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Abstract. An interpretation of intuitionistic fuzzy sets is proposed based
on random set theory and prototype theory. The extension of fuzzy labels
are modelled by lower and upper random set neighbourhoods, identifying
those element of the universe within an uncertain distance threshold of a
set of prototypical elements. These neighbourhoods are then generalised
to compound fuzzy descriptions generated as logical combinations of ba-
sic fuzzy labels. The single point coverage functions of these lower and
upper random sets are then shown to generate lower and upper member-
ship functions satisfying the min-max combination rules of interval fuzzy
set theory, the latter being isomophic to intuitionistic fuzzy set theory.

1 Introduction

Intuitionistic fuzzy sets (IFS) were first proposed by Atanassov [1] as a bipolar
model of fuzzy sets where membership and non-membership are considered sep-
arately. The basis of IFS are two measures τ and ν where, for x an element of the
underlying universe and θ a fuzzy description generated recursively from a set
of basic fuzzy labels through application of logical connectives ∧,∨ and ¬, τθ(x)
corresponds to the membership degree of x in the extension of θ 1 and νθ(x) is
the non-membership degree of x in the extension of θ. A duality relationship is
then defined between τ and ν such that, τ¬θ(x) = νθ(x) and ν¬θ(x) = τθ(x). It
is also assumed that τθ(x) + νθ(x) ≤ 1. Furthermore, τ and ν are fully truth-
functional satisfying the following combination rules for ∧ and ∨: For any fuzzy
descriptions θ and ϕ, and element x,

– τθ∧ϕ(x) = min(τθ(x), τϕ(x)), νθ∧ϕ(x) = max(νθ(x), νϕ(x))
– τθ∨ϕ(x) = max(τθ(x), τϕ(x)), νθ∨ϕ(x) = min(νθ(x), νϕ(x))

As shown by Atanassov and Gargov [2] and discussed by Dubois etal. [5], there
is an isomorphic relationship between IFS and an older notion of interval fuzzy
sets independently introduced by Zadeh [21], Grattan-Guiness [7], Jahn [11] and
Sambuc [19]. In this framework lower and upper membership degrees are defined,

1 The extension of θ is the set of elements to which the description θ can be appro-
priately applied
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where µ
θ
(x) is the lower membership degree of element x in the extension of θ,

and µθ(x) is the upper membership degree of x in θ. These lower and upper
memberships then satisfy the following properties: For any element x and fuzzy
descriptions θ and ϕ

– µ
θ
(x) ≤ µθ(x)

– µ
¬θ

(x) = 1 − µθ(x), and µ
¬θ(x) = 1 − µ

θ
(x)

– µ
θ∧ϕ

(x) = min(µ
θ
(x), µ

ϕ
(x)), µθ∧ϕ(x) = min(µθ(x), µϕ(x))

– µ
θ∨ϕ

(x) = max(µ
θ
(x), µ

ϕ
(x)), µθ∨ϕ(x) = max(µθ(x), µϕ(x))

The mapping between interval fuzzy sets and IFS is then obtained by taking
µ

θ
(x) = τθ(x) and µθ(x) = 1 − νθ(x). In fact it is for this interval valued fuzzy

set theory for which we shall propose a direct interpretation based on random
set theory and prototype theory.

Prototype theory has been proposed by Rosch [16] [17] as an alternative
model of concepts in natural language. The fundamental idea is that concepts,
instead of being defined by formal rules or mappings, are represented by a set of
prototypical cases. These cases correspond to those elements of the underlying
universe Ω, which it is certain satisfy the concept. Categorization of elements
from Ω is then based on similarity to the prototypes as quantified by a distance
metric defined on Ω (see [10] for an overview). By taking typicallity to be a
decreasing function of distance from prototypes, this approach would naturally
explain the fact that some instances are seen as being more typical exemplars of
a concept than others. For instance, robins are viewed as being a more typical
example of the concept bird than penguins, since the latter have certain atypical
characteristics such as the inability to fly. This notion of typicality is also strongly
related to concept vagueness where borderline cases have an intermediate range
of typicality values. In other words, such cases are not sufficiently similar to
the prototypes to be judged as having certain membership in the category but
are also not sufficiently dissimilar to the prototypes to be ruled out as being
certainly outside the category.

Random set theory has been proposed by Goodman and Nguyen as a frame-
work for linguistic reasoning in rule based systems [14], [8], [9]. Stated simply,
random sets are set-valued variables with an associated probability measure. In
Goodman and Nguyen’s work they provide a model of vague concepts from the
perspective that the extension of such a concept is an uncertain set. This is an
implicitly epistemic model of vagueness since by using a random set to model
a concept an intelligent agent is assuming that there is a correct extension set
about which they are uncertain. Notice that this does not require that there
is actually some objectively correct definition of the concept (as suggested by
Williamson [20]), but rather that the agent assumes, for the purposes of decision
making and communication, that such a definition exists (see Lawry [13] for a
discussion of this epistemic stance).

Dubois et al. [6] have identified both random sets and prototype theory as
possible interpretations of fuzzy set membership functions. More specifically,
given a random set R modelling a concept, the fuzzy set membership value
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of an element x in R is then taken to be the probability that the value of
R is a set which contains x. This is the single point coverage function of the
random set R. For the prototype theory model it is assumed that there exists
a similarity measure between the elements of Ω, which takes values in [0, 1].
Given a set of prototypical elements, the membership of x in the associated
fuzzy set is then taken as corresponding to the similarity between x and these
prototypes [18]. In [12] we have proposed a natural combination of prototype
theory and random set theory to model linguistic labels and descriptions. The
idea behind this approach is that, in order to decide whether the assertion ‘x
is Li’ is appropriate for element x and label Li with prototypes Pi, an agent
would threshold the distance between x and Pi. In other words, Li would be
deemed an appropriate label for x provided that d(x, Pi) ≤ ǫ, for some distance
function d : Ω2 → [0,∞) and threshold ǫ ≥ 0. However, the inherent uncertainty
about the extension of Li would naturally result in uncertainty about the value
of threshold ǫ. Consequently, the extension of Li would correspond to a random
set neighbourhood of the prototypes of Li as defined by those elements which
lie within the uncertain threshold ǫ of Pi. In the sequel we extend this idea, so
as to generate lower and upper neighbourhoods as extensions of a concept by
introducing lower and upper thresholds.

2 Lower and Upper Membership Functions

We envisage a population of communicating agents applying a finite set of la-
bels to describe the elements of an underlying universe of discourse. Given an
element x an agent must decide which labels and compound descriptions are
appropriate to describe x, where appropriateness is governed by the linguistic
conventions of the population. Agents adopt the epistemic stance [13] by assum-
ing that there is an uncertain but crisp division between those labels which are,
and those which are not appropriate to describe a given element. Now since an
agent’s knowledge of these linguistic conventions, obtained through their expe-
rience of communication with others, is partial and often conflicting they will
have significant uncertainty about the appropriateness of labels. It is assumed,
however, that there will be prototypical elements for which they will be certain
that a given label can describe. These prototypes will then form the basis of the
agent’s representation of each label. More formally:

Let Ω denote the underlying universe of discourse and LA = {L1, . . . , Ln} be
a finite set of labels for describing elements of Ω. LE then corresponds to the set
of compound express generated by recursive application of the connectives ∧, ∨
and ¬ to the labels in LA. For example, if LA contains labels red and blue, then
LE contains expressions including red and blue, red or blue, not red, not blue, red

and not blue etc. For each label Li there is a set of prototypical elements Pi ⊆ Ω,
such that Li is certainly appropriate to describe any prototypical elements in Pi.
Given a distance function d : Ω2 → [0,∞) satisfying d(x, x) = 0 and d(x, y) =
d(y, x) for all x, y ∈ Ω, lower and upper extensions of each label are defined to be
those elements of Ω with distance from Pi less than or equal to a lower and an
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upper threshold value respectively. In other words, the lower extension of Li is
taken to be {x ∈ Ω : d(x, Pi) ≤ ǫ} and the upper extension {x ∈ Ω : d(x, Pi) ≤
ǫ}, where ǫ ≤ ǫ and d(x, Pi) = inf{d(x, y) : y ∈ Pi}. Here, we further assume
that both ǫ and ǫ are functions of a single parameter α taking values in [0, 1]. The
underlying intuition is that α quantifies an agent’s overall level of imprecision in
their definition of labels, so that as α increases the difference between the upper
extension of a label and its lower extension decreases. In effect this means that
there exists an increasing function f : [0, 1] → [0,∞) and a decreasing function

f : [0, 1] → [0,∞) such that f ≤ f and for which ǫ = f(α) and ǫ = f(α).

Definition 1. Lower and Upper Threshold Functions

f : [0, 1] → [0,∞) and f : [0, 1] → [0,∞) where f is an increasing function and

f is a decreasing function satisfying ∀α ∈ [0, 1] f(α) ≤ f(α).

The lower and upper extension of the labels and the compound descriptions
in LE are then defined recursively as follows:

Definition 2. Lower and Upper Random Neighbourhoods

– ∀Li ∈ LA Nα
Li

= {x : d(x, Pi) ≤ f(α)}, N
α

Li
= {x : d(x, Pi) ≤ f(α)}.

– ∀θ, ϕ ∈ LE Nα
θ∧ϕ = Nα

θ ∩Nα
ϕ, N

α

θ∧ϕ = N
α

θ ∩N
α

ϕ.

– ∀θ, ϕ ∈ LE Nα
θ∨ϕ = Nα

θ ∪Nα
ϕ, N

α

θ∨ϕ = N
α

θ ∪N
α

ϕ.

– ∀θ ∈ LE Nα
¬θ = (N

α

θ )c, N
α

¬θ = (Nα
θ )c

Now in view of the distributed manner in which language is learnt through
the interaction and communications between a population of agents, it is likely
that an individual agent will be uncertain as to which value of α should be
adopted in a given context. Here, in keeping with the epistemic stance, we model
this uncertainty by a probability density function δ on α. The lower and upper
membership functions of expression θ ∈ LE for element x ∈ Ω are then given
by the probability of a value of α such that x ∈ Nα

θ and the probability of an α

such that x ∈ N
α

θ respectively.

Definition 3. Lower and Upper Membership Functions

Let δ be a density function on [0, 1]. Then ∀θ ∈ LE, ∀x ∈ Ω we define µ
θ
(x) =

δ({α : x ∈ Nα
θ }) and µθ(x) = δ({α : x ∈ N

α

θ })

Here µ
θ
(x) quantifies the agent’s belief that expression θ is definitely appro-

priate to describe x, and µθ(x) is the belief that θ is possibly appropriate to
describe x. These lower and upper measures attempt to capture the intuition
that ‘appropriateness’ or ‘assertability’ of descriptions is inherently bipolar. This
bipolarity manifests itself in the distinction between those descriptions which
convention would deem clearly appropriate to describe an element x, and those
which convention would not classify as incorrect, or perhaps even dishonest,
descriptions. Parikh [15] observes that:
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Certain sentences are assertible in the sense that we might ourselves
assert them and other cases of sentences which are non-assertible in the
sense that we ourselves (and many others) would reproach someone who
used them. But there will also be the intermediate kind of sentences,
where we might allow their use.

For example, consider a witness in a court of law describing a suspect as being
tall. Depending on the actual height of the suspect this statement may be deemed
as clearly true or clearly false, in which latter case the witness could be accused of
perjury. However, there will also be an intermediate height range for which, while
there may be doubt and differing opinions concerning the use of the description
tall, it would not be deemed as definitely inappropriate and hence the witness
would not be viewed as committing perjury.

We now investigate some basic properties of lower and upper neighbourhoods
and argue that µ

θ
and µθ can indeed be viewed as lower and upper membership

functions according to the random set interpretation of fuzzy sets. The following
theorem shows that the lower neighbourhood is, as intended, a subset of the
upper neighbourhood for any expression in LE.

Theorem 1. ∀Ψ ∈ LE, ∀α ∈ [0, 1] Nα
Ψ ⊆ N

α

Ψ

Proof. Let LE(1) = LA and LE(k) = LE(k−1) ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈
LE(k−1)}. We now proceed by induction on k. If Ψ = Li then Nα

Li
= {x :

d(x, Pi) ≤ f(α)} ⊆ {x : d(x, Pi) ≤ f(α} = N
α

Li
. Now assuming the result holds

for Ψ ∈ LE(k) we show that it holds for Ψ ∈ LE(k+1). If Ψ ∈ LE(k+1) then either
Ψ ∈ LE(k), in which case the result holds trivially, or ∃θ, ϕ ∈ LE(k) for which
one of the following holds:

– Ψ = θ ∧ ϕ in which case Nα
Ψ = Nα

θ∧ϕ = Nα
θ ∩ Nα

ϕ ⊆ N
α

θ ∩ N
α

ϕ (by the

inductive step) = N
α

θ∧ϕ = N
α

Ψ .

– Ψ = θ ∨ ϕ in which case Nα
Ψ = Nα

θ∨ϕ = Nα
θ ∪ Nα

ϕ ⊆ N
α

θ ∪ N
α

ϕ (by the

inductive step) = N
α

θ∨ϕ = N
α

Ψ .

– Ψ = ¬θ. Now by induction N
α

θ ⊇ Nα
θ and therefore (N

α

θ )c ⊆ (Nα
θ )c.

Hence, in this case Nα
Ψ = Nα

¬θ = (N
α

θ )c ⊆ (Nα
θ )c = N

α

¬θ = N
α

Ψ .

Corollary 1. ∀θ ∈ LE, ∀x ∈ Ω µ
θ
(x) ≤ µθ(x)

For any expression θ, Nα
θ and N

α

θ are both random sets taking as values
subsets of Ω. From this perspective µ

θ
and µθ are the single point coverage

functions of Nα
θ and N

α

θ respectively. Hence, according to the random set inter-
pretation of fuzzy sets proposed in [8], [9] and [6], µ

θ
(x) and µθ(x) can be viewed

as membership values of x in the lower and upper extension of θ respectively.

Theorem 2. ∀α, α′ ∈ [0, 1] where α ≤ α′ it holds that ∀θ ∈ LE Nα
θ ⊆ Nα′

θ and

N
α

θ ⊇ N
α′

θ .



6

Proof. Let LE(1) = LA and LE(k) = LE(k−1)∪{θ∧ϕ, θ∨ϕ,¬θ : θ, ϕ ∈ LE(k−1)}.
We now proceed by induction on k. If Ψ = Li then Nα

Li
= {x : d(x, Pi) ≤

f(α)} ⊆ {x : d(x, Pi) ≤ f(α′)} = Nα′

Li
since f is an increasing function. Also

N
α

Li
= {x : d(x, Pi) ≤ f(α)} ⊇ {x : d(x, Pi) ≤ f(α′)} = N

α′

Li
since f is a

decreasing function. Now assuming the result holds for Ψ ∈ LE(k) we show that
it holds for Ψ ∈ LE(k+1). If Ψ ∈ LE(k+1) then either Ψ ∈ LE(k), in which case
the result holds trivially, or ∃θ, ϕ ∈ LE(k) for which one of the following holds:

– Ψ = θ∧ϕ. In this case Nα
Ψ = Nα

θ∧ϕ = Nα
θ ∩Nα

ϕ ⊆ Nα′

θ ∩Nα′

ϕ (by induction)

= Nα′

θ∧ϕ = Nα′

Ψ . Also N
α

Ψ = N
α

θ∧ϕ = N
α

θ ∩N
α

ϕ ⊇ N
α′

θ ∩N
α′

ϕ (by induction)

= N
α′

θ∧ϕ = N
α′

Ψ .

– Ψ = θ∨ϕ. In this case Nα
Ψ = Nα

θ∨ϕ = Nα
θ ∪Nα

ϕ ⊆ Nα′

θ ∪Nα′

ϕ (by induction)

= Nα′

θ∨ϕ = Nα′

Ψ . Also N
α

Ψ = N
α

θ∨ϕ = N
α

θ ∪N
α

ϕ ⊇ N
α′

θ ∪N
α′

ϕ (by induction)

= N
α′

θ∨ϕ = N
α′

Ψ .

– Ψ = ¬θ. In this case Nα
Ψ = Nα

¬θ = (N
α

θ )c ⊆ (N
α′

θ )c (by induction) = Nα′

¬θ =

Nα′

Ψ . Also N
α

Ψ = N
α

¬θ = (Nα
θ )c ⊇ (Nα′

θ )c (by induction) = N
α′

¬θ = N
α′

Ψ .

Corollary 2. ∀θ, ϕ ∈ LE, ∀x ∈ Ω

– µ
θ∧ϕ

(x) = min(µ
θ
(x), µ

ϕ
(x)), µθ∧ϕ(x) = min(µθ(x), µϕ(x))

– µ
θ∨ϕ

(x) = max(µ
θ
(x), µ

ϕ
(x)), µθ∨ϕ(x) = max(µθ(x), µϕ(x))

– µ
¬θ

(x) = 1 − µθ(x), µ
¬θ(x) = 1 − µ

θ
(x)

Proof. From theorem 2 we have that ∀θ, ϕ ∈ LE either {α : x ∈ Nα
θ } ⊆ {α : x ∈

Nα
ϕ} or {α : x ∈ Nα

θ } ⊇ {α : x ∈ Nα
ϕ} and either {α : x ∈ N

α

θ } ⊆ {α : x ∈ N
α

ϕ}

or {α : x ∈ N
α

θ } ⊇ {α : x ∈ N
α

ϕ}. Now assume w.l.o.g that {α : x ∈ Nα
θ } ⊆ {α :

x ∈ Nα
ϕ} then:

µ
θ∧ϕ

(x) = δ({α : x ∈ Nα
θ∧ϕ}) = δ({α : x ∈ Nα

θ } ∩ {α : x ∈ Nα
ϕ})

= δ({α : x ∈ Nα
θ }) = µ

θ
(x) = min(µ

θ
(x), µ

ϕ
(x)) and

µ
θ∨ϕ

(x) = δ({α : x ∈ Nα
θ∨ϕ}) = δ({α : x ∈ Nα

θ } ∪ {α : x ∈ Nα
ϕ})

= δ({α : x ∈ Nα
ϕ}) = µ

ϕ
(x) = max(µ

θ
(x), µ

ϕ
(x))

The result also follows similarly for µθ∧ϕ(x) and µθ∨ϕ(x). Furthermore,

µ
¬θ

(x) = δ({α : x ∈ Nα
¬θ}) = δ({α : x ∈ (N

α

θ )c}) = δ({α : x ∈ N
α

θ }
c)

= 1 − δ({α : x ∈ N
α

θ }) = 1 − µθ(x)

Similarly µ
¬θ(x) = 1 − µ

θ
(x)

Also notice from theorem 2 that ∀α ≤ α′ and ∀θ ∈ LE, N
α′

θ −Nα′

θ ⊆ N
α

θ −Nα
θ ,

and hence, in accordance with the original intuition, the parameter α is a direct
indicator of the imprecision associated with the definition of θ.
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Theorem 3. ∀θ, ϕ ∈ LE, ∀α ∈ [0, 1] the following hold:

– Nα
¬(¬θ) = Nα

θ , and N
α

¬(¬θ) = N
α

θ

– Nα
¬(θ∧ϕ) = Nα

¬θ∨¬ϕ and N
α

¬(θ∧ϕ) = N
α

¬θ∨¬ϕ

– Nα
¬(θ∨ϕ) = Nα

¬θ∧¬ϕ and N
α

¬(θ∨ϕ) = N
α

¬θ∧¬ϕ

– Nα
θ∧¬θ = ∅ and N

α

θ∨¬θ = Ω

Proof. – Nα
¬(¬θ) = (N

α

¬θ)
c = ((Nα

θ )c)c = Nα
θ and similarly N

α

¬(¬θ) = (Nα
¬θ)

c =

((N
α

θ )c)c = N
α

θ

– Nα
¬(θ∧ϕ) = (N

α

θ∧ϕ)c = (N
α

θ ∩ N
α

ϕ)c = (N
α

θ )c ∪ (N
α

ϕ)c = Nα
¬θ ∪ Nα

¬ϕ =

Nα
¬θ∨¬ϕ and similarly N

α

¬(θ∧ϕ) = (Nα
θ∧ϕ)c = (Nα

θ ∩ Nα
ϕ)c = (Nα

θ )c ∪

(Nα
ϕ)c = N

α

¬θ ∪N
α

¬ϕ = N
α

¬θ∨¬ϕ

– Nα
¬(θ∨ϕ) = (N

α

θ∨ϕ)c = (N
α

θ ∪ N
α

ϕ)c = (N
α

θ )c ∩ (N
α

ϕ)c = Nα
¬θ ∩ Nα

¬ϕ =

Nα
¬θ∧¬ϕ and similarly N

α

¬(θ∨ϕ) = (Nα
θ∨ϕ)c = (Nα

θ ∪ Nα
ϕ)c = (Nα

θ )c ∩

(Nα
ϕ)c = N

α

¬θ ∩N
α

¬ϕ = N
α

¬θ∧¬ϕ

– Nα
θ∧¬θ = Nα

θ ∩Nα
¬θ = Nα

θ ∩ (N
α

θ )c ⊆ Nα
θ ∩ (Nα

θ )c = ∅ by theorem 1.
– N

α

θ∨¬θ = N
α

θ ∪N
α

¬θ ⊇ Nα
θ ∪N

α

¬θ = Ω by theorem 1

Example 1. Let Ω = R and Li be a label with prototype Pi = {10} (i.e. Li

denotes about 10 ). Let f(α) = 2α and f(α) = 4−2α (see figure 1) and also let δ

be a gaussian distribution with mean 0.5 and standard deviation 0.15 normalised
so as to have integral 1 on [0, 1] (see figure 2). From this we have the following
lower and upper neighbourhoods:

Nα
Li

= [10 − 2α, 10 + 2α] and N
α

Li
= [6 + 2α, 14 − 2α]

Hence, the lower and upper membership functions are given by (see figure 3):

µ
Li

(x) =











∫ 1
10−x

2

δ(ǫ)dǫ : 8 ≤ x ≤ 10
∫ 1

x−10

2

δ(ǫ)dǫ : 10 < x ≤ 12

0 : otherwise

µLi
(x) =















∫

x−6

2

0
δ(ǫ)dǫ : 6 ≤ x ≤ 10

∫

14−x

2

0
δ(ǫ)dǫ : 10 < x ≤ 14

0 : otherwise

3 Discussion and Conclusions

We have introduced a random set and prototype theory interpretation of lower
and upper fuzzy membership functions. In particular, we have proposed lower
and upper random set extensions of fuzzy descriptions generated as recursive
combinations of random set neighbourhoods of prototypes defined for a set of
basic fuzzy labels. Each such extension then identifies those elements of Ω which
can be appropriately described by the associated fuzzy description. Random sets
are defined based on lower and upper threshold distances from prototypes which
are taken to be functions of a single parameter α indicating the overall level
of imprecision associated with concept definition. Uncertainty associated with
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Fig. 1. Example of lower and upper threshold functions
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Fig. 2. Normalised gaussian density function δ with mean 0.5 and standard deviation
0, 15

the correct level of α is modelled by a probability density function δ, according
to which we can calculate the lower and upper membership functions of x in
θ, as the probabilities of those α values for which x is in the lower and upper
extensions of θ respectively. In effect these two measures are the single point
coverage functions of the lower and upper random sets, and hence according to
the random set interpretation of membership functions, can be viewed as lower
and upper memberships functions of the extension of the fuzzy concept.

Based on this definition we have then shown that the lower and upper mem-
bership functions are fully truth-functional satisfying the min and max rules for
conjunction and disjunction as proposed for interval fuzzy sets. However, the
interpretation also imposes other additional constraint on the calculus for lower
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(x)

µ
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(x)

Fig. 3. Example of lower and upper membership functions for label Li with prototype
Pi = {10}

and upper membership functions. For instance, from theorem 3 it follows im-
mediately that ∀θ ∈ LE and ∀x ∈ Ω, µ

θ∧¬θ
(x) = 0 and µθ∨¬θ(x) = 1. Hence,

by corollary 2, it holds that min(µ
θ
(x), 1 − µθ(x)) = 0. In other words, for any

element x and expression θ, either µ
θ
(x) = 0 or µθ(x) = 1. Clearly then by ap-

plying the mapping τθ(x) = µ
θ
(x) and νθ(x) = 1 − µθ(x) = µ

¬θ
(x) we obtain a

calculus for membership and non-membership degree identical to that proposed
for IFS by Atanassov [1], but with the additional constraint that either τθ(x) = 0
or νθ(x) = 0 for any x and θ.

Dubois etal. [5] question the interpretation of IFS as an intuitionistic theory.
For example, unlike intuitionistic logic, IFS satisfies double negation while it
does not satisfy the law of non-contradiction 2. This criticism would seem to be
borne out under the current interpretation, since the fundamental notion under-
lying the measures µ and µ is that of random set neighbourhoods, which do not
seem to be at all intuitionistic in nature. For instance, from theorem 3 we see
that the double negation law is strongly validated since it holds for both lower
and upper neighbourhoods. Also theorem 3 shows that the behaviour of lower
and upper neighbourhoods with regard to the laws of excluded middle and non-
contradiction differs significantly from intuitionistic logic. Indeed, while the lower
neighbourhood does not satisfy excluded middle, the upper neighbourhood does.
Similarly, while the lower neighbourhood satisfies the law of non-contradiction,
the upper neighbourhood does not. Indeed the behaviour of lower and upper
random set neighbourhoods with regard to these laws is exactly what would be
expected from two criteria, one weaker and one stronger, related in a bipolar
manner as outlined in [4] , rather than being based on the notion of justifiability
as is the case in intuitionistic logic. In particular, lower and upper membership
functions would seem to be a special case of what Dubois and Prade [4] refer

2 We refer here to the standard min, max calculus for IFS where τ¬θ = νθ and ν¬θ = τθ.
Atanassov [3] shows that for other choices of negation operator, the law of non-
contradiction may be satisfied.
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to as symmetric bivariate unipolarity, whereby judgments are made according
to two distinct evaluations on unipolar scales. In the current context, we have
a strong and a weak evaluation criterion where the former corresponds to def-
inite appropriateness and the latter to possible appropriateness. As with many
examples of this type of bipolarity there is a natural duality between the two
evaluation criterion in that a description θ is definitely appropriate to describe
element x if and only if ¬θ is not possibly appropriate to describe x.
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