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Abstract
Most phylogenetic models assume that the evolutionary process is stationary and reversible. In addition to being
biologically improbable, these assumptions also impair inference by generating models under which the likelihood
does not depend on the position of the root. Consequently, the root of the tree cannot be inferred as part of the
analysis. Yet identifying the root position is a key component of phylogenetic inference because it provides a point of
reference for polarizing ancestor–descendant relationships and therefore interpreting the tree. In this paper, we inves-
tigate the effect of relaxing the unrealistic reversibility assumption and allowing the position of the root to be another
unknown. We propose two hierarchical models that are centered on a reversible model but perturbed to allow non-
reversibility. The models differ in the degree of structure imposed on the perturbations. The analysis is performed in the
Bayesian framework using Markov chain Monte Carlo methods for which software is provided. We illustrate the per-
formance of the two nonreversible models in analyses of simulated data using two types of topological priors. We then
apply the models to a real biological data set, the radiation of polyploid yeasts, for which there is robust biological
opinion about the root position. Finally, we apply the models to a second biological alignment for which the rooted tree is
controversial: the ribosomal tree of life. We compare the two nonreversible models and conclude that both are useful in
inferring the position of the root from real biological data.
Key words: rooting, phylogenetic tree, substitution model, Bayesian hierarchical modeling.

Introduction
The root of a phylogenetic tree is fundamental to its biological
interpretation, providing a critical reference point for
polarizing ancestor�descendant relationships and for deter-
mining the order in which key traits evolved along the tree
(Embley and Martin 2006). Despite its importance, most
models of sequence evolution are based on homogeneous
continuous time Markov processes (CTMPs), which are as-
sumed to be stationary and time-reversible, with the mathe-
matical consequence that the likelihood of a tree does not
depend on where it is rooted. Therefore, other methods are
generally used to root evolutionary trees. The most common
approach is to use an outgroup to the clade of interest, or
ingroup; the root is then placed on the branch connecting the
outgroup to the ingroup (Penny 1976; Huelsenbeck et al.
2002). However, this approach can be problematic if the out-
group is only distantly related to the ingroup because the long
branch leading to the outgroup can induce phylogenetic
artefacts such as long branch attraction (LBA), potentially
interfering with the inference of ingroup relationships and
the root position (Felsenstein 1978; Holland et al. 2003;
Bergsten 2005). Indeed it has been proposed that the three

domains of tree of life, in which Eukaryota represent the sister
group to a monophyletic Archaea, could have resulted from
LBA (Tourasse and Gouy 1999; Williams et al. 2013).
Outgroup rooting is also difficult to apply to the question
of rooting the universal tree, for which no obvious outgroup is
available. One solution to this problem has been to use pairs
of paralogous genes that diverged from each other before the
last common ancestor of all cellular life, so that one paralogue
can be used to root a tree of the other (Iwabe et al. 1989;
Brown and Doolittle 1995; Baldauf et al. 1996; Hashimoto and
Hasegawa 1996). However, for any given gene it is difficult to
unambiguously establish that duplication took place before
the divergence of the domains of life. The number of genes to
which this technique can be applied is also limited.

An alternative, but perhaps underexplored, approach to
rooting trees is to take a model-based approach. Focusing on
homogeneous CTMPs, it is helpful to distinguish between the
ideas of homogeneity, stationarity, and reversibility (e.g., see
Yang 2006, Chapter 1).We say that a model is homogeneous if
the evolutionary process at the root of the tree and across all
branches can be characterized by a single instantaneous rate
matrix. A homogeneous model is termed reversible if the rate
matrix on which it depends can be factorized into a diagonal
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matrix of stationary probabilities and a symmetric matrix of
exchangeability parameters. The latter determines the general
propensity for change between the different pairs of molec-
ular units (Whelan and Goldman 2001). Similarly, we call a
rate matrix reversible if it permits such a factorization. Finally,
a CTMP is stationary if the probability of a site being occupied
by each molecular unit (e.g., each nucleotide for DNA) does
not change over time and the probabilities of transitioning
between units over some time interval depend only on the
size of that interval and not on its position in time. It follows
that all nonstationary models are also nonhomogeneous, al-
though the converse need not be true.

The assumptions of stationarity and reversibility at the
heart of standard substitution models simplify the under-
pinning mathematics and are usually justified on the
grounds of computational convenience, rather than bio-
logical reasoning. Indeed, there is frequently evidence of
nonreversibility in biological data sets (Squartini and
Arndt 2008; Woodhams et al. 2015), whereas the assump-
tion of stationarity is often undermined by variation in
GC-content across species (Foster 2004; Cox et al. 2008).
These unrealistic assumptions also come at an inferential
cost, generating likelihood functions that are invariant to
the position of the root. Therefore, a model which relaxes
one or both assumptions can not only offer more biolog-
ical credibility, but also give rise to likelihood functions
that depend on the position of the root, providing a
model-based tool for rooting phylogenetic trees. Most
models that allow root inference are nonhomogeneous,
typically assigning different reversible rate matrices to dif-
ferent parts of the tree. Generally, these models are non-
stationary and allow variation in the theoretical
stationary distribution over time. Some also allow varia-
tion in the exchangeability parameters (Dutheil and
Boussau 2008) although, more commonly, they are fixed
across all branches. For example, Yang and Roberts (1995)
assigned common exchangeabilities but a different com-
position vector to each edge of the tree. Heaps et al.
(2014) fitted a similar model in a Bayesian framework,
but adopted a prior over composition vectors that
allowed information to be shared between branches.
Although biologically persuasive, such nonhomogeneous
models are, however, highly parameterized and efforts
have been made to seek more parsimonious representa-
tions. Yang and Roberts (1995) and Foster (2004) consid-
ered models in which composition vectors are applied to
groups of edges rather than to a single edge. Blanquart
and Lartillot (2006) used a variation of this idea by assum-
ing the compositional shifts occurred according to a
Poisson process, independently of speciation events. In
the context of nucleotide evolution, Galtier and Gouy
(1998) reduced the number of parameters in the model
of Yang and Roberts (1995) by using a model
parameterized by a single G þ C component, rather
than three free parameters for the composition vector.
But this inevitably came at the cost of a loss of informa-
tion from the alignment. In a general setting that allowed
different reversible or nonreversible rate matrices to be

assigned to each edge of the tree, Jayaswal et al. (2011)
devised a heuristic to reduce the number of rate matrices
using the distances between them as a similarity criteria
and forcing the most similar rate matrices to be identical.
However, given the speculative nature of the model
search, the algorithm offered no assurance of identifying
a global optimum. In spite of these moves, efforts to re-
duce the number of parameters, nonhomogeneous mod-
els remain substantially more highly parameterized than
their homogeneous counterparts. This makes model-
fitting computationally challenging, often limiting infer-
ence to fixed unrooted trees (e.g., Dutheil and Boussau
2008; Jayaswal et al. 2011) or alignments on a small num-
ber of taxa (e.g., Heaps et al. 2014). In this paper, we take a
Bayesian approach to inference and focus on rooting using a
homogeneous and stationary, but nonreversible, model that
requires only one rate matrix. We develop a Markov chain
Monte Carlo (MCMC) algorithm for posterior inference and
provide an associated software implementation. This non-
reversible model has previously been explored by
Huelsenbeck et al. (2002), however we build on that work
in a number of ways. First, Huelsenbeck et al. (2002) used a
so-called noninformative prior on the rate matrix, with in-
dependent uniform distributions for each off-diagonal ele-
ment. We incorporate prior structure and consider two
hierarchical priors that are centered on a standard reversible
rate matrix but allow nonreversible perturbations of the
individual elements. Our two priors differ in the structure
of the perturbation. Additionally, we do not fix the unrooted
topology and extend the inferential algorithm to allow in-
ference of rooted trees. This enables us to present a more
complete summary of the posterior over root positions and
to demonstrate the sensitivity of the analysis to different
topological priors. Finally, although Huelsenbeck et al.
(2002) only considered small alignments of up to nine
taxa, we consider more compelling analyses with data sets
of up to 36 taxa. To our knowledge, model-fitting software
supporting other nonstationary or nonreversible models
from the literature cannot be used routinely to learn simul-
taneously about both the unrooted topology and root po-
sition of non-clock trees for data sets of this size. We test our
hierarchical models on simulated data and on a real biolog-
ical data set for which there is robust biological opinion
about the position of the root. Finally, we apply the models
to an open question in biology: the root of the tree of life.

New Approaches
Top-Level Model Description
We consider a number of aligned homologous sequences and
aim to infer the evolutionary relationships among these
sequences. These relationships can be described in the form
of a bifurcating tree, where each edge represents the period of
time over which substitutions accumulate, and each bifurca-
tion represents a speciation event. The nucleotides at each
site of a sequence alignment on n taxa can be thought
of as independent realizations of a random variable X …
ðx1; . . .; xnÞT on a discrete space where xi 2 X and
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X … fA; G; C; Tg, for i … 1; . . . ; n. The evolutionary pro-
cess operating along each edge of the tree is described by
a homogeneous CTMP, where the future value of a nu-
cleotide at any given site depends on its current value
only and does not depend on its past values given this
current value, that is

PrðXðtÞ … jjXðt1Þ … i1; Xðt2Þ … i2; . . . ; XðtnÞ … inÞ

… PrðXðtÞ … jjXðtnÞ … inÞ;

where t > tn > tn�1 > . . . > t2 > t1. The process can
therefore be specified by a transition matrix Pð�Þ … fpijð�Þg
whose elements pijð�Þ represent the probabilities of chang-
ing from one nucleotide to another over a branch of length
�. Equivalently we can represent the process through an
instantaneous rate matrix Q, where Pð�Þ … exp ðQ�Þ. The
off-diagonal elements of Q represent an instantaneous rate
of change from one nucleotide to another during an infin-
itesimal period of time. The diagonal elements are specified
so that every row sums to zero. If branch lengths need to be
expressed in terms of expected number of substitutions
per site, then the Q matrix has to be rescaled so that
�

P
QiipQ;i … 1, where pQ … ðpQ;A; pQ;G; pQ;C; pQ;TÞ is

the theoretical stationary distribution of the process, which
can be calculated from Q (e.g., see Huelsenbeck et al. 2002).

Most phylogenetic models are time-reversible. Reversibility
implies that

pQ;ipij … pQ;jpji

and allows the rate matrix to be represented in the form
Q … SP, where S is a symmetric matrix containing the ex-
changeability parameters qij, i 6… j, as the off-diagonal elements
with qij … qji, and P … diagðpQÞ is a diagonal matrix contain-
ing the elements of pQ. Although the reversibility assumption
makes statistical models simpler, it has no biological justification
and is applied for computational convenience only. Indeed,
there is often evidence of nonreversibility in biological data
sets (Squartini and Arndt 2008; Woodhams et al. 2015).

The most common reversible rate matrix, with six ex-
changeability parameters, is the general time-reversible
(GTR) model (Tavare· 1986). The HKY85 model (Hasegawa
et al. 1985) is a widely used special case with only two distinct
qij, one of which is fixed to prevent arbitrary rescaling of the Q
matrix. The rate matrix Q of this model is then specified by
the compositional frequency vector p … ðpA; pG; pC; pTÞ
and by the transition�transversion rate ratio j as

Q …

� jpG pC pT

jpA � pC pT

pA pG � jpT

pA pG jpC �

0

BBBBB@

1

CCCCCA
:

Here the symbol � is used to indicate that the diagonal
elements are specified such that every row sums to zero.

We consider two Bayesian hierarchical models that are both
nonreversible and based on an unstructured rate matrix Q

whose 12, distinct off-diagonal elements qij are unconstrained
in R12

þ . The models differ in the prior they assign to these off-
diagonal elements. In each case the prior treats each qij as a log-
normal perturbation of the corresponding element of the un-
known rate matrix of a HKY85 model. The first hierarchical
model, henceforth called the NR (nonreversible) model,
utilizes one perturbation component, whereas the more com-
plex model, henceforth called the NR2 model, utilizes two
perturbation components. The variances of the perturbations
are unknown and can provide a measure of the evidence of
nonreversibility in the data. In both models we assume that the
variation between the overall rate of substitution events at
sites can be modeled by a discrete gamma distribution with
four rate categories and shape parameter a (Yang 1994).

Top-Level Prior Distribution
NR Model
We denote the off-diagonal elements of the rate matrix of the
NR model by qij, and the off-diagonal elements of the rate
matrix of the HKY85 model by qH

ij ; i 6… j, so for instance
qH

12 … jpG. The nonreversibility of the NR model is achieved
by a log-normal perturbation of the off-diagonal elements of
the rate matrix QH using a perturbation component r as
represented in the following directed acyclic graph (DAG):

DAGs are a useful way of representing (especially hierar-
chical) models graphically (e.g., see Spiegelhalter and
Lauritzen 1990). In a DAG, the nodes represent random var-
iables and the directed arrows are used to indicate the order
of conditioning when factorizing the joint probability density
of all the nodes. A double circle around a node indicates
deterministic dependence; in this case QH is completely de-
termined once p and j are known. In the DAG above, a is the
across-site heterogeneity parameter, s is the rooted topology,
and � are the branch lengths.

Working element-wise on a log scale, the off-diagonal ele-
ments of the rate matrix of the NR model can be expressed as,
for i 6… j

log qij … log qH
ij þ �ij;

where the �ij are independent Nð0; r2Þ quantities. Here the
perturbation standard deviation r represents the extent to
which Q departs from a HKY85 structure: the larger its value,
the greater the degree of departure. This parameter is treated
as an unknown quantity whose value we learn about during
the analysis. The unknowns of the hierarchical model there-
fore comprise: the composition vector p, the transition�
transversion rate ratio j, the perturbation standard deviation
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r, the off-diagonal elements of the rate matrix Q, the shape
parameter a, the branch lengths �, and the rooted topology s.
We express our initial uncertainty about these unknown
parameters though a prior distribution that takes the form

pðp; j; r; Q; a; �; sÞ … pðQjp; j; rÞpðp; j; r; a; �; sÞ (1)

in which the top-level prior density pðQjp; j; rÞ has been
described above. The bottom-level density pðp; j; r; a; �; sÞ
will be described in Bottom-Level Prior Distribution section.

NR2 Model
Under the NR model, departures from HKY85 structure could
lead to a nonreversible model or simply a GTR rate matrix. As
such the two types of deviation are confounded and so for any
given data set, learning that r is large does not necessarily
provide evidence of nonreversibility. The NR2 model addresses
this issue, thereby aiding model interpretation, by using a two-
stage process to perturb the underlying HKY85 rate matrix QH.
The first perturbation is within the space of GTR matrices,
perpendicular to the subspace of HKY85 matrices, leading to
a reversible rate matrix denoted QR. The second perturbation
acts on QR and is within the space of general rate matrices but
perpendicular to the subspace of GTR matrices, leading to a
general nonreversible rate matrix denoted Q. These two ran-
dom perturbations have different variance parameters r2

R and
r2

N, respectively. Biologically, the variance parameter r2
R repre-

sents the extent to which the data contradict the assumption
of a common rate of transition and a common rate of trans-
version. Similarly, the variance parameter r2

N provides a mea-
sure of the evidence in the data for the directionality of time.

The general structure of this model can be represented by
the following DAG:

The two-stage perturbation procedure is explained further
in Appendix A. Therefore, the unknown parameters in the NR2
model are the composition vector p, the transition�
transversion rate ratio j, the perturbation standard deviation
on the reversible plane rR, the perturbation standard deviation
on the nonreversible plane rN, the shape parameter a, the
branch lengths �, and the rooted topology s. We also have
latent variables comprising �1; . . . ; �5 for the reversible
perturbation and g1; g2; g3 for the nonreversible perturba-
tion (see Appendix A). The prior distribution of these
unknowns takes the form

p ðp; j; rR; rN; m; g; a; �; sÞ
… pðmjrRÞpðgjrNÞpðp; j; rR; rN; a; �; sÞ; (2)

where the top-level prior distributions with densities
pðmjrRÞ and pðgjrNÞ are �i � Nð0; r2

RÞ for i … 1; . . . ; 5

independently, and gi � Nð0; r2
NÞ for i … 1; 2; 3 indepen-

dently (see Appendix A). The bottom-level density pðp; j;
rR; rN; a; �; sÞ will be described in the following section.

Bottom-Level Prior Distribution
NR Model
The bottom-level prior density pðp; j; r; a; �; sÞ from equa-
tion (1) takes the form

pðp; j; r; a; �; sÞ … pðpÞpðjÞpðrÞpðaÞpð�ÞpðsÞ

to reflect our initial assessment of independence between
these parameter blocks.

The composition vector p is defined on the four-
dimensional simplex, that is, it has four positive elements,
constrained to sum to one. We choose to assign it a
Dirichlet prior, p � Dðapp0Þ, where p0 … ð0:25; 0:25; 0:25;
0:25Þ is the mean and ap is a concentration parameter
(we take ap … 4). This prior is exchangeable with respect
to the nucleotide labels, representing the belief that on aver-
age the number of different nucleotides in a sequence is the
same. We adopt a log-normal prior for the transition�
transversion rate ratio j � LNðlog j0; �2Þ, where j0 … 1
and � … 0.8. The parameters of the prior for j represent
our belief that the probability of j exceeding 2 is 0.2, that
is, Prðj < 2Þ … 0:8. This was informed by our experiences
of working with the HKY85 model; we judged that in around
80% of cases, the transition�transversion rate ratio was less
than 2. The perturbation parameter r is assigned an
Exponential prior r � ExpðcÞ, where the rate c … 2:3
reflects our prior belief that the probability of r exceeding
1 is 0.1, that is, Prðr < 1Þ … 0:9. Together with the rest of
our hierarchical specification, this choice induces a prior for
the stationary distribution pQ in which little density is
assigned to vectors where some characters are heavily favored
over the others.

The branch lengths are assigned independent Exponential
priors �i � ExpðlÞ, where i … 1; . . .; k and k is the number
of edges. The rate l equals 10, so that Eð�iÞ … 0:1, represent-
ing the belief that, on average, there will be 0.1 substitutions
per site. The shape parameter a is assigned a gamma prior,
a � Gað10; 10Þ, which ensures the expected substitution
rate in the Gaða; aÞ model for site-specific substitution rates
is modestly concentrated around 1. We define a root type as
the number of species on each side of the root. For example,
the root type 1 : ðn � 1Þ represents a root split on a pendant
edge, 2 : ðn � 2Þ represents a root split between two taxa
and all others, etc. The set T n of all rooted trees on n species
can be expressed as a partition

T n … [
kn

i…1
T i:n�i where kn …

ðn � 1Þ=2; if n odd;

n=2; if n even

(

in which T i:n�i represents the subset of rooted trees whose
root type is i : n � i. A uniform prior over rooted topologies
assigns a prior probability of more than 0.5 to the set T 1:n�1,
in other words, to trees with roots on pendant edges. We felt
that trees with deeper roots are generally more biologically
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plausible and should be assigned higher prior mass, although
still retaining a diffuse initial distribution. We therefore chose
to assign the rooted topology a prior according to the Yule
model of speciation, which assumes that at any given time
each of the species is equally likely to undergo a speciation
event. This generates a biologically defensible prior in which
each subset T i:n�i receives the same prior probability if n is
odd. If n is even, a near uniform distribution is induced, but
with the subset T n=2:n=2 receiving half the prior probability of
the others. This is illustrated in supplementary figure 1,
Supplementary Material online, which compares the uniform
and Yule priors for rooted trees on n … 4 taxa, showing the
probability assigned to the subsets T 1:3 and T 2:2, and to
every possible rooted tree.

The probability of generating a n-species tree T under the
Yule distribution is calculated by dividing the number of la-
belled histories for the tree T by the total number of all pos-
sible labelled histories on n species (Steel and McKenzie 2001).
This probability depends on the complete rooted topology
and therefore has to be recalculated at every iteration of the
Metropolis�Hastings algorithm used for inference. To save
computational time, we therefore additionally introduce an
approximation to the Yule prior, which we term the struc-
tured uniform prior, that assigns equal prior probability to all
subsets T 1:n�1; . . . ; T kn:n�kn of rooted trees. To sample a
rooted topology from this distribution, we first sample a sub-
set T i:n�i uniformly. This subset contains all the trees with
root type i : n � i. We then sample uniformly from the
rooted trees within T i:n�i. Computationally, this prior is
more convenient than the Yule prior because its mass func-
tion is independent of the particular unrooted topology and
only depends on the root type; see supplementary figure 1,
Supplementary Material online, for an illustration with trees
on n … 4 taxa. It also has the advantage of being uniform over
the subsets of the partition T i:n�i for any value of n. Posterior
sensitivity to the choice of topological prior will be discussed
in Analysis of Experimental Data section.

NR2 Model
The bottom-level prior density

pðp; j; rR; rN; a; �; sÞ from equation (2) takes the form

pðp; j; rR; rN; a; �; sÞ

… pðpÞpðjÞpðrRÞpðrNÞpðaÞpð�ÞpðsÞ:

The rate heterogeneity parameter a, branch lengths �,
rooted topology s, and the parameters p and j of the revers-
ible QH matrix are assigned the same priors as those used for
the NR model. Both perturbation standard deviations are
assigned the same prior as their analogue, r, in the NR model,
that is, rR � Expð2:3Þ and rN � Expð2:3Þ.

Results
Taking a Bayesian approach to inference, we fitted the NR and
NR2 models to the data sets described in this section using an
MCMC algorithm. Full details of the inferential procedure are
provided in Materials and Methods section.

Analysis of Simulated Data
Our simulations aim to explore the effect of three factors on
root inference: 1) different levels of nonreversibility in the
evolutionary process, 2) different topologies and branch
lengths, and 3) different levels of (unmodeled) nonstationar-
ity in the evolutionary process.

Different Levels of Nonreversibility in the Evolutionary Process
Here, we explore the posterior when the NR and NR2 models
are fitted to data that contain different levels of
nonreversibility.

Simulation of Data. The tree used to simulate the data is a
random 30-taxon tree (generated under the Yule birth
process), with the branch lengths drawn as independent
samples from a Ga(2, 20) distribution. The lengths of the
branches adjacent to the root are independent samples
from a Ga(1, 20) distribution such that their combined
length is Ga(2, 20) (supplementary fig. 2, Supplementary
Material online). This ensures that the lengths of all edges
on the underlying unrooted topology are statistically
indistinguishable.

Under the NR model, the perturbation from the underly-
ing reversible HKY85 rate matrix QH does not necessarily
produce a nonreversible rate matrix Q. It follows that the
perturbation parameter r in the NR model does not provide
a direct measure of the degree of nonreversibility. In contrast,
because the NR2 model decomposes the perturbation into its
reversible and nonreversible parts, the nonreversible pertur-
bation parameter rN in the NR2 model gives a more clear-cut
measurement. To assess the performance of both models
under a broad and clearly demarcated set of nonreversibility
conditions, we therefore simulated data using the NR2 model.
To this end we first fixed the base HKY85 rate matrix QH using
the values p … ð0:25; 0:25; 0:25; 0:25Þ and j … 2. In all cases
we used the same value for the reversible perturbation,
rR … 0:1, but investigated five different values of the non-
reversible perturbation standard deviation rN: rN … 0, 0.1,
0.25, 0.5, 1.0. To simulate the alignments, we used our own
software, programmed in Java, which is available in the
Supplementary Material online.

For each value of rN, we simulated five different rate ma-
trices Q, then for each rate matrix we simulated five different
alignments of length 2,000 bp. Simulated alignments from the
same rate matrix are clearly samples from a process with the
same stationary distribution pQ, whereas the simulations us-
ing different rate matrices sampled from the same value of rN
come from processes with different stationary distributions.
This type of alignment simulation therefore allows us to in-
vestigate different sources of variability in the data as the
degree of nonreversibility increases. All the alignments were
simulated using a gamma shape heterogeneity parameter
generated from Gað10; 10Þ: Note that the case of rN … 0
corresponds to the reversible GTR model. The other values of
rN were chosen so that the prior for the stationary distribu-
tion induced by the log-normal perturbation would be in the
range of values estimated for real data; as rN increases, sig-
nificant support is given to highly biased compositions, and
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for rN > 1:0 these are biologically unrealistic (supplementary
fig. 3, Supplementary Material online).

A measure of nonreversibility used elsewhere in the liter-
ature (e.g., Huelsenbeck et al. 2002; Squartini and Arndt 2008)
is Huelsenbeck�s I statistic, defined as I …

P
ij jpiqij � pjqjij.

Under a reversible model, piqij … pjqji for all i 6… j, and so
I … 0. However, I is strictly positive for nonreversible models,
with larger values indicating a greater degree of nonreversi-
bility. The values of Huelsenbeck�s I statistic for the models
used to generate the data in these experiments are shown in
table 1.

NR Model. Table 2 summarizes the marginal posterior prob-
abilities of the correct root split and the posterior means for
Huelsenbeck�s I statistic for the analyses using the NR model
under the Yule prior (the posterior distributions of the root
splits from a representative sample of simulations are shown
in supplementary fig. 4, Supplementary Material online).
When rN … 0 the posterior of the root splits is identical to
the prior (not shown) because the data contain no informa-
tion about the root. As rN increases, the root is inferred
substantially better, with rN … 1:0 demonstrating the best
root inference of all analyzed values of rN. However, the anal-
yses of the 25 simulated data sets for each value of rN do not
show identical behavior. There is clearly variability between
the data sets, although this is less noticeable for alignments
simulated with the same rate matrix. For smaller values of rN,
the true root split is not inferred well in all experiments.
However, as the degree of nonreversibility increases, the signal
from the data becomes more consistent and markedly stron-
ger. The true unrooted topology is also inferred with posterior
probability close to one in most cases (supplementary fig. 5,
Supplementary Material online). Altogether, this suggests
that in addition to inferring the unrooted topology, we can
also use the NR model to extract some information about the
root.

To evaluate the sensitivity of the analysis to the topological
prior, the same analysis was performed using the structured
uniform prior (supplementary table 1 and supplementary figs.
6 and 7, Supplementary Material online). This analysis gave
very similar results, as we might expect given the similarity
between the two priors.

NR2 Model. The NR and NR2 models differ only in the degree
of structure used to model the perturbation from the under-
lying HKY85 rate matrix QH. Therefore, as expected, the
results from the analyses under the NR2 model are almost
identical to those obtained under NR. Supplementary table 2,

Supplementary Material online, summarizes the marginal
posterior probabilities of the correct root split and the pos-
terior means for Huelsenbeck�s I statistic for the analyses using
the Yule prior (the posterior distributions of the root splits
from a representative sample of simulations are shown in
supplementary fig. 8, Supplementary Material online).
Again, we see that as the degree of nonreversibility increases,
the posterior becomes increasingly concentrated around the
root split used to simulate the data. In terms of inference for
the unrooted tree, as in the NR analyses, the true topology
had posterior probability close to 1 in most cases (supple-
mentary fig. 9, Supplementary Material online). The analysis
of the same data sets performed with the structured uniform
prior showed similar results (supplementary table 3 and sup-
plementary figs. 10 and 11, Supplementary Material online).

Different Topologies and Branch Lengths
In a Bayesian analysis, the posterior distribution reflects infor-
mation from both the prior and the data. When the prior and
likelihood are comparably concentrated, but in conflict, the
posterior can only represent a middle ground. In phyloge-
netics, inferences can be highly sensitive to the choice of prior
for branch lengths and the topology itself (Yang et al. 2005;
Alfaro and Holder 2006). Motivated by the kinds of conflicts
that are likely to arise in the analysis of real biological data, we
consider the robustness of posterior root inferences to con-
flicting prior and likelihood information concerning the

Table 1. Values of Huelsenbeck�s I Statistic for the Q Matrices Used in
the Simulations.

Data Sets rN … 0 rN … 0.1 rN … 0.25 rN … 0.5 rN … 1.0

1a–1e 0.0000 0.0550 0.2327 0.3282 1.0416
2a–2e 0.0000 0.0366 0.1871 0.4423 0.9019
3a–3e 0.0000 0.0737 0.3297 0.4699 0.7494
4a–4e 0.0000 0.0538 0.1675 0.3654 0.7282
5a–5e 0.0000 0.1012 0.3541 0.4402 0.9948

NOTE.�By design, there is a strong positive correlation between rN and I.

Table 2. Marginal Posterior Probabilities of the Correct Root Split for
the Simulations from the NR2 Model, Analyzed under the NR Model
with the Yule Prior.

Data
Set

rN … 0 rN … 0.1 rN … 0.25 rN … 0.5 rN … 1.0

1a 0.06 (0.04) 0.11 (0.05) 0.62 (0.22) 0.95 (0.35) 1.00 (1.07)
1b 0.06 (0.04) 0.10 (0.06) 0.55 (0.22) 0.78 (0.34) 1.00 (1.07)
1c 0.07 (0.02) 0.16 (0.06) 0.31 (0.21) 0.56 (0.34) 1.00 (1.04)
1d 0.08 (0.02) 0.07 (0.05) 0.61 (0.21) 0.92 (0.31) 1.00 (1.09)
1e 0.10 (0.03) 0.10 (0.04) 0.85 (0.27) 0.72 (0.35) 1.00 (1.06)
2a 0.10 (0.04) 0.08 (0.05) 0.07 (0.15) 0.86 (0.41) 0.93 (0.81)
2b 0.06 (0.05) 0.11 (0.05) 0.56 (0.16) 0.97 (0.43) 1.00 (0.90)
2c 0.10 (0.03) 0.20 (0.06) 0.54 (0.18) 0.64 (0.49) 1.00 (0.92)
2d 0.09 (0.04) 0.08 (0.03) 0.20 (0.19) 0.89 (0.45) 1.00 (0.87)
2e 0.09 (0.02) 0.12 (0.05) 0.41 (0.18) 0.98 (0.45) 1.00 (0.86)
3a 0.04 (0.05) 0.13 (0.08) 0.20 (0.36) 0.28 (0.49) 0.98 (0.75)
3b 0.09 (0.04) 0.16 (0.05) 0.49 (0.31) 0.99 (0.49) 1.00 (0.74)
3c 0.06 (0.05) 0.11 (0.04) 0.68 (0.33) 0.92 (0.44) 0.94 (0.78)
3d 0.07 (0.03) 0.09 (0.03) 0.35 (0.32) 0.99 (0.45) 0.99 (0.73)
3e 0.12 (0.04) 0.17 (0.04) 0.79 (0.32) 0.97 (0.45) 1.00 (0.72)
4a 0.06 (0.06) 0.08 (0.04) 0.10 (0.20) 0.64 (0.33) 1.00 (0.76)
4b 0.08 (0.02) 0.06 (0.03) 0.13 (0.16) 0.19 (0.38) 1.00 (0.80)
4c 0.07 (0.06) 0.08 (0.03) 0.21 (0.17) 0.38 (0.35) 1.00 (0.74)
4d 0.11 (0.02) 0.15 (0.06) 0.29 (0.17) 0.33 (0.37) 0.99 (0.74)
4e 0.08 (0.01) 0.09 (0.02) 0.73 (0.15) 0.38 (0.35) 0.98 (0.75)
5a 0.08 (0.03) 0.22 (0.10) 0.39 (0.34) 0.91 (0.50) 1.00 (1.06)
5b 0.07 (0.02) 0.13 (0.05) 0.20 (0.37) 0.93 (0.51) 1.00 (1.03)
5c 0.07 (0.03) 0.14 (0.12) 0.48 (0.32) 0.89 (0.46) 0.95 (0.99)
5d 0.09 (0.03) 0.16 (0.07) 0.35 (0.36) 0.97 (0.45) 0.95 (1.04)
5e 0.08 (0.02) 0.09 (0.06) 0.22 (0.32) 0.65 (0.45) 0.99 (1.00)

NOTE.�The posterior means for Huelsenbeck�s I statistic are indicated in parenthe-
ses. When the correct root split is a modal root split, the corresponding marginal
posterior probability appears underlined.
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rooted topology and branch lengths. In our analyses we adopt
the commonly used Exp(10) prior for branch lengths and a
Yule prior (or the approximating structured uniform prior)
over rooted topologies. An Exp(10) prior for branch lengths
asserts a strong prior belief that edges will be reasonably short.
Therefore, given an unrooted topology that contains a long
branch, the prior will typically support placement of the root
midway along this branch to break it up into two shorter
ones. In New Approaches section, we discussed properties
of the Yule prior for rooted topologies on n taxa, in par-
ticular that for n odd (even) it induces an exact (near)
uniform distribution over the subsets T 1:n�1; . . . ;
T kn:n�kn of rooted trees with each root type. However,
the subsets T i:n�i corresponding to unbalanced types,
like 1 : n � 1, tend to contain many more trees than
the subsets for more balanced types, like n=2 : n=2 for n
even or ðn � 1Þ=2 : ðn þ 1Þ=2 for n odd. The prior mass
therefore has to be distributed among fewer trees in the
latter case. It follows that the prior is not uniform over
root splits and trees that are more balanced typically re-
ceive more prior mass than those that are unbalanced, as
illustrated in supplementary figure 1, Supplementary
Material online. In the remainder of this section, we

therefore use simulation to examine posterior robustness
in cases where prior�likelihood conflict arises due to a
data-generating tree that is unbalanced or that contains
a long branch.

We base our simulations on an unrooted 30-taxon tree
derived from a recent analysis (fig. 1) (Williams et al. 2012).
This tree describes the relationships between Archaea and
Eukaryota. These relationships are still debated, concentrating
on two competing hypotheses about the tree of life: 1) the
three-domain hypothesis, according to which the root of the
tree comprising Archaea and Eukaryota is placed on the
branch separating monophyletic Archaea from monophyletic
Eukaryota (branch E1) and 2) the eocyte hypothesis which
places the root within a paraphyletic Archaea (branch E2).
Based on this unrooted tree, we construct six different rooted
trees by changing the placement of the root and the length of
the branch E1 according to table 3.

Trees 1, 3, and 5 are fairly balanced with root type 11:19,
whereas Trees 2, 4, and 6 are more unbalanced with root type
6:24. The Yule prior assigns almost 30% more mass to the
former rooted topology. In Trees 1 and 2 and, to a lesser
extent, Trees 5 and 6, the unrooted topology contains a
long internal branch. In Trees 3 and 4 this internal branch

FIG. 1. An unrooted 30-taxon tree derived from a recent analysis (Williams et al. 2012) describing the relationships between Archaea and Eukaryota.
A root on the branch E1 corresponds to the three-domain hypothesis (located between monophyletic Archaea and Eukaryota), whereas a root on
the branch E2 corresponds to the eocyte hypothesis (located within paraphyletic Archaea, separating Euryarchaeota from the clade comprising the
TACK superphylum and Eukaryota).
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is short. Given the unrooted tree depicted in figure 1, the prior
will therefore support placement of the root on branch E1
over E2, particularly if this branch is long.

We use the NR model to simulate a rate matrix Q with
p … ð0:25; 0:25; 0:25; 0:25Þ, j … 2 and r … 0:3. In turn, this

rate matrix is used to simulate three different alignments for
each tree. These alignments are then analyzed under the NR
model with the Yule prior.

Tree 1: Tree 1 is rooted on the long branch E1. Clearly the
likelihood for data generated from this tree will support the
correct placement of the root. Moreover, for the reasons
expressed above, the prior will also support rooting on edge
E1. It is not surprising, therefore, that we find the posterior is
very concentrated around the true root position (fig. 2a).

Tree 2: In Tree 2, the root is placed on the much shorter
branch E2, creating a fairly unbalanced unrooted topology
with a long interior branch E1. As such, data generated under
this tree will favor the correct root position on edge E2, but
the prior will favor a root on branch E1. This creates prior�
likelihood conflict. As expected, we find that the posterior
probability of the true root drops substantially in comparison

Table 3. Six Rooted Trees for Simulating the Data.

Tree Root Edge Length of E1

1 E1 1.3
2 E2 1.3
3 E1 0.1
4 E2 0.1
5 E1 0.3
6 E2 0.3

NOTE.�The trees have the unrooted topology of the tree depicted in �gure 1 but
differ in the placement of the root and the length of the branch E1. Note that if a tree
is rooted on branch Ei, the root is placed at the middle of Ei.

FIG. 2. Posterior distribution of the root splits for three different alignments simulated for each of the six rooted trees according to table 3. Different
bars on each plot represent different root splits ordered by posterior probabilities, with the highlighted bar representing the true root split. In the
plots for Trees 2, 4, and 6, the split corresponding to a root on edge E1 is also marked.
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to the analysis for Tree 1 and in two of the three analyses, the
posterior offers more support to a root on edge E1 (fig. 2b).

Tree 3: Tree 3 has the same rooted topology as Tree 1, but
the root branch E1 is now much shorter and the unrooted
topology does not contain any long edges. As for Tree 1,
prior�likelihood conflict does not arise but there is no longer
such pronounced prior support for placement of the root on
edge E1. Nevertheless, we find that the posterior is still con-
centrated around the true root position (fig. 2c).

Tree 4: Tree 4 has the same rooted topology as Tree 2, but
the long interior branch E1 is now shortened to 0.1. Although
the Yule prior generally favors more balanced trees than Tree
4, the prior for branch lengths no longer offers overwhelming
support to placement of the root on edge E1. We find that the
true root can now be recovered as the posterior mode
(fig. 2d) but with less support than in the analysis for Tree 3.

Tree 5: Tree 5 has the same rooted topology as Trees 1 and
3, but the root edge E1 has length 0.3, which lies between the
corresponding values for Trees 1 and 3. As expected, we find
that the true root is inferred as the posterior mode (fig. 2e),
and the posterior is less (more) concentrated around the
mode in comparison to the analysis of Tree 1 (Tree 3).

Tree 6: Tree 6 has the same rooted topology as Trees 2 and
4, but the internal edge E1 has length 0.3, which lies between
the corresponding values for Trees 2 and 4. The unrooted
topology has a moderately long interior edge and the rooted
topology is unbalanced, leading to some prior�likelihood
conflict. We find that a root on edge E1 sometimes receives
more posterior support than the true root (fig. 2f), although,
as expected, this effect is less pronounced than in the analysis
for Tree 2.

This simulation experiment illustrates the sensitivity of
root inferences to conflict between the prior and the likeli-
hood. The effect of a mismatch in information about branch
lengths is particularly noticeable. Given a particular unrooted
topology, although the likelihood might support the presence
of a long branch in the corresponding rooted tree, an Exp(10)
prior does not, and therefore favors placement of the root on
the long edge. Ideally constructing a more flexible prior that
more explicitly models topology and branch lengths jointly
will contribute to better root inference. However, given the
absence of very long branches, our results show that the
model is still able to extract information from the data about
the root even in the face of prior�likelihood conflict.

Different Levels of Nonstationarity in the Evolutionary
Process
If it was reasonable to assume that the evolutionary process
for a particular alignment was stationary, we would expect
the empirical sequence composition for each species to be
approximately the same. However, this is often not the case in
experimental data (Foster 2004; Cox et al. 2008). The NR and
NR2 models assume that the evolutionary process is station-
ary. Therefore, in cases where this is not a reasonable assump-
tion, model misspecification may have an effect on our
posterior inferences. For example, it has been previously
shown that failure to account for compositional

heterogeneity can lead to inferring incorrect topologies
with strong support (Foster 2004; Cox et al. 2008; Foster
et al. 2009; Williams et al. 2012). The remainder of this section
describes a simulation experiment to examine the robustness
of posterior root inference to situations where the data-
generating process exhibits different levels of nonstationarity.

We base our simulations on Tree 3, described previously, as
it has a rooted topology and branch lengths which are con-
sistent with the prior, removing prior�likelihood conflict
about the tree as a potential source of confounding. In these
experiments, we simulated data using a variant of the NR
model in which the distribution at the root of the tree was
equal to proot, where proot was not equal to the stationary
distribution pQ associated with the NR rate matrix Q. We
used the same rate matrix Q as that employed in the simu-
lations for Tree 3 in the previous subsection to allow com-
parison with the stationary case. We chose two values for
proot at Euclidean distances of 0.2 and 0.4 along the line
connecting pQ … (0.246, 0.287, 0.189, 0.278) to the extreme
composition vector (0.0, 0.5, 0.0, 0.5), which preserves the
ordering of the nucleotides in pQ. These were
proot;M … (0.1968, 0.3296, 0.1512, 0.3224) and
proot;L … (0.1476, 0.3732, 0.1134, 0.3668), respectively. These
root distributions are intended to represent increasing
degrees of nonstationarity and model misspecification, with
proot;L constituting a very biased composition vector. For
both root compositions, we simulated five alignments and
analyzed each of them under the NR model with the Yule
prior.

Table 4 summarizes the marginal posterior probabilities of
the correct root split for the various simulations (the poste-
rior distributions of the root splits are shown in supplemen-
tary fig. 12, Supplementary Material online). Indicated in
parentheses are the metric variances (Pawlowsky-Glahn and
Egozcue 2001) across taxa of the sequence composition for
each simulated alignment. This is a global measure of spread
for compositional data, with larger values indicating a greater
degree of compositional heterogeneity. When the degree of
nonstationarity is modest, it seems that the true root is still
recovered as the posterior mode, although the posterior is
more diffuse than it was in the stationary case. When the level
of nonstationarity is larger, as expected, posterior support for

Table 4. Marginal Posterior Probabilities of the Correct Root Split for
the Simulations under the Nonstationary Variant of the NR Model,
Analyzed Using the NR Model, with Stationary Distribution pQ , and
the Yule Prior.

Data Set pQ proot;M proot;L

1 0.69 (0.00029) 0.39 (0.00041) 0.37 (0.00087)
2 0.65 (0.00034) 0.64 (0.00043) 0.44 (0.00061)
3 0.56 (0.00039) 0.34 (0.00037) 0.18 (0.00100)
4 0.41 (0.00028) 0.60 (0.00040) 0.31 (0.00067)
5 0.47 (0.00041) 0.51 (0.00052) 0.31 (0.00062)

NOTE.�The distributions at the root are pQ and two distributions, proot;M and
proot;L , increasingly displaced from pQ . When the correct root split is a modal
root split, the corresponding marginal posterior probability appears in italics.
The metric variance of the empirical compositions in the simulated alignments is
indicated in parentheses.
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the true root is slightly eroded due to the greater degree of
model misspecification. The posterior distributions for the
unrooted topology, displayed in supplementary figure 13,
Supplementary Material online, show little evidence of an
effect of the degree of nonstationarity, with the true root
recovered as the posterior mode in most cases. Therefore, it
seems that the model offers robustness to, at least, moderate
degrees of nonstationarity, providing reassurance of the con-
tribution of the model to questions of root position in anal-
yses of real biological data.

Analysis of Experimental Data
Rooting the Radiation of Paleopolyploid Yeasts
We next investigated the performance of the NR and NR2
models on a real biological data set for which there is broad
biological consensus on the root position (Byrne and Wolfe
2005; Hedtke et al. 2006). The lineage leading to
Saccharomyces cerevisiae (brewer�s yeast) and its relatives
underwent a conserved whole-genome duplication (WGD)

about 100 million years ago (Wolfe and Shields 1997;
Kellis et al. 2004). Evidence for this WGD, in the form of
duplicated genes and genomic regions, is shared by all post-
WGD yeasts and defines the group as a clade from which the
root of the Saccharomycetales is excluded (fig. 3) (Byrne and
Wolfe 2005).

The root inferred through outgroup analysis separates a
clade comprising Eremothecium gossypii, Eremothecium cym-
balariae, Kluyveromyces lactis, Lachancea kluyveri, Lachancea
thermotolerans, and Lachancea waltii from the other species
(Hedtke et al. 2006). We analyzed an alignment of
concatenated large and small subunit ribosomal DNA
sequences for 20 yeast species, with a combined length of
4,460 bp. The sequences were aligned with MUSCLE (Edgar
2004), and poorly aligned regions were detected and removed
using TrimAl (Capella-Gutie·rrez et al. 2009). The alignment is
available in the Supplementary Material online. We analyzed
this data set with the NR and NR2 models, using both the
Yule prior and the structured uniform prior. In the analysis
with the structured uniform prior, the root split supported by

FIG. 3. Rooted phylogeny of the paleopolyploid yeasts supported by the whole-gene duplication analysis (not drawn to scale), reproduced from the
YGOB web site (Byrne and Wolfe 2005; http://ygob.ucd.ie 2015; last accessed January 1, 2015). The tree is rooted according to the outgroup
method based on an analysis with the GTR þ IþG model in a maximum likelihood framework (Hedtke et al. 2006). Roots 1 and 2 represent the two
most plausible posterior root splits in the current analysis.
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