at baseline, at any

time-point and at all time-points), for identifying epigenetic change over time related to

an exposure using simulations and by applying them to blood DNA methylation profiles

from the Accessible Resource for Integrated Epigenomics Studies (ARIES).

Results: Restricting association testing to EWAS at baseline identified a less complete

set of associations than performing EWAS at each time-point or applying the longitudinal

modelling approaches to the full dataset. Linear regression models with cluster-robust

standard errors identified similar sets of associations with almost identical estimates of

effect as the multilevel models, while also being 74 times more efficient. Both longitu-

dinal modelling approaches identified comparable sets of CpG sites in ARIES with an as-

sociation with prenatal exposure to smoking (>70% agreement).

Conclusions: Linear regression with cluster-robust standard errors is an appropriate and

efficient approach for longitudinal analysis of DNA methylation data.
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Introduction

Epigenome-wide association studies (EWAS) have been

used to investigate the associations between DNA methyla-

tion and a wide range of phenotypes and diseases (see

Supplementary Material for short summary of EWAS,

available as Supplementary Data at IJE online).1,2 These

analyses tend to be cross-sectional, testing for associations

between methylation at CpG sites and the phenotype at

one point in time. However, DNA methylation levels are

known to vary over time3 and modelling these trajectories

could aid in understanding the biological relevance of epi-

genetic change over time.4 Previous investigations into epi-

genetic change have, so far, focused on analysing CpGs

that are associated with the phenotype at baseline or at

later time-points, as opposed to fitting longitudinal trajec-

tories for all available sites.5,6 These cross-sectional (time-

point-specific) approaches are practical and will identify

the CpGs with the largest effects at baseline and those sites

that diverge the most based on the exposure over time. The

drawback, however, is that additional CpGs that have a

time-varying association with an exposure might be missed

due to the misspecification of the model in relation to the

question of interest.

Multilevel models are often used in traditional epidemi-

ology to investigate associations between an exposure and

repeated measures of an outcome over time, while account-

ing for clustering within individuals using random effects.7

However, these models are computationally expensive

when fitting many separate outcomes, as is the case in

DNA methylation data using the Infinium Human

Methylation450 BeadChip (485 000 CpGs).8 An alterna-

tive approach is to fit linear regression models across

time-points and account for the non-independence with

cluster-robust standard errors.9 Although, these models are

less flexible than multilevel models,10 they will yield com-

parable population average estimates and inferences, while

being computationally more efficient.11

Here, we have compared cross-sectional and longitu-

dinal modelling approaches for identifying CpGs that

change over time in relation to an exposure. We first

performed a simulation study, and then applied these mod-

elling approaches to investigate the effect of prenatal ex-

posure to smoking on offspring DNA methylation change

over childhood and adolescence.

Methods

Modelling approaches

EWAS

The most widely used approach of identifying epigenetic

change over time is to perform an EWAS at baseline, and

investigate whether these associations persist over time.5,6

A more comprehensive approach is to perform an EWAS

at each time-point and fit the trajectories of those CpGs

that are associated with the exposure at one or more time-

points.12 Another possible approach is to model the trajec-

tories of those CpGs that are associated with the exposure

at all time-points.

Multilevel models

Multilevel models are often used to model trajectories over

time between repeated measures of an outcome and an ex-

posure. These models contain random-effect parameters

that model the within-and-between-individual variance

components.7 Assuming a (between-individual) random

intercept and slope for the exposure, then the model takes

the form:

yij ¼ ðb00 þ b01zj þ u0jÞ þ ðb10 þ b11zj þ u1jÞxij þ eij;

where yij and xij are the repeated measures of the outcome

and age/time for the i-th measurement for the j-th individ-

ual and zj is the exposure of interest. The u’s are the ran-

dom effects for the intercept and slope, and are assumed to

be uncorrelated with eij and uj � N(0, Ru) (where Ru is an

unstructured covariance matrix) and eij � N(0, re
2).

Linear regression with cluster-robust standard errors

Standard linear regression provides valid effect estimates

ignoring the repeated measures within individuals:

Key Messages

• DNA methylation levels vary over time, and studying these patterns will aid the understanding of the biological rele-

vance of these markers.

• Performing an epigenome-wide association study at each repeated measure time-point will identify the CpG sites

with the largest longitudinal associations with the exposure.

• Linear regression with cluster-robust standard errors is an efficient alternative to multilevel models for the longitu-

dinal analysis of DNA methylation data.
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yij ¼ ðb00 þ b01zj þ u0jÞ þ ðb10 þ b11zj þ u1jÞxij þ eij:

However, since the observations are clustered within

groups, the residual errors (eij) will not be independent,

thus the standard errors and subsequent inference from the

linear regression model will not be valid. To address this, a

sandwich estimator can be used to estimate cluster-robust

variances:

V ¼ ðX0XÞ�1
Xm
j¼1

w0j �wjðX0XÞ�1;

where m is the total number of clusters and wj ¼
Pnj

k¼1 ek

�xk with xk the row vector of predictors including the

intercept and ek the residual from the linear regression

model.9

We have developed an R package based on Rcpp13 to

fit cluster-robust standard errors across CpG sites (https://

github.com/jrs95/lmrse).

Simulation study

We assessed the performance of these approaches for iden-

tifying CpGs that change over time in relation to a binary

exposure through a simulation study. Specifically, we as-

sessed the following approaches: EWAS at the first time-

point only, EWAS at each time-point (considering two

strategies for identifying CpGs as being associated: CpGs

that are associated with the exposure at any, or at all,

time-points), multilevel models with a random intercept,

multilevel models with a random intercept and slope, and

linear regression with cluster-robust standard errors. This

simulation study was performed based on data from the

Tsaprouni et al. study,14 which investigated the relation-

ship between smoking and DNA methylation (data access-

ible at NCBI GEO database,15 accession GSE50660).

In each simulation, 100 CpGs were selected at random,

of which six CpGs were simulated to be associated with the

binary exposure (Supplementary Figure 1, available as

Supplementary Data at IJE online). These effects reflect the

likely epigenetic associations over time: (i) a constant effect

of the exposure but no effect of age on methylation; (ii) a

diverging effect of the exposure over time starting at the

same baseline value, where, for one level of the exposure,

there is no effect of age on methylation; (iii) a diverging ef-

fect of the exposure over time starting at the same baseline

value; (iv) a constant effect of the exposure as well as an

effect of age on methylation; (v) a diverging effect of the

exposure over time as well as an effect at baseline; (vi) a

converging effect of the exposure over time. The data

were simulated using a multilevel model with a random

intercept and slope as the underlying data-generating model

(Supplementary Material, available as Supplementary Data

at IJE online).

We considered various numbers of equally spaced re-

peated measures over childhood and adolescence from the

age of 10 to 18 years. The primary analyses were based on

five repeated measures, each 2 years apart. In secondary

analyses, we also considered three repeats, each 4 years

apart, and nine repeats, each 1 year apart.

Statistical power (and Type I error) of the parameters

relating to the binary exposure were calculated as the pro-

portion of simulation replicates that have a p<1�10–7.

Type I error was assessed using the 94 CpGs that were not

associated with the exposure either at baseline or over

time. Relative bias (i.e. ðbb � bÞ=b) of the parameters

related to the exposure was also used to compare the linear

regression model with robust standard errors in relation to

the multilevel model with both a random intercept and

slope. For each simulation scenario, 1000 simulation repli-

cates were performed.

Application to prenatal exposure to smoking and

DNA methylation change

Study population

This study used DNA methylation data generated as part

of the Avon Longitudinal Study of Parents and Children

(ALSPAC).16,17 ALSPAC recruited 14 541 pregnant

women with expected delivery dates between April 1991

and December 1992. Of these initial pregnancies, there

were 14 062 live births and 13 988 children who were alive

at 1 year of age. The study website contains details of all

the data that are available through a fully searchable data

dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary). Ethical approval for the study was

obtained from the ALSPAC Ethics and Law Committee

and the Local Research Ethics Committees. As part of the

Accessible Resource for Integrated Studies (ARIES) project

(http://www.ariesepigenomics.org.uk),18 a sub-sample of

1018 ALSPAC child–mother pairs had DNA methylation

measured. The ARIES participants were selected based on

availability of DNA samples at two time-points for the

mother (antenatal and at follow-up when the offspring was

in adolescence) and at three time-points for the offspring

(neonatal from cord blood, childhood (age 7) and adoles-

cence (age 17)).

Laboratory methods, quality control and preprocessing

The laboratory methods and quality-control procedures

used have been described elsewhere.5 In brief, the DNA

methylation wet laboratory and preprocessing analyses

were performed at the University of Bristol as part of the
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ARIES project, where the Infinium HumanMethylation450

BeadChip8 was used to measure genome-wide DNA

methylation levels at over 485 000 CpG sites. The methyla-

tion level at each CpG site was calculated as a beta value:

the ratio of the methylated probe intensity and the overall

intensity. These beta values range from 0 (no methylation)

to 1 (complete methylation). The samples were processed

using functional normalization with the meffil pack-

age.19,20 Further quality-control procedures are described

in the Supplementary Material, available as Supplementary

Data at IJE online.

Prenatal exposure to smoking

Prenatal exposure to smoking was defined as sustained

smoking of the mother during pregnancy. A mother was

classified as a sustained smoker if she smoked in the third

trimester and at least one of the first two trimesters. The

reference group consisted of mothers who had reported

not smoking in all three trimesters. We excluded all indi-

viduals who smoked in one trimester only (i.e. not sus-

tained), had missing data for more than one trimester or

had stopped smoking by the third trimester.

Statistical analyses

The cross-sectional and longitudinal approaches were fitted

to the three repeated measures of methylation in the off-

spring (neonatal, at age 7 and at age 17) to investigate the ef-

fect of sustained maternal smoking during pregnancy on

offspring DNA methylation. An EWAS was fitted at each of

the three time-points. Multilevel models (with random inter-

cept and slope) were fitted individually for each CpG, with

sustained maternal smoking during pregnancy as the expos-

ure of interest (with a baseline effect and an interaction with

age). The linear regression model with robust standard errors

takes on the same form as the multilevel models in terms of

fixed-effects parameters. All analyses were adjusted for off-

spring gender, maternal age, pre-pregnancy BMI, pre-

pregnancy weight, parity, maternal education, family social

class, alcohol intake during pregnancy and paternal smoking,

as well as cell counts estimated using the method described

by Houseman et al.21 We further adjusted the models for 20

(time-point specific) surrogate variables to account for re-

sidual batch effects.22 CpGs were considered to be associated

with prenatal exposure to smoking if any parameter related

to prenatal smoking was associated at EWAS level of signifi-

cance (p< 1�10–7). The computational times of performing

each strategy were assessed using 100 000 CpGs using 10

cores (2.6 GHz; 4 GB) on a linux server.

All analyses were performed using R (version 3.31).

Results

Simulation study

Figure 1 displays the simulation results of the statistical

power of each strategy (at p<1� 10–7 for any parameter

related to the binary exposure in the model) to identify

Figure 1. Simulation results for five repeated measures comparing approaches for identifying CpG sites associated with the exposure. Power refers

to the proportion of simulation replicates with any parameter related to the exposure with p<1E-7. EWAS, epigenome-wide association study;

Intercept, random intercept model; Slope, random intercept and slope model; Robust SEs, linear regression with cluster robust SEs.
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methylated CpGs associated with the binary exposure

when there were five repeated measures. The statistical

power of each time-specific EWAS and the baseline effect

and interaction with age of the exposure in the longitudinal

models (at p<1�10–7) for five repeated measures is shown

in Supplementary Figure 2, available as Supplementary

Data at IJE online. As expected, EWAS at the first time-

point failed to identify methylation at CpGs that are not

associated with the exposure at baseline but are as time

progresses (Figure 1(ii) and (iii)). However, this approach

did identify methylated CpGs that are associated with the

binary exposure at baseline, so is relevant for identifying

CpGs to investigate persistence of an effect over time using

multilevel models (Figure 1(i), (iv) and (v)). The approach

where only CpGs that are associated with the exposure at

all time-points are considered was highly conservative,

whereas the approach that selects CpGs that are associated

with the exposure at any time-point performed well across

the board, and on some occasions outperformed the longi-

tudinal approaches. However, this is likely to come at the

expense of a small inflation in Type I error as the number

of repeated measures increases.

The simulation results for the multilevel model with

only a random intercept differed slightly from the other

two longitudinal approaches (Figure 1 and Supplementary

Figure 2, available as Supplementary Data at IJE online).

In particular, there was less power to detect an association

at baseline, while there was greater power to detect the

interaction between the exposure and age (Supplementary

Figure 2, available as Supplementary Data at IJE online).

This is because the between-individual variability is mod-

elled in the intercept only, making the slope parameter

overly precise. This model misspecification manifests itself

in inflated Type I error for this model (Supplementary

Table 1, available as Supplementary Data at IJE online).

The multilevel model with random intercept and slope and

the linear regression model with robust standard errors

yielded very similar results in terms of power, bias and pre-

cision (Table 1).

The results for the simulations using three repeated

measures and nine repeated measures yielded similar re-

sults and inferences to those with five repeated measures

(Supplementary Figures 3–6, available as Supplementary

Data at IJE online). There was increased power of the

longitudinal approaches in comparison to cross-sectional

approaches as the number of repeated measures increased.

However, there were no material differences between

the two longitudinal modelling approaches when

the number of repeated measures was increased or

decreased (Supplementary Figures 3–6 and Supplementary

Tables 2 and 3, available as Supplementary Data at IJE

online).

Application to prenatal exposure to smoking and

DNA methylation change

In ARIES, 724 mother–offspring pairs had information on

prenatal exposure to smoking as well as all the other cova-

riates and methylation. Overall, this left 2044 observations

in the offspring available for analysis: 645 neonatal from

Table 1. Simulation results comparing the longitudinal model with random intercept and slope and linear regression models

with cluster-robust standard errors for the causal CpGs for five repeated measures

Longitudinal model with random intercept and slope Linear regression with cluster-robust SEs

CpG b01 b11 b01 b11

Relative bias SE Relative bias SE Relative bias SE Relative bias SE

(i) –0.0266 (0.194) 0.0034 NA 0.0008 –0.0269 (0.194) 0.0034 NA 0.0008

[–0.107,0.076] (0.0016) (0.0004) [–0.105, 0.076] (0.0016) (0.0004)

(ii) NA 0.0033 –0.0330 (0.222) 0.0008 NA 0.0033 –0.0330 (0.222) 0.0008

(0.0017) [–0.151, 0.106] (0.0004) (0.0017) [–0.146, 0.106] (0.0004)

(iii) NA 0.0033 –0.0200 (0.216) 0.0008 NA 0.0033 –0.0195 (0.217) 0.0008

(0.0013) [–0.121, 0.106] (0.0004) (0.0014) [–0.117, 0.107] (0.0004)

(iv) –0.0236 (0.195) 0.0033 NA 0.0008 –0.0237 (0.196) 0.0033 NA 0.0008

[–0.110, 0.083] (0.0016) (0.0003) [–0.111, 0.081] (0.0016) (0.0004)

(v) –0.0294 (0.212) 0.0033 –0.0113 (0.216) 0.0008 –0.0294 (0.212) 0.0033 –0.0112 (0.217) 0.0008

[–0.112, 0.079] (0.0014) [–0.119, 0.108] (0.0003) [–0.118, 0.081] (0.0014) [–0.123, 0.109] (0.0003)

(vi) –0.0258 (0.198) 0.0032 0.0210 (0.302) 0.0007 –0.0257 (0.198) 0.0033 0.0210 (0.304) 0.0007

[–0.112, 0.084] (0.0013) [–0.149, 0.163] (0.0003) [–0.108, 0.084] (0.0013) [–0.151, 0.167] (0.0003)

Relative bias refers to the estimated effect minus the underlying effect divided by the underlying effect. Relative bias is given in mean (standard deviation)

[lower quantile, upper quantile]. SE is given in mean (standard deviation). The mean bias for the null underlying effects were approximately zero. SE, standard

eror; NA, not applicable.
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cord blood, 698 during childhood at age 7 and 701 in ado-

lescence at age 17. In the mother–offspring pairs, 650

(89.8%) of the mothers were classified as non-smokers and

74 (10.2%) were classified as sustained smokers during

pregnancy (Table 2).

Methylation levels at 23 CpGs were associated with

prenatal smoking either through time-point specific EWAS

or longitudinally (with p<1�10–7; Table 3), of which 21

have previously been found to be associated with either

prenatal or own smoking.5,23,24 Nineteen CpGs were iden-

tified with prenatal exposure to smoking in the longitu-

dinal models either through an association at baseline or

with an interaction with age (16 CpGs were identified by

the multilevel model, 17 CpGs were identified by linear re-

gression with cluster-robust standard errors, 14 in com-

mon). In general, the multilevel models were more precise

in estimating the interaction between prenatal smoking

and age. However, the effect estimates across all of the

CpGs were very similar across both modelling approaches.

Four CpGs were solely identified through the longitudinal

analyses (cg09662411 and cg14179389 (GFI1), cg2746

2475 (DOCK9) and cg04224247 (WWC3)). An additional

four CpGs were identified through time-point-specific

EWAS exclusively (cg02586610 (SEMA5B), cg22089736

(PXT1), cg19089201 (MYO1G) and cg00213123 (CYP

1A1)); these CpGs were associated with prenatal exposure

to smoking at the later time-points (age 7 and age 17).

However, two of these CpGs showed little evidence of a

longitudinal association (SEMA5B and PXT1) with all

p-values > 0.001.

The longitudinal associations for a key subset of

the 23 methylated CpGs that are associated with pre-

natal smoking are displayed in Figure 2 (all 23 are pre-

sented in Supplementary Figures 7 and 8, available as

Supplementary Data at IJE online). Some of the methy-

lated CpGs that are associated with prenatal exposure to

smoking at baseline resolve over childhood and adoles-

cence to a similar methylation level (e.g. GFI1, AHRR and

WWC3). Other associations remained reasonably constant

over time (e.g. CNTNAP2, MYO1G and CYP1A1).

Table 2. Differences between individuals in ARIES whose mothers did not smoke in pregnancy compared with sustained

smokers

Smoking status

Covariate Non-smoker (N¼650) Sustained smoker (N ¼74) p-value Overall (N¼724)

Sex

Male 49.5 47.3 0.81 49.6

Female 50.5 52.7 50.4

Maternal age 30.1 (4.4) 28.2 (5.3) 0.004 29.9 (4.5)

Parity

0 43.4 48.7 0.66 44.0

1 40.1 35.1 39.6

2þ 16.5 16.2 16.4

Maternal education

CSE or Vocational 11.9 27.0 <0.001 13.4

O-level 33.4 45.9 34.7

A-level 54.7* 27.1* 29.8

Degree * * 22.1

Social class

I or II 67.2 50.0 <0.001 65.5

III (non-manual) 24.0 21.6 23.7

III (manual) 5.7 16.2 6.8

IV or V 3.1 12.2 4.0

Maternal BMI 22.7 (3.7) 22.9 (3.8) 0.70 22.7 (3.7)

Maternal weight 61.5 (10.3) 61.4 (11.0) 0.97 61.5 (10.4)

Alcohol

Non-drinker 34.0 40.5 0.32 34.7

Drank during pregnancy 66.0 59.5 65.3

Partner smoking

Non-smoker 82.6 31.1 <0.001 77.3

Smoker 17.4 68.9 22.7

Continuous variables are given in mean (standard deviation) and binary variables are given in %. *Percentage given for ‘A-level’ and ‘Degree’ combined, due to

small cell sizes.
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The computational time required to complete each ap-

proach for 100 000 CpGs were as follows: 15 seconds for

EWAS at baseline only, 45 seconds for EWAS at each time-

point, 1894 minutes for the multilevel model with a

random intercept and slope, and 26 minutes for the linear

regression model with cluster-robust standard errors.

Discussion

In this study, we have investigated approaches for identify-

ing epigenetic change between DNA methylation and an

exposure. These approaches were tested in simulations and

were used to investigate the effect of sustained maternal

smoking during pregnancy on offspring DNA methylation

change during childhood and adolescence.

Out of the three approaches that involved performing

an EWAS at baseline or at each time-point, the approach

of taking forward CpGs that are associated at any time-

point performed best. This approach will have increased

Type I error as the number of repeats increase (unless

appropriately accounted for); however, as the Bonferroni

significance threshold used in EWAS is already conserva-

tive, this is unlikely to be problem in practice. The multi-

level model with only a random intercept had increased

Type I error, through inflated power to detect a difference

in slope between those who are exposed and not exposed.

Thus, this model is likely to be an inappropriate choice of

model to fit across all CpGs. Linear regression with cluster-

robust standard errors performed well in comparison to the

multilevel model with a random intercept and slope. This

approach was also much more computationally efficient (74

times faster) than multilevel models. Further advantages of

this approach are consistent convergence and no depend-

ence on choice of random-effects parameters.11

Well-known associations of prenatal smoking were

identified through EWAS and through longitudinal ana-

lyses (GFI1, AHRR, MYO1G and CYP1A1),5,23,24 as well

as a few potentially novel associations (SEMA5B and

PXT1). Three-fifths of the associations that were identified

using the cross-sectional approaches and the longitudinal

approaches overlap (15 out of 23), with the cross-sectional

approaches identifying an additional four CpGs (of which

two showed little evidence of a longitudinal association in

follow-up analyses or an association in the literature and

therefore might be false positives) and the longitudinal

approaches identifying a further four CpGs. Some of these

longitudinal associations resolved over time (e.g. GFI1,

AHRR and WWC3), while others remained constant (e.g.

CNTNAP2, MYO1G and CYP1A1).

This study is also applicable to other areas of medical

research where repeated measures of high-dimensional

phenotypes are available, such as metabolomics.25 Indeed,

Figure 2. Longitudinal trajectories of methylation for a subset of the CpGs associated with prenatal smoking during pregnancy (Table 3; Figures S7 &

S8) in the offspring of non-smokers and sustained smokers during pregnancy from birth to age 20. The solid and dashed lines are the longitudinal

models for offspring of nonsmokers and sustained smokers respectively (the bands represent the 95% confidence intervals).
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the results of this study are broadly generalizable to any

study where large numbers of longitudinal analyses need to

be performed, including genome-wide association studies

(GWAS) with repeated measures of an outcome.26,27

However, fast approximate (two-stage) methods are avail-

able for GWAS of a longitudinal outcome where: (i) a

single longitudinal model of the outcome is fitted with

time/age and covariates only and (ii) the subject-specific

beta estimates of time/age from this model are then tested

against the genetic variants using linear regression.28,29

The limitations of this study also warrant consideration.

In the simulations and applied example, only a binary

exposure was considered, although we fully expect these

results to extrapolate to continuous exposures. The appli-

cation of the approaches to prenatal exposure to smoking

also has several limitations, especially with regard to re-

sidual confounding. In particular, the CpGs where the as-

sociation with prenatal exposure to smoking diverged over

time are perhaps more likely to be due to other factors (e.g.

exposure to smoking during childhood and adolescence),

which are not captured fully in the questionnaire data

available. The ARIES cohort is also not selected at random

from the full ALSPAC cohort and, as such, the results from

this study may not generalizable to the full ALSPAC cohort

or the general population.

In summary, linear regression with cluster-robust stand-

ard errors is a computationally efficient alternative to

multilevel models, yielding similar effect estimates and

overall inference, although performing an EWAS at each

time-point to identify CpGs is also a practical alternative

to fitting multilevel models across the epigenome.

Supplementary Data

Supplementary data are available at IJE online.
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