
Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1136/oemed-2017-104636.200

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ Publishing at https://oem.bmj.com/content/74/Suppl_1/A75.2.info. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Oral or Poster Presentation

[Word limit 250]

Job-exposure matrix for historical exposure to rubber dust, rubber fumes, and nitrosamines in the British rubber industry

Mira Hidajat¹, Damien McElvenny², Will Mueller², Peter Ritchie², John W Cherrie²,³, Andrew Darnton⁴, Raymond Agius⁵, Frank de Vocht¹

¹University of Bristol, Bristol, ²Institute of Occupational Medicine, Edinburgh, ³Heriot Watt University, Edinburgh, ⁴Health and Safety Executive, Bootle, ⁵University of Manchester, Manchester

In 1982 IARC concluded that there was sufficient evidence for a causal association between occupational exposures in the rubber manufacturing industry and urinary bladder cancer and leukaemia. To enable evaluations of exposure-response associations in a cohort of men age 35+ employed in the British rubber industry in 1967 with a 49-year mortality followup (N=40,867), we created a quantitative historical job-exposure matrix (JEM) covering the period 1915-2000 based on personal and area measurements previously collated within the EU-EXASRUB project for rubber dust (N=4,187), rubber fumes (N=3,852), and n-Nitrosamines (N=10,215). These data were modelled by job function using linear mixed-effects models with sample year and industry sector as explanatory factors and a random factory intercept.

Variations in exposure levels over time between compounds and department were observed. For example, rubber dust exposures ranged from -8.8%/yr (crude materials and mixing, p<0.001) to +0.5%/yr (curing, p=0.01) while rubber fumes exposures declined between -8.3%/yr (crude materials and mixing, p<.001) and -0.2%/yr (finishing, assembly, and miscellaneous, p=.218).

JEM-estimates were linked to all cohort members for each year worked to calculate average annual and lifetime cumulative exposures (AAE, LCE), thereby allowing quantitative evaluation of exposure-response associations between 50-year occupational exposure and cancer mortality. AAE rubber dust exposures ranged between 0.3 mg/m³ (curing) and 36.3 mg/m³ (crude materials and mixing). Rubber fumes exposures range between 0.3 mg/m³ (finishing, assembly, and miscellaneous) and 5.4 mg/m³ (crude materials and mixing). LCE trends mirrored AAE results.

JEM-estimates will allow for quantitative exposure-response association assessments between long-term occupational exposure and cancer mortality.

Acknowledgments: This study was funded by Cancer Research UK