
Peer reviewed version

Link to published version (if available): 10.1136/jech-2018-211037

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ at https://jech.bmj.com/content/72/9/864. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Response to: ‘Synthetic control methodology as a tool for evaluating population-level health interventions’.

Frank de Vocht1,2, Colin Angus2,3, Kate Tilling1,2, Alan Brennan2,3, Matthew Hickman1,2

1 Population Health Sciences, Bristol Medical School, University of Bristol, UK.
2 NIHR School for Public Health Research
3 ScHARR School of Health and Related Research, University of Sheffield, UK.

Corresponding author: Dr Frank de Vocht. Population Health Sciences, Bristol Medical School, University of Bristol. Canynge Hall, 39 Whatley Road, Bristol, UK. BS8 2PS.
Email: frank.devocht@bristol.ac.uk

Contributorship: FV and CA conceived of the letter and wrote the first draft. All authors (FV, CA, KT, AB and MH) commented on draft versions and approved the final version.

Funding: No external funding was obtained.

Competing interests: The authors declare no competing interests

We read with interest the recent paper from Boutell and colleagues on the use of synthetic control methodology (SCM) as a tool for the evaluation of population-level health interventions (1).

We welcome and support their conclusion that these methods provide a valuable addition to the methodological arsenal of those undertaking evaluations of public health, and other, interventions where randomisation is not possible or practical, or retrospectively where the opportunity for randomisation was missed. We echo their call for other researchers to adopt these methods more widely.

As the literature review reported in Boutell et al. was conducted up to February 2016, it has missed more recent developments in the field. In particular we would like to highlight a study which we recently published in this journal in which we describe a Bayesian structural time series approach to SCM and apply it to estimate the impact of local alcohol licensing policies on hospital admissions and crime (2). This approach, originally developed by Broderson et al. (3), extends the work of Abadie and colleagues (4,5) and addresses several of the limitations identified by Boutell et al. In particular, by using Bayesian averaging over all combinations of controls or other predictors, this approach minimises the dependence of the counterfactual scenario on the specific set of controls (or other
predictors) selected by the researchers. In addition, through the use of structural time series to generate the synthetic control which represents the counterfactual, temporal changes in the correlations between predictors and outcomes pre-intervention (expressed as changes in model betas) can be taken into account. This methodology does not, therefore, rely on a synthetic control constructed at a single point in time. It is also possible to interpret the results of this approach in the framework of traditional statistical inference through posterior tail area probabilities (posterior predictive p-values), which can be interpreted as the posterior mean of classical p-values (6).

We would like to thank Boutell and colleagues for their clear explanation of synthetic control methods. We hope this will promote their use to improve the extent to which we can learn from, often messy, real-world interventions. By highlighting further developments in the methodology which address some of the limitations of ‘traditional’ SCM we hope to further broaden their use.