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TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK

SYSTEMS OVER SET THEORY.

KENTARO FUJIMOTO

Abstract. In this paper we study the systems KF and VF of truth over set theory as

well as related systems, and compare them with the corresponding systems over arithmetic.

§1. Introduction. How is the content of the term “is true” given to us?
Possibly it may be given by an explicit definition in terms of other notions, but
Tarski’s undefinability theorem imposes a quite stringent restriction on the ex-
plicit definability of truth in non-semantic terms. Some argue that the notion of
truth is ultimately to be axiomatically conceived; namely, a certain collection of
sentences involving the term “is true”, called axioms or meaning postulates of
the term, determine its content and use. The present paper focuses on such an
axiomatic approach toward truth, which takes the term “is true” to be axiomat-
ically understood and studies various axioms for it.

One peculiar feature of the notion of truth is that it can be applied to any
sentence about any subject matter but in the same uniform way. While we can
talk of truth of two different subjects as separate and independent issues on
their own rights, we also regard them as restrictions of a certain general notion
of truth to the particular subject matters in question, sharing certain “essential”
properties that uniformly permeate through truths of all subject matters.

With this conception of truth, one natural formal setting for theories of truth
for a given subject matter is the following. We first pick and fix a formal system
of the subject matter, which is called a base system. Then we add the axioms of
truth on top of the base system. These axioms of truth are given independently
of the subject matter and base system; we may need to slightly tweak and adjust
their formulation to fit them in the formal structure of the chosen base system,
but these axioms should express the same “essential” property of truth from
one subject matter to another and from one base system to another. We call
the result of this process an axiomatic system of truth over the base system
(or over the subject matter). One important implication of this view is that the
notion of truth is not intrinsically embodied in a chosen subject matter and some
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2 KENTARO FUJIMOTO

general (but informal) conception of truth is somehow taken as given in advance
independently of the choice of subject matters. Hence, in principle, we can (and
should) consider and investigate axiomatic systems of truth and their axiomatic
conceptions of truth over a variety of different subject matters and base systems.

The study of axiomatic systems of truth has so far centered around those over
arithmetic, and philosophical debates on the axiomatic approach to truth have
been based mostly on the results about those systems over arithmetic. This is not
because philosophers are only interested in the truth of arithmetic, but probably
because they believe that those systems over arithmetic provide a generic case
and most of the fundamental results over arithmetic and philosophical debates
based on them can be generalized to other cases. However, in the present paper,
we will show that there exist some strong disanalogy between axiomatic systems
of truth over arithmetic and over set theory, and thereby suggest that axiomatic
systems of truth over arithmetic may not be such a generic case.

A distinction is often made between compositional and non-compositional sys-
tems of truth. Halbach explains this distinction as follows:

I call an axiomatic system [of truth] compositional if, according to its
axioms, the semantical status of its expressions (in particular, their
truth or falsity) depends only on the semantical status of its con-
stituents. [15, p.120]

Halbach refers to the Kripke-Feferman system KF as a typical example of a
compositional system, and to Cantini’s VF as an example of a non-compositional
system. This distinction is sometimes thought to be fundamental, and Halbach
suggests to relate compositionality to predicativity:

In general, predicativity and compositionality seem closely related.
Compositionality is to truth systems what predicativity is to second-
order system. [15, p.120]

In the present paper, we will focus on the arch compositional system KF and
the arch non-compositional system VF and investigate the relationship between
them as well as other relevant systems both over arithmetic and over set theory.
Consequently, we will see some strong disanalogy between their behavior and the
relationships of them over arithmetic PA and over set theory ZF: in particular,
it will be shown that KF and VF are proof-theoretically equivalent over ZF and
thus have the same set-theoretic consequences, whereas the former is significantly
weaker than the latter over PA.

The structure of the paper is as follows. In §§2–5, we introduce the main
systems we will investigate and show some basic facts about them: namely,

the systems KF and VF of truth, the systems ÎD1 and ID1 of fixed-points, and
the system SC1 of stage comparison pre-wellorderings. We next introduce an
intermediate system KPV, the Kripke-Platek set theory over V, in §6, and then
give an embedding of KPV in SC1 in §7. Finally, by giving an embedding of VF
in KPV, we obtain the equivalence of all those systems in §8. After obtaining
this main result, we first give two relevant results as an application of our results
in §9, and then study some variants of those systems in §10–12.
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§2. KF and VF over set theory. Let L∈ = {∈} be the language of first-
order set theory with the membership relation ∈ as its only non-logical symbol.
ZF stands for Zermelo-Fraenkel set theory over L∈. For the sake of systems of
truth we also consider an expansion LT of L∈ defined as LT := L∈∪{T}, where
T is a unary predicate symbol that is meant to be the truth predicate.

Let L be either L∈ or LT . Within ZF we can formalize the language L∞
which consists of L with constant symbols cx for each element x of the universe
V. This formalization provides us with a coding of the L∞-expressions; for an
L∞-expression e we denote its code by peq; we specially denote the code of the
set constant cx for x ∈ V by ẋ. This formalization also comes with a coding of
various syntactic relations and operations on L∞. We will use exactly the same
notation and definitions for this formalization as in [12]. For instance, we write:

St∞L := {z | z is a code of an L∞-sentence};
Fml∞L := {z | z is a code of an L∞-formula};

∧. and ¬. are (class) functions such that, for pϕq, pψq ∈ Fml∞L ,

¬. pϕq = p¬ϕq and pϕq∧. pψq = pϕ ∧ ψq.

We can assume all the syntactic relations and operations that we use are ∆ZF
1 . For

readability, we write “∀pϕq” and “∃pϕq” to emphasize that codes of formulae are
quantified over and to thereby suppress the syntactical operations; for example,
by (∀pϕq ∈ St∞L )(∀pψq ∈ St∞L )(Tpϕ ∧ ψq↔ Tp¬¬(ϕ ∧ ψ)q), we mean

(∀x ∈ St∞L )(∀y ∈ St∞L )
(
T (x∧. y)↔ T (¬. (¬. (x∧. y))).

We will also write ∀pϕ(v1 . . . vk)q to express “for all codes of formulae with at
most k variables free”; ∃pϕ(v1 . . . vk)q has the dual meaning for existential quan-
tification. For an L∞-formula ϕ(v) with a distinguished free variable v and a set
x ∈ V, we write pϕ(ẋ)q for the code of the result of substituting the constant cx
for x for the variable v in ϕ (i.e., the so-called Feferman’s dot convention).

Let L be any first-order language including L∈. We will consider the following
extensions of the axiom schemata of set theory to L:

L-Ind : ∀x
(
(∀y ∈ x)ϕ(y)→ ϕ(x)

)
→ ∀xϕ(x), for each ϕ ∈ L.

L-Sep : ∀a∃b∀x
[
x ∈ b↔ x ∈ a ∧ ϕ(x)

]
, for each ϕ ∈ L.

L-Repl : ∀a
[
(∀x ∈ a)∃!yϕ(x, y)→ ∃b(∀x ∈ a)(∃y ∈ b)ϕ(x, y)

]
, for each ϕ ∈ L.

We can easily show ZF + L-Sep ` L-Ind for any L ⊃ L∈.

Definition 2.1. The axioms of KF− comprises those of ZF plus:

K1: ∀x∀y[(Tpẋ = ẏq↔ x = y) ∧ (Fpẋ = ẏq↔ x 6= y)]
K2: ∀x∀y[(Tpẋ ∈ ẏq↔ x ∈ y) ∧ (Fpẋ ∈ ẏq↔ x 6∈ y)]
K3: ∀x[(TpT ẋq↔ Tx) ∧ (FpT ẋq↔ Fx)]
K4: (∀pσq ∈ St∞LT

)(Tp¬¬σq↔ Tpσq)
K5: (∀pσq, pτq ∈ St∞LT

)
[(

Tpσ∧τq↔ (Tpσq∧Tpτq)
)
∧
(
Fpσ∧τq↔ (Fpσq∨Fpτq)

)]
K6: (∀pϕ(v)q∈Fml∞LT

)
[(

Tp∀vϕ(v)q↔ ∀xTpϕ(ẋ)q
)
∧
(
Fp∀vϕ(v)q↔ ∃xFpϕ(ẋ)q

)]
,

where we put Fx :⇔ T ¬. x. Then we set KF := KF−+LT -Sep+LT -Repl. Some
proof-theoretic analyses of KF are already given in [12].
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Definition 2.2. The axioms of VF− comprises those of ZF plus:

V1: ∀~x
(
T (pϕ(~̇x)q)→ ϕ(~x)

)
, for each LT -formula ϕ(~x)

V2: ∀x∀y
[(

Tpẋ = ẏq↔ x = y
)
∧ (Fpẋ = ẏq↔ x 6= y

)]
V3: ∀x∀y

[(
Tpẋ ∈ ẏq↔ x ∈ y

)
∧ (Fpẋ ∈ ẏq↔ x 6∈ y

)]
V4: (∀pϕ(~v)q ∈ Fml∞LT

)
(
LogAxL∞T (pϕ(~v)q)→ Tp∀~vϕ(~v)q

)
V5: (∀pϕ(v)q ∈ Fml∞LT

)
(
∀xTpϕ(ẋ)q→ Tp∀vϕ(v)q

)
V6: (∀pσq, pτq ∈ St∞LT

)
(
Tpσ → τq→ (Tpσq→ Tpτq)

)
V7: (∀pσq ∈ St∞LT

)( Tpσq→ TpTpσqq)
V8: (∀pσq ∈ St∞LT

)( FpTpσqq→ Fpσq)
V9: (∀pσq ∈ St∞LT

) T p(Tpσq→¬Tp¬σq)q,
where LogAxL∞T (x) expresses “x is a logical axiom for L∞T ”; hence V3 says

“the universal closure of every logical axiom for L∞T is true”. Then we set

VF := VF− + LT -Sep + LT -Repl.

§3. ID1 and ÎD1 over set theory. For a first-order language L, we let L2 be
the second-order language associated with L with infinitely many unary predicate
variables X,Y,Z, . . . but without any new non-logical symbols added. We call
an L2-formula Φ elementary when Φ contains no second-order quantifiers (pos-
sibly with second-order free variables); the Π0

n- and Σ0
n-formulae are standardly

defined. An L-inductive operator form is an elementary L2-formula A(x,X) with
only one second-order variable X and one first-order variable x free in which X
occurs only positively. We write I(L) for the set of L-inductive operator forms.

For an L2-formula B(X1, . . . ,Xn) with designated second-order free variables
X1, . . . , Xn, and for L-formulae Ψ1(u1), . . . , Ψn(un) with designated first-
order free variables u1, . . . un, an L-formula B(Ψ1(û0), . . . ,Ψn(ûn)) denotes the
result of simultaneously replacing each occurrence of Xit by Ψi(t) for each term
t (1 ≤ i ≤ n) with renaming of bound variables in B and Ψi’s as necessary to
avoid collision; we occasionally suppress ‘ûi’s and simply write B(Ψ0, . . . ,Ψn).
For an L-formula Ψ(z) and an L2-formula C(x,X) with designated free variables
z, and x and X, respectively, possibly with parameters, we define:

ClosC(Ψ(ẑ)) := ∀x
(
C(x,Ψ(ẑ))→ Ψ(x)

)
.

Again we will suppress “ẑ” when there is no worry of confusion.
A first-order language LFix for systems of inductive definitions is defined as
L∈ plus unary predicates JA associated to each A(x,X) ∈ I(L∈). We will
occasionally identify a formula ϕ(x), possibly with parameters, and the class
{x | ϕ(x)}; e.g., we write x ∈ JA for JA(x) and JA ⊂ Φ for ∀x(x ∈ JA → Φ(x)).

Definition 3.1. The LFix-system ÎD−1 comprises ZF plus the following schema:

∀x[ JA(x)↔ A(x, JA) ], for each A ∈ I(L∈).

Then we set ÎD1 := ÎD−1 + LFix-Sep + LFix-Repl.
The LFix-system ID−1 comprises ZF plus the following schemata:

ClosA(JA), for each A ∈ I(L∈).

ClosA(Ψ)→ ∀x[JA(x)→ Ψ(x)], for each A ∈ I(L∈) and Ψ ∈ LFix.



TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS 5

Then we set ID1 := ID−1 + LFix-Sep + LFix-Repl.

We can standardly show that ÎD−1 is a sub-theory of ID−1 (see [4, Lemma 2.1.1]).

Let L1 and L2 be first-order languages, and let S and T be systems over L1

and L2 respectively. For L ⊂ L1 ∩ L2, we write S ⊂L T when S is conservative
over T for L; the relation S =L T means that S ⊂L T and T ⊂L S.

There are a number of similarities and analogies between systems of truth
or inductive definitions over set theory ZF and over arithmetic PA, and we will
discuss the arithmetical counterparts of VF, ID1, etc., over PA. Hence, to clearly
distinguish them, when mentioning those systems over PA, we will add “[[PA]]”
after the names of systems; e.g., VF[[PA]], ID1[[PA]], etc.

Theorem 3.2. 1. KF =L∈ ÎD1. 2. ID1 ⊂L∈ VF.

Proof. 1. One inclusion ÎD1 ⊂L∈ KF can be shown in an exactly parallel

manner to Cantini’s [6] proof of ÎD1[[PA]] ⊂LN KF[[PA]] over arithmetic, where
LN is the first-order language of arithmetic. The converse can be shown by
interpreting the truth predicate T of KF by a fixed-point of an inductive op-
erator form T (x,X) ∈ I(L∈) describing the closure condition of the strong
Kleene evaluation schema; the proof is exactly parallel to Feferman’s [9] proof of
KF[[PA]] ⊂LN Σ1

1-AC. These proofs yield the mutual interpretability of KF− and

ÎD−1 in which the L∈-part is preserved; hence, we actually have KF− =L∈ ÎD−1 .
2. Kahle [18] gives a direct interpretation of VF[[PA]] in ID1[[PA]] that preserves

the arithmetical part, and this interpretation can be used as it is for our claim:
that is, for each A ∈ I(L∈), we can interpret JA(x) by an LT -formula

(∀pϕ(v)q ∈ Fml∞LT
)[ ClosA(Tpϕ(ˆ̇v)q)→ Tpϕ(ẋ)q ].

In fact, this is an interpretation of ID−1 in VF− and thus ID−1 ⊂L∈ VF−. a

§4. Systems of stage comparison strict pre-ordering. Let us fix any
L∈-structure M = 〈M,E〉 where E is an interpretation of the symbol ∈. Each
A(x,X) ∈ I(L∈) induces a monotone operator ΦM

A : P(M) → P(M) such that,
for X ⊂M , ΦM

A (X) = {x ∈M | 〈M,E,X〉 |= A(x,X)}, where 〈M,E,X〉 is an
(L∈ ∪{X})-structure in which the predicate X is interpreted by X. An operator
Φ: P(M)→ P(M) is called inductive on M, when Φ = ΦM

A for some A ∈ I(L∈).
Let Φ be an inductive operator on M. By recursion on ordinals α, we define

sets I<αΦ , IαΦ ∈ P(M) as I<αΦ :=
⋃
β<α I

β
Φ and IαΦ := Φ(I<αΦ ) respectively. Then

there is an ordinal α such that IαΦ = I<αΦ and Φ(IαΦ) = IαΦ. We denote the

least such α by ||Φ||, and simply write IΦ for I
||Φ||
Φ . For each x ∈ IΦ, we set

||x||Φ := min{ξ | x ∈ IξΦ}, which induces a strict pre-wellordering ≺Φ on M :

x ≺Φ y ⇔

{
||x||Φ < ||y||Φ if x, y ∈ IΦ
x ∈ IΦ ∧ y 6∈ IΦ otherwise.

We call ≺Φ the stage comparison strict pre-wellordering of Φ. This is so defined
that the field fd(≺Φ) of ≺Φ is M and the elements y ∈ M \ IΦ are all maximal

elements greater than any x ∈ IΦ. We have IΦ = {x ∈M | ∃y(x ∈ Φ(I
<||y||Φ
Φ )}.
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Now the following is easily observed:

x ≺Φ y ⇔ x ∈ IΦ ∧ y 6∈ Φ(I
<||x||Φ
Φ ) ⇔ x ∈ IΦ ∧ y 6∈ Φ({u | u ≺Φ x}).

We use this equivalence for axiomatizing the stage comparison strict pre-wellorderings
≺Φ of inductive operators (on our intended model M := 〈V,∈〉).

Let LSC be a language defined as LFix plus a further unary predicates ≺A
associated to each inductive operator form A(x,X) ∈ I(L∈), which is meant to
express the stage comparison strict pre-wellordering of ΦM

A . For readability we
will write x ≺A y for 〈x, y〉 ∈≺A. Given A ∈ I(L∈) we write ≺A�x for the class
of ≺A-predecessors of x, i.e., {y | y ≺A x} (with x as a parameter).

Definition 4.1. The LSC-system SC−1 comprises ID−1 plus: for all A ∈ I(L∈),

(SC0): ≺A⊂ Pair , where Pair denotes the class of ordered pairs;
(SC1): ∀x∀y

[
x ≺A y ↔

(
x ∈ JA ∧ ¬A(y,≺A�x)

) ]
;

(SC2): ∀x
(
∀y(y ≺A x→ ϕ(y))→ ϕ(x)

)
→ ∀xϕ(x), for all ϕ(x) ∈ LSC.

Then we set SC1 := SC−1 + LSC-Sep + LSC-Repl.

Remark 4.2. SC1 is equivalent to Sato’s [22, p.106] axiomatization ID+
1 of

stage comparison pre-wellorderings. The equivalence will be shown in Appendix.

Lemma 4.3. 1. SC−1 ` ∀x [x ∈ JA ↔ A(x,≺A�x) ], for each A ∈ I(L∈).
2. SC−1 ` ∀x(x 6∈ JA ↔ JA ⊂≺A�x), for each A ∈ I(L∈).

Proof. 1. Note that ≺A is irreflexive due to (SC2). Hence, if x ∈ JA then
A(x,≺A�x) by (SC1). Suppose A(x,≺A�x). By (SC1) we have ≺A�z⊂ JA for
all z in general. Hence, we obtain A(x, JA) by monotonicity and thus x ∈ JA.

2. Suppose x 6∈ JA. We have ¬A(x, JA). Since ≺A�z⊂ JA for all z, we have
¬A(x,≺A�z) for all z by monotonicity and thus z ≺A x for all z ∈ JA by (SC1).
For the converse, if x ∈ JA then JA 6⊂≺A�x since x 6∈≺A�x by irreflexivity. a

Lemma 4.4. SC−1 ` “≺A is transitive”, for every A ∈ I(L∈).

Proof. It suffices to show by ≺A-induction on x, using (SC2), that:

∀y∀z
(
z ≺A y ∧ y ≺A x → z ≺ x

)
, for all x.

Let z ≺A y and y ≺A x. We have z ∈ JA and ¬A(x,≺A�y) by (SC1). Since
we have ≺A�z ⊂≺A�y by the induction hypothesis, we obtain ¬A(x,≺A�z) by
monotonicity and thus z ≺ x by (SC1). a

Lemma 4.5. SC−1 ` ∀x∀y
(
x ≺A y ∨ y ≺Ax∨ ≺A�x=≺A�y

)
, for any A ∈ I(L∈).

Proof. We can assume x, y ∈ JA; otherwise the claim follows from Lemma
4.3.2. We will show by ≺A-induction on x with side ≺A-induction on y that

x ≺A y ∨ y ≺A x∨ ≺A�x=≺A�y, for all x ∈ JA and y ∈ JA.

Assume x 6≺A y and y 6≺A x. Take any z ≺A y. By transitivity, x ≺ z can’t
be the case. If ≺�x=≺�z were the case, then we would get ¬A(y,≺�x) and thus
x ≺A y by (SC1). Hence, we obtain z ≺A x by the sub-inductive hypothesis;
we have shown ≺�y⊂≺�x. The converse is shown parallelly but by using the
main-induction hypothesis instead. a
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Definition 4.6. We put �A:= {〈x, y〉 | A(x,≺A�y)} for each A ∈ I(L∈), and
write x �A y :⇔ 〈x, y〉 ∈�A. Note that ≺A occurs in x �A y only positively.

Lemma 4.7. SC−1 ` ∀x∀y[x �A y ↔ (x ∈ JA ∧ y ⊀A x)]; by Lemma 4.3.

The next theorem by Sato [22] is of crucial importance for the present paper.
The proof of the theorem is an ingenious modification of the Stage Comparison
Theorem (see [19]) specially for base systems with a certain reflection property.

Theorem 4.8 (Sato [22]). SC1 is a definitional extension of ÎD1.

We close this section with one immediate consequence of Sato’s theorem.
Burgess [5] presented an extension of KF[[PA]] over arithmetic, which augments

KF[[PA]] with axioms expressing that T is the least fixed-point of the Kripkean
operator with the strong Kleene evaluation schema, namely, the inductive op-
erator form T (x,X) ∈ I(L∈) taken in the proof of Theorem 3.2.1. Thereby
Burgess’s system KFµ over set theory is defined as KF plus the following schema:

ClosT (Ψ)→ ∀x(Tx→ Ψ(x)), for each Ψ ∈ LFix.

Obviously KFµ is interpretable in ID1 simply by translating T to JT . Hence, it
follows from Sato’s Theorem and Theorem 3.2, we have the next theorem.

Theorem 4.9. KFµ and KF are proof-theoretically equivalent.

§5. Basic facts of inductive classes provable in SC−1 . We will formalize
some basic results of inductive relations (cf. [19]) within SC−1 .

For a (k + 1)-tuple a = 〈a0, . . . , ak〉 and i ≤ k, we denote its (i + 1)-th
component ai by (a)i. Given a class X and a ∈ V, we put Xa = {x | 〈x, a〉 ∈ X};
note that we do not generally have Xa = {(z)0 | z ∈ X} unless X ⊂ Pair . We
assume for simplicity that (a)i is defined for all sets a ∈ V and all i < ω.

Until and including Proposition 5.4, we will work within ID−1 .

Definition 5.1. The following definition is made in ID−1 . A class X is said to
be inductive, if there is A ∈ I(L∈) such that X = JaA for some a ∈ V; when this
holds we say that X is defined by A with parameter a. We also say that X is
coinductive when −X := {x | x 6∈ X} is inductive, and that X is hyperelementary
when X is both inductive and coinductive.

Theorem 5.2 (Transitivity Theorem). The following is provable in ID−1 . Let
A(x, v1, . . . , xl,X,Y1, . . . ,Yk) ∈ L2

∈ be elementary in which only the displayed
variables are free and X,Y1, . . . ,Yk occur only positively. For every inductive
Y1, . . . , Yk and parameters a1, . . . , al ∈ V, there is an inductive X such that

∀x
(
A(x,~a,X, ~Y )→ x ∈ X

)
(T1)

∀x
(
A(x,~a, Z, ~Y )→ x ∈ Z

)
→ X ⊂ Z, for all classes Z.(T2)

Proof. Let Yi be defined by Bi with bi (1 ≤ i ≤ k). Note that A(x,~a,X, ~Y )

then contains ~b as parameters besides ~a. Put A′(x,X) ∈ I(L∈) to be:[
((x)1)0 =0→ A

(
(x)0, ((x)1)1, . . . , ((x)1)l,X

(x)1, (X1)((x)1)l+1, . . . , (Xk)((x)1)l+k
)]

∧
∧

1≤i≤k

(
(x)1 = i→ Bi

(
(x)0,X

i
))
∧ x ∈ Pair ;
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then JA′ ⊂ Pair . We can assume that if ((x)1)0 = 0 then (x)1 6= i for all i > 0.
We first show J iA′ = JBi for 1 ≤ i ≤ k. Let Bi = (JBi × {i})∪ (V× (V \ {i})).

We have ClosA′(Bi) and thus JA′ ⊂ Bi; hence J iA′ ⊂ Bii = JBi . If Bi(x, J iA′),
then A′(〈x, i〉, JA′) and thus 〈x, i〉 ∈ JA′ ; hence ClosBi(J

i
A′) and thus JBi ⊂ J iA′ .

We have shown Yi = (J iA′)
bi for 1 ≤ i ≤ k. Let c = 〈0, a1, . . . , al, b1, . . . , bk〉

and X := JcA′ . For (T1), if A(x,~a,X, ~Y ) then A′(〈x, c〉, JA′) and thus x ∈ JcA′ .
For (T2) suppose ∀x(A(x,~a, Z, ~Y )→ x ∈ Z) for a class Z. Put Z ′ := (Z×{c})∪
{x ∈ JA′ | (x)1 6= c}. We have ClosA′(Z

′), since A′(x, Z ′) and (x)1 6= c implies
A′(x, JA′) and thus x ∈ Z ′. Hence JA′ ⊂ Z ′ and thus X ⊂ Z. a

We say that C(x,X) ∈ L2
SC possibly with parameters is positive elementary in

classes Y1, . . . , Yk, when there are some ~a ∈ V and A(x,~v,X,Y1, . . . ,Yk) ∈ L2
∈

with at most the displayed variables free and only with positive occurrences of
X,Y1, . . . ,Yk such that C(x,X) ↔ A(x,~a,X, Y1, . . . , Yk). Hence, Theorem 5.2
says that every positive elementary C(x,X) in inductive classes has an inductive
least fixed-point provably in ID−1 , and we denote it by JC .

We will occasionally treat classes of n-tuples (n ≥ 2) as if they were n-ary
predicates (or relations) and write P (x1, . . . , xn), Q(x1, . . . , xm), etc.

Corollary 5.3. In ID−1 , the collection of inductive relations is closed under
conjunction, disjunction, existential and universal quantification.

A relation R is said to be elementary on classes X1, . . . , Xk, if R is constructed
from X1, . . . , Xk, =, and ∈, by ¬, ∧, ∃, and ∀. We simply say X is elementary
if X is elementary on V, which is obviously hyperelementary.

Corollary 5.4. In ID−1 , if X1, . . . , Xk are hyperelementary and R is elemen-
tary on X1, . . . , Xk, then R is hyperelementary.

From now on, we will work within SC−1 in the rest of the present section.

Proposition 5.5. For A ∈ I(L∈) and a ∈ V, we set x ≺A,a y :⇔ 〈x, a〉 ≺A
〈y, a〉. This ≺A,a strictly pre-wellorders JaA: i.e., it is irreflexive, transitive, and

(∀x ∈ JaA)
[
∀y(y ≺A,a x→ y ∈ Y )→ x ∈ Y

]
→ JaA ⊂ Y, for all classes Y .

We also define x �A,a y :⇔ 〈x, a〉 �A 〈y, a〉, which is transitive and well-founded.

The way in which ≺A,a pre-wellorders X = JaA depends on the choice of A
and a, but the choice of the pair do not matter for our subsequent argument and
so we let ≺X denote ≺A,a for some fixed A and a defining X.

Proposition 5.6. Let X be inductive. By Lemmata 4.3 and 4.7, we have:

1. x ≺X y implies x ∈ X, and x �X y implies x ∈ X;
2. y 6∈ X implies X ⊂≺X�y and X ⊂�X�y;
3. x ≺X y iff x ∈ X ∧ y �X x, and x �X y iff x ∈ X ∧ y ⊀X x.

Theorem 5.7 (Stage Comparison Theorem). The relation ≺A is inductive.
Hence, by Corollaries 5.3 and 5.4, �A is also inductive.

Proof. Let B(x,X) := A(x,X) ∨ X = V, and set B′(x,X) ∈ I(L∈) to be

x ∈ Pair ∧ ¬B
(
(x)1,

{
u | ¬B((x)0, {v | 〈v, u〉 ∈ X)

})
;

note that we then have JB′ ⊂ Pair . We will show ≺A= JB′ .
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For one direction, JB′ ⊂≺A, it suffices to show that ClosB′(≺A), which follows
from the following equivalences: for every x and y,

¬B
(
y,
{
u | ¬B(x,≺A�u)

})
⇔ ¬B

(
y,
{
u | ¬A(x,≺A�u)

})
4.3⇔

[
x 6∈ JA ∧ ¬B

(
y,V

)]
∨
[
x ∈ JA ∧ ¬B

(
y,≺A�x

)]
⇔ x ∈ JA ∧ ¬A

(
y,≺A�x

)
⇔ x ≺A y;

the first and third equivalences obtain since ≺A�u 6= V for all u by irreflexivity.
For the converse, ≺A⊂ JB′ , it suffices to show ∀y

(
x ≺A y → 〈x, y〉 ∈ JB′

)
for

all x ∈ JA by induction along ≺A. Let y �A x. We will show that B′(〈x, y〉, JB′).
Take any u ⊀A x. By Lemma 4.5 we have ≺A�x⊂≺A�u . Hence, for all v ≺A x,
we have 〈v, u〉 ∈ JB′ by IH and thus A(x, {v | 〈v, u〉 ∈ JB′}) by Lemma 4.3.1
and monotonicity. Since u ⊀A x was arbitrary, we obtain{
u | ¬B

(
x,
{
v | 〈v, u〉 ∈ JB′

})}
⊂
{
u | ¬A

(
x,
{
v | 〈v, u〉 ∈ JB′

})}
⊂≺A�x 6= V.

Since x ≺A y implies ¬A(y,≺A�x), we obtain the claim by monotonicity. a

Theorem 5.8 (Hyperelementary Selection Theorem). Let P (x, y) be an in-
ductive relation. There are inductive Q(x, y) and coinductive Q̌(x, y) such that

(i) Q ⊂ P ; (ii) ∃yP (x, y)→ ∃yQ(x, y); (iii) ∃yP (x, y)→ ∀y[Q(x, y)↔ Q̌(x, y)].

Proof. We define

Q := {〈x, y〉 | ∀z(〈x, y〉 �P 〈x, z〉)} and Q̌ := {〈x, y〉 | ∀z(〈x, z〉 ⊀P 〈x, y〉)}.
Then (i) and (iii) follow from Proposition 5.6. For (ii), suppose ∃yP (x, y) and put
u ≺x,P v :⇔ 〈x, u〉 ≺P 〈x, v〉. Then ≺x,P pre-wellorders {w | 〈x,w〉 ∈ P} 6= ∅
and we can pick a ≺x,P -minimal element y′; hence, we get 〈x, y′〉 ∈ Q. a

Theorem 5.9 (Covering Theorem). Let X be inductive but not coinductive,
and let Y be coinductive. Let R be a hyperelementary relation such that
dom(R) ⊃ Y and R[Y ] ⊂ X, where R[Y ] is the image {x | ∃y[y ∈ Y ∧ R(y, x)]}
of Y by R. Then, (∃c ∈ X)∀x

(
x ∈ R[Y ]→ x �X c

)
.

Proof. Otherwise X would become coinductive, since it would hold that

c ∈ X ⇔ (∃y ∈ Y )∃x
(
R(y, x) ∧ x �X c

)
. a

Theorem 5.10 (Good Parametrization Theorem for Inductive Classes). There
exist an inductive class U and elementary function S : V× V→ V such that

1. for all inductive classes X, there is some a ∈ V such that Ua = X, and
2. for all inductive classes X and a ∈ V, if Ua = X then ∀c(US(a,c) = Xc).

Proof. It is known that for each A ∈ I(L∈) there is B ∈ I(L∈)∩Π0
2 such that

JA = JpB for some p; see [22, §3]. Take a universal Π0
2-inductive operator form U

such that ∃q(JqU = JB) for all B ∈ I(L∈)∩Π0
2. Hence, we have ∃p∃q

(
(JqU )p = JA

)
for all A ∈ I(L∈); we can assume here that p, q ∈ N and they can be primitive
recursively computed from given A. Then we take

U :=
{
〈x, 〈a, p, q〉〉 |

〈〈〈
〈x, (a)0〉, (a)1

〉
, p
〉
, q
〉
∈ JU

}
⊂ Pair .

Since the class {〈x, d〉 | x ∈ X} with any “dummy” index d (e.g., 0) is inductive
for all inductive X, we can easily verify the claim 1. For the claim 2, let Q :=
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{〈x, 〈y, z〉〉 | 〈〈x, y〉, z〉 ∈ U}. Q is inductive and thus there are p, q, b such that
Q = ((JqU )p)b and fix any such p, q, b. Then,

〈x, c〉 ∈ Ua ⇔ 〈x, 〈c, a〉〉 ∈ Q⇔ 〈x, 〈c, a〉〉 ∈ ((JqU )p)b ⇔
〈
x,
〈
〈〈c, a〉, b〉, p, q

〉〉
∈ U.

Hence we can take S(a, c) :=
〈
〈〈c, a〉, b〉, p, q

〉
. a

Lemma 5.11. The class U taken in Theorem 5.10 is not coinductive.

Proof. If U were coinductive, P := {x | 〈x, x〉 6∈ U} would be inductive and
thus there would be some a such that a ∈ Ua ⇔ a ∈ P ⇔ a 6∈ Ua. a

Theorem 5.12 (Good Parametrization Theorem for Hyperelementary Classes).
There exist inductive classes I and H, and a coinductive class Ȟ such that:

(i) if a ∈ I then Ha = Ȟa (and thus Ha is hyperelementary for all a ∈ I);
(ii) if X is hyperelementary then X = Ha for some a ∈ I.
(iii) For any inductive P and coinductive Q, there exists a hyperelementary

function J : V→ V such that if P a = Qa then J(a) ∈ I and HJ(a) = P a.

Proof. Let U be the class taken in Theorem 5.10. We take I,H, Ȟ so that

a ∈ I :⇔ (a)1 ∈ U
〈x, a〉 ∈ H :⇔ a ∈ I ∧

〈
x, (a)0

〉
�U (a)1

〈x, a〉 ∈ Ȟ :⇔ (a)1 ⊀U
〈
x, (a)0

〉
.

The claim (i) is obvious by Proposition 5.6.
For (ii), let X be hyperelementary and X = U b. Then R := {〈x, 〈x, b〉〉 | x ∈

X} is a hyperelementary relation. By Theorem 5.9 and Lemma 5.11 we can pick
c ∈ U with ∀x(x ∈ X → 〈x, b〉 �U c). Hence we can take a := 〈b, c〉 ∈ I, since

x ∈ Ha ⇔ a ∈ I ∧ 〈x, b〉 �U c ⇔ x ∈ U b = X.

For (iii), let P = U b be inductive and Q be coinductive. Let us put

Z :=
{
〈x, y〉 | ∀u

(
u ∈ Qy → 〈u, S(b, y)〉 �U 〈x, S(x, y)〉

)}
,

which is inductive, and pick c such that U c = Z. Then we define the func-
tion J by J(a) :=

〈
S(b, a), 〈c, S(c, a)〉

〉
. Suppose P a = Qa (= US(b,a)). We

have c ∈ US(c,a) = Za; for, c 6∈ US(c,a) and 〈u, S(b, a)〉 �U 〈c, S(c, a)〉 implies

〈u, S(b, a)〉 6∈ U ; hence J(a) ∈ I. Thereby we also get P a =
{
u | 〈u, S(b, a)〉 �U

〈c, S(c, a)〉
}

, and thus, for all u,

u ∈ HJ(a) ⇔ J(a) ∈ I ∧ 〈u, S(b, a)〉 �U 〈c, S(c, a)〉 ⇔ u ∈ P a. a

§6. Kripke-Platek set theory over V. We will consider a Kripke-Platek
set theory with urelements, where the set-theoretic universe V (or a fixed model
of ZF, more formally) is taken as the domain of urelements, and in which “higher-
order” sets are constructed by the KP-axioms and topped up on V, while keeping
the distinction of the sets in V (as “urelements”) and the sets added on top of V
(as “sets”); we also assume that the collection of urelements, V, forms a set and
we have a constant V for it. In terms of [2, Ch.I.2], our system is KPU+ with ZF
as the theory of urelements augmented with a constant for the set of urelements.
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We take the one-sort formulation of KPU+. Let LKP = {∈0,∈1,U ,V}, where
U is a unary predicate for urelements, ∈0 is the membership relation among
urelements, ∈1 is the membership relation for sets, and V is a constant symbol
for the set of urelements. We will write Sx for ¬Ux to express set-hood. As
in the previous sections, we will occasionally treat LKP-formulae as classes, and
write x ∈ U and x ∈ S for example; the use of the symbol “∈” here should not
be confused with “∈0” or “∈1”, which are in the vocabulary of LKP.

We standardly define the collection of ∆0-formulae as the smallest collection of
LKP-formulae that contains all atomic LKP-formulae and is closed under Boolean
connectives and bounded quantifiers (∀z ∈1 x) and (∃z ∈1 x). The other collec-
tions of LKP-formulae in the Levy hierarchy are standardly defined from ∆0.

For each ϕ ∈ L∈, we denote the relativization of ϕ to 〈U ,∈0〉 by ϕU (∈ LKP),
where all the quantifiers ∀x and ∃x are restricted to U and the membership
relation ∈ of L∈ is replaced by ∈0; accordingly, ZFU means {σU | σ ∈ ZF}.

Definition 6.1. The LKP-system KPV− comprises ZFU plus:

(Ext): (∀a, b ∈ S)
(
∀x(x ∈1 a↔ x ∈1 b)→ a = b

)
(Found1): ∀x

(
(∀y ∈1 x)ϕ(y)→ ϕ(x)

)
→ ∀xϕ(x)

(Pair): ∀x∀y(∃a ∈ S)
(
x ∈1 a ∧ y ∈1 a

)
(Union): (∀a ∈ S)(∃b ∈ S)(∀x ∈1 a)(∀y ∈1 x)y ∈1 b

(∆0-Sep1): (∀a ∈ S)(∃b ∈ S)∀x
(
x ∈1 b↔ x ∈1 a ∧ ψ(x)

)
(∆0-Coll1): (∀a ∈ S)

[
(∀x ∈1 a)∃yψ(x, y)→ (∃b ∈ S)(∀x ∈1 a)(∃y ∈1 b)ψ(x, y)

]
(U): V∈S ∧ ∀x∀y

(
(x∈1V↔ x ∈ U) ∧ (x∈1 y → y ∈ S) ∧ (x∈0 y → x, y ∈ U)

)
.

(Eq) : ∀x(x = x) and ∀x∀y
[
x = y →

(
ξ(x)↔ ξ(y)

)]
where ϕ is any LKP-formula, ψ is any ∆0-formula without b free, and ξ is any
atomic LKP-formula. For each ZF-axiom σ, its relativization σU is (equivalently)
∆0 due to the axiom (U).

We also consider the following additional axiom schemata.

(Found+
0 ) : (∀x ∈ U)

(
(∀x ∈0 y)ϕ(y)→ ϕ(x)

)
→ (∀x ∈ U)ϕ(x).

(Sep+
0 ) : (∀a ∈ U)(∃b ∈ U)(∀z ∈ U)

(
z ∈0 y ↔ z ∈0 x ∧ ϕ(z)

)
.

(Repl+0 ) : (∀a ∈ U)
[
(∀x ∈0 a)(∃!y ∈ U)ϕ→ (∃b ∈ U)(∀x ∈0 a)(∃y ∈0 b)ϕ

]
,

where ϕ is any LKP-formula. Then we set KPV := KPV− + (Sep+
0 ) + (Repl+0 ).1

We express various sets and classes in L∈, such as ∅, ω, the class Tran of
transitive sets, the class On of ordinals, etc. Now, LKP possesses two different
membership relations ∈0 and ∈1 and bears two different set-theoretic structures
〈U ,∈0〉 and 〈S,U ,∈1〉 (where U gives the domain of urelements). Hence, those
sets and classes can be expressed in two different ways in terms of ∈0 and ∈1. We
will distinguish them by attaching superscript U or S; for example, ∅U denotes
the empty set in 〈U ,∈0〉 such that ∅U ∈ U and (∀x ∈ U)x 6∈0 ∅U , and ∅S denotes

the empty set in 〈S,U ,∈1〉 such that ∅S ∈ S and ∀x(x 6∈1 ∅S); TranU denotes the

1KPV− does not derive the axiom of infinity for sets in S, but KPV does due to (Found+
0 ).
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class {x ∈ U | (∀u ∈0 x)(v ∈0 u)v ∈0 x} of transitive sets in 〈U ,∈0〉, and TranS

is the class {x ∈ S | (∀u ∈1 x)(v ∈1 u)v ∈1 x} of transitive sets in 〈S,U ,∈1〉.

§7. Reduction of KPV− to SC−1 . We will give an embedding ∗ of KPV−
in SC−1 . It will be done by formalizing and generalizing the Barwise-Gandy-
Moschovakis theorem [3]. We work within SC−1 throughout the present section.

The interpretations U∗ and ∈∗0, of the domain U of urelements and the mem-
bership relation ∈0 for urelements in KPV−, are given by

U∗ := {〈a, 0〉 | a ∈ V} and x ∈∗0 y :⇔ x ∈ U∗ ∧ y ∈ U∗ ∧ (x)0 ∈ (y)0;

note that both are elementary. To give the interpretations of = and ∈1, we need
some preliminary definitions and results that we will explain at length below.

We say a class T is a tree when the following holds:

T 6= ∅ ∧ T ⊂ Seq ∧ ∀x∀y
[(
x, y ∈ Seq ∧ x ∗ y ∈ T

)
→ x ∈ T

]
,

where Seq is the (elementary) class of finite sequences (or tuples), and x ∗ y
denotes the concatenation of the two sequences x and y. For x ∈ Seq , we denote
its length by lh(x) (∈ ω) and its (i + 1)-th component (i < lh(x)) by (x)i as in
§5. We include the empty sequence ε in Seq so that ε is the unique sequence with
length 0, every non-empty x ∈ Seq is a proper extension of ε, and ε∗x = x = x∗ε
for all x ∈ Seq ; hence, ε is a member of every tree; for technical convenience, we
stipulate that ε 6∈ U∗ and (u)−1 = ε for each u ∈ Seq .

For a class Y , we define a strict pre-ordering @Y by

x @Y y :⇔ x, y ∈ Y ∧ x, y ∈ Seq ∧ (“x is a proper extension of y”);

note that ε is always a maximal element (“root”) of @Y if Y is a tree.
For a binary relation R, we let W[R](x,X, R) ∈ L2

SC be ∀y(yRx → y ∈ X).
Since W[R] is positive elementary in −R, the inductive class JW[R] exists for
every coinductive R by Theorem 5.2 and expresses the accessible part of R, which
we will denote by Acc(R). For a coinductive tree T , @T is also coinductive and
thus its well-foundedness is expressed as ε ∈ Acc(@T ) (↔ V = Acc(@T )); when
this holds, T is said to be well-founded. When T is well-founded, we have

(∀u ∈ T )
(
(∀v @T u) v ∈ X → u ∈ X

)
→ T ⊂ X, for all classes X.

Let min(@T ) := {u ∈ T | ∀x(u ∗ 〈x〉 6∈ T )} (i.e., the class of “leaves” of T ); this
class is elementary on T . Then we define two classes both also elementary on T :

U(T ) := {u ∈ T | u ∈ min(@T ) ∧ (u)lh(u)−1 ∈ U∗} and S(T ) := T \ U(T );

note that (u)lh(u)−1 is the last component of a sequence u = 〈u0, . . . , ulh(u)−1〉.
For interpreting the domain S of sets of KPV− in SC−1 , we make use of the

so-called tree representation of well-founded sets: we let each well-founded tree T
represent the unique well-founded set b such that 〈TC({b}),∈〉 is the Mostowski
collapse of 〈T,@T 〉; hence, bisimilar well-founded trees represent the same well-
founded set, say, c, and those trees are also bisimlar to the canonical tree repre-
sentation (or, tree picture) of c, defined as {ε}∪{〈c1, . . . , ck〉 | ck ∈ · · · ∈ c1 ∈ c}
(see [1] for a detailed exposition). However, since we allow urelements in KPV−,
the notions of collapse and bisimulation must be so modified as to accommodate
urelements; each leaf of a well-founded tree corresponds to an object with no
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member that is contained in the transitive closure of the set represented by the
tree, and we must somehow distinguish the cases where the leaf represents the
emptyset and where it represents an urelement, both of which contain no element.
For this purpose, we stipulate that, for a leaf u of a tree T , if u = 〈u0, . . . , uk〉
ends with an element of the form uk = 〈x, 0〉 ∈ U∗ (and thus u ∈ U(T )), then it
represents the urelement xU ∈ U of KPV−, and otherwise represents ∅S .

We first define an inductive class M so that

a ∈M :⇔ a ∈ I and Ha (= Ȟa) is a well-founded tree,

where I, H and Ȟ are the inductive and coinductive classes taken in Theorem
5.12. We have to make sure that M can be properly defined. Let us put

x @ y :⇔ x, y ∈ Pair ∧ (x)1 = (y)1 ∧ (x)0 @Ȟ(x)1 (y)0.

We can take Acc(@) since@ is coinductive. Let us write x @a y for 〈x, a〉 @ 〈y, a〉.
Then we can show that, for all a ∈ I and x, y ∈ V,

x @Ha y ⇔ x @a y and ε ∈ Acc(@a)⇔ 〈ε, a〉 ∈ Acc(@);

hence we can take M = {a ∈ I | “Ha is a tree” ∧ 〈ε, a〉 ∈ Acc(@)}, and @a
pre-wellorders Ha uniformly for each a ∈ M . The interpretation of the domain
S of sets is thereby given as:

S∗ := {〈a, 1〉 | a ∈M};
we add the index “1” here, in contrast to “0” added for U∗, to make U∗ and S∗
disjoint. Accordingly, the quantifiers “∀v” and “∃v” of LKP are interpreted by
∗ into “∀v ∈ (S∗ ∪ U∗)” and “∃v ∈ (S∗ ∪ U∗)”; note that the interpretations ∈∗1
and =∗ still remain to be defined, and their definitions will be given later.

We also have to modify the notion of the restriction of a tree T to its node u
(or “sub-tree of T below u”) so as to accommodate urelements. Preliminarily,
for a tree T and u ∈ S(T ) we put Tu := {v | u ∗ v ∈ T}, which is also a tree.

Proposition 7.1. Let T be a coinductive tree and u ∈ S(T ). If Tu is well-
founded then u ∈ Acc(@T ).

Proof. We can show (∀v ∈ Tu)
(
u ∗ v ∈ Acc(@T )

)
by induction on @Tu . a

Lemma 7.2. There exists an elementary function j : V × V → V such that
(Ha)u = Hj(a,u) for all a ∈M and u ∈ S(Ha).

Proof. We apply Theorem 5.12 to the following P and Q:

P := {〈v, 〈a, u〉〉 | u ∗ v ∈ Ha & u ∈ S(Ha)}
Q := {〈v, 〈a, u〉〉 | u ∗ v ∈ Ȟa & u ∈ S(Ȟa)}

Since we have P 〈a,u〉 = Q〈a,u〉 for all a ∈ M and u ∈ S(Ha), there exists J
such that J(〈a, u〉) ∈ M and (Ha)u = P 〈a,u〉 = HJ(〈a,u〉) for all a ∈ M and
u ∈ S(Ha). So we can take j(a, u) := J(〈a, u〉). a

For each x = 〈a, 1〉 ∈ S∗ and u ∈ Ha, we define x ↓u∈ S∗ ∪ U∗ so that

x ↓u:=

{
(u)lh(u)−1 (∈ U∗) if u ∈ U(Ha)

〈j(a, u), 1〉 (∈ S∗) if u ∈ S(Ha).
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Remark 7.3. Let us give an informal explanation of the definitions given so
far. Fix a transitive model A = 〈A,∈〉 of ZF. On the one hand, by treating A
as the set of urelements, the universe VA of sets on A (see [2, p.42]) and A gives
a model of KPV−, where we interpret S and U by VA and A respectively. On
the other hand, we extend A to a model of SC−1 and define I,H, Ȟ (⊂ A) on A
in the standard manner; thereby we define S∗ and U∗ in terms of them. Then,
for x = 〈a, 1〉 ∈ S∗ and u ∈ Ha, where Ha is a well-founded tree, we define a set
m(Ha, u) ∈ VA ∪A by recursion along @Ha :

m(Ha, u) :=

{
p (as an urelement in A) if u = 〈u0, . . . , 〈p, 0〉〉 ∈ U(Ha)

{m(Ha, u ∗ 〈v〉) | u ∗ 〈v〉 ∈ Ha} if u ∈ S(Ha).

Namely, {m(Ha, u) | u ∈ Ha} = TC({m(Ha, ε)}) is the Mostowski collapse
(in a modified sense taking urelements into account) of (Ha,@Ha), and U(Ha)
corresponds to TC

(
{m(Ha, ε)}

)
∩ A, i.e., the support of m(Ha, ε); see [2, p.29].

Thereby we let x (= 〈a, 1〉) interpret the set m(Ha, ε) ∈ VA. Now, the Barwise-
Gandy-Moschovakis Theorem [3, 19], generalized to our setting, says that

M :=
{
m(Ha, ε) | a ∈ I and Ha is a well-founded tree

}
is equal to HYPA, i.e., the smallest admissible set above A, and we will formalize
this argument within SC−1 .

With this interpretation, a bisimulation between two trees T and S is defined
to be a relation R ⊂ T × S satisfying R(ε, ε) and the next four conditions:

(i) if tRs and t ∗ 〈u〉 ∈ U(T ), then s ∗ 〈u〉 ∈ S and R
(
t ∗ 〈u〉, s ∗ 〈u〉

)
;

(ii) if tRs and t ∗ 〈v〉 ∈ S(T ), then s ∗ 〈w〉 ∈ S and R
(
t∗〈v〉, s∗〈w〉

)
for some w;

(iii) if tRs and s ∗ 〈u〉 ∈ U(S), then t ∗ 〈u〉 ∈ T and R
(
t ∗ 〈u〉, s ∗ 〈u〉

)
;

(iv) if tRs and s ∗ 〈w〉 ∈ S(S), then t ∗ 〈v〉 ∈ T and R
(
t∗〈v〉, s∗〈w〉

)
for some v;

We say two trees are bisimilar when there is a bisimulation between them. Ac-
cordingly, for x = 〈a, 1〉 ∈ S∗ and u ∈ S(Ha), the well-founded tree (Ha)u is
bisimilar to the canonical tree representation of m(Ha, u) ∈ VA, and x↓u inter-
prets the set m(Hj(a,u), ε) = m((Ha)u, ε) = m(Ha, u); if u ∈ U(Ha), then x ↓u
interprets the urelement p ∈ A such that (u)lh(u)−1 = 〈p, 0〉.

Example 1. The tree {ε} represents ∅S in the sense that {ε} is bisimilar to
the canonical tree representation of ∅S . The trees {ε, 〈〈1, 1〉〉} and {ε, 〈〈2, 1〉〉}
both represent {∅S}, but {ε, 〈〈1, 0〉〉} and {ε, 〈〈2, 0〉〉} represent {1U} and {2U}
respectively. Next, let us call the following trees T1, T2, and T3 from left to right:

ε

��

ε

{{ $$

ε

yy &&
〈ε〉

��

〈0〉

�� ""

〈1〉

��

〈0〉

�� $$

〈1〉

��
〈ε, ε〉 〈0, 0〉 〈0, ω1〉 〈1, 〈ω1, 1〉〉 〈0, 0〉 〈0, 〈ω1, 0〉〉 〈1, 〈ω1, 0〉〉

T1 and T2 are bisimilar and represent the same set {{∅S}}. We have U(T1) =
U(T2) = ∅, but U(T3) = {〈0, 〈ω1, 0〉〉, 〈1, 〈ω1, 0〉〉}. Hence, whereas T2 and T3

have the same shape, they are not bisimilar and represent different sets; T3
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represents {{∅S , ωU1 }, {ωU1 }}. Let ai ∈ M be such that Hai = Ti and xi =
〈ai, 1〉 ∈ S∗ for 1 ≤ i ≤ 3. Then x1 ↓〈ε,ε〉, x2 ↓〈0,0〉, and x3 ↓〈0,0〉 interpret the

same set ∅S , and x3 ↓〈0,〈ω1,0〉〉 and x3 ↓〈1,〈ω1,0〉〉 interpret the same urelement ωU1 .

For defining the interpretations of = and ∈1, we first formalize, within SC−1 ,
the aforementioned notion of bisimulation of hyperelementary well-founded trees
as an inductive relation. Let B(〈a, b, u, v〉, X) (with parameters H and Ȟ) be:

∀x
[
u ∗ 〈x〉 ∈ Ȟa → ∃y

(
v ∗ 〈y〉 ∈ Hb ∧

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∧
[
u ∈ U(Ȟa)→

(
v ∈ U(Hb) ∧ (u)lh(u) = (v)lh(v))

)]
∧ ∀y

[
v ∗ 〈y〉 ∈ Ȟb → ∃x

(
u ∗ 〈x〉 ∈ Ha ∧

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∧
[
v ∈ U(Ȟb)→

(
u ∈ U(Ha) ∧ (u)lh(u) = (v)lh(v))

)]
∧ u ∈ Ha ∧ v ∈ Hb;

in terms of Remark 7.3, the monotone operator on A induced by B inductively
lists up the bisimilar pairs 〈(Ha)u, (H

b)v〉 starting from the leaves towards the
roots. Since B is positive elementary in H and−Ȟ, the inductive least fixed point
JB of B exists by Theorem 5.2, and we let B(a, b, u, v) denote 〈a, b, u, v〉 ∈ JB;
note that B(a, b, u, v) implies u ∈ Ha and v ∈ Hb.

Lemma 7.4. Let a, b, c ∈M and u, v, w ∈ V. The following hold.

1. B(a, b, u, v) iff B(b, a, v, u).
2. If B(a, b, u, v) and B(b, c, v, w), then B(a, c, u, w).
3. If Ha = Hb and u ∈ Ha, then B(a, b, u, u).

Each of them is shown by induction along @a.

Lemma 7.5. Let a ∈ M and u ∈ S(Ha). Then B(a, j(a, u), u ∗ v, v) holds for
all v ∈ (Ha)u; hence we have B(a, j(a, u), u, ε) in particular. This claim is shown
by induction on v along @j(a,u) (= @(Ha)u).

We next define the dual operator C(〈a, b, u, v〉,X) of B by the following:

∃x
[
u ∗ 〈x〉 ∈ Ha ∧ ∀y

(
v ∗ 〈y〉 ∈ Ȟb →

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∨
[
u ∈ U(Ha) ∧ (v 6∈ U(Ȟb) ∨ (u)lh(u) 6= (v)lh(v))

]
∨ ∃y

[
v ∗ 〈y〉 ∈ Hb ∧ ∀x

(
u ∗ 〈x〉 ∈ Ȟa →

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∨
[
v ∈ U(Hb) ∧ (u 6∈ U(Ȟa) ∨ (u)lh(u) 6= (v)lh(v))

]
∨ u 6∈ Ȟa ∨ v 6∈ Ȟb

the monotone operator induced by C inductively lists up the non-bisimilar pairs
〈(Ha)u, (H

b)v)〉 starting from the leaves toward the roots. Let C denote the
least fixed-point JC of C; note that u 6∈ Ȟa or v 6∈ Ȟb implies C(a, b, u, v).

Lemma 7.6. Let a, b ∈M . Then, for all u ∈ Ha and v ∈ Hb, it holds:

C(a, b, u, v) ⇔ ¬B(a, b, u, v).

Proof. The claim is shown by induction on u along @a. a
For interpreting the identity = and the other membership relation ∈1 as well

as their negations 6= and 6∈1, we use the following inductive relations.

P+
= (x, y) :⇔

[
x, y ∈ U∗ ∧ (x)0 = (y)0

]
∨
[
x, y ∈ S∗ ∧B

(
(x)0, (y)0, ε, ε

)]
P−= (x, y) :⇔

[
x, y ∈ U∗ ∧ (x)0 6= (y)0

]
∨
[
(x)1 6= (y)1

]
∨
[
x, y ∈ S∗ ∧ C

(
(x)0, (y)0, ε, ε

)]
.
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P+
∈1

(x, y) :⇔ y ∈ S∗ ∧ ∃z
(
〈z〉 ∈ H(y)0 ∧ P+

= (x, y↓〈z〉)
)

P−∈1
(x, y) :⇔ y ∈ U∗ ∨ ∀z

(
〈z〉 ∈ Ȟ(y)0 → P−= (x, y↓〈z〉).

Corollary 7.7. For all x, y ∈ U∗ ∪ S∗, we have

¬P+
= (x, y)↔ P−= (x, y) and ¬P+

∈ (x, y)↔ P−∈ (x, y).

Finally, we define the interpretations of = and ∈1 as follows:

x =∗ y :⇔ P+
= (x, y) and x ∈∗1 y :⇔ P+

∈1
(x, y).

In particular, for every x = 〈a, 1〉 ∈ S∗, z ∈∗1 x holds, if and only if either
z = 〈b, 1〉 ∈ S∗ for some b and the tree Hb is bisimilar to some immediate subtree
of Ha, or z = 〈c, 0〉 ∈ U∗ for some c and there is a leaf of Ha immediately below
the root ε that represents cU (i.e., 〈〈c, 0〉〉 ∈ Ha ∩min(@a)); also, z =∗ x if and
only if z = 〈d, 1〉 ∈ S∗ for some d such that Hd is bisimilar to Ha.

Lemma 7.8. SC−1 ` (Eq)∗; by definition and Lemmata 7.4 and 7.5.

Lemma 7.9. Let X ⊂ S∗ ∪ U∗ be hyperelementary. There exists y ∈ S∗ such
that (∀z ∈ U∗ ∪ S∗)

[
P+
∈1

(z, y)↔ ∃x
(
x ∈ X ∧ P+

= (z, x)
)]

.

Proof. Let T be a hyperelementary tree defined by:

T := {ε} ∪ {〈x〉 | x ∈ X ∩ U∗} ∪ {〈x〉 ∗ u | x ∈ X \ U∗ ∧ u ∈ H(x)0};
we have {〈x〉 |x ∈ X ∩ U∗} ⊂ U(T ) and {〈x〉 |x ∈ X \ U∗} = {〈x〉 |x ∈ X ∩ S∗} ⊂
S(T ). We first show that T is well-founded. Since Acc(@T ) is downward closed,
it suffices to show 〈x〉 ∈ Acc(@T ) for all x ∈ X. This obviously holds for
x ∈ X ∩ U∗. Let x = 〈a, 1〉 ∈ X ∩ S∗. We have 〈x〉 ∈ S(T ) and T〈x〉 = Ha,
which is well-founded since 〈a, 1〉 ∈ S∗. Therefore, by Proposition 7.1, the well-
foundedness of T〈x〉 implies 〈x〉 ∈ Acc(@T ).

Now, pick b ∈M with Hb = T . Let y = 〈b, 1〉 ∈ S∗ and take any z ∈ U∗ ∪S∗.
Suppose P+

∈1
(z, y). There is some 〈w〉 ∈ Hb with P+

= (z, y ↓〈w〉). If z ∈ U∗,
then z = y ↓〈w〉 and thus 〈w〉 ∈ U(Hb), which entails z = y ↓〈w〉= w ∈ X ∩ U∗.
Assume z = 〈a, 1〉 ∈ S∗ for some a. Then y ↓〈w〉∈ S∗ and thus 〈w〉 ∈ S(Hb);

hence w ∈ X ∩ S∗. Let w = 〈c, 1〉. Since Hc = T〈w〉 = Hj(b,〈w〉), we have

B(j(b, 〈w〉), c, ε, ε) by Lemma 7.4.3 and thus P+
= (y↓〈w〉, w); hence P+

= (z, w).

Let x ∈ X be such that P+
= (z, x); then 〈x〉 ∈ Hb. If x ∈ U∗ then y↓〈x〉= x and

thus P+
= (z, y↓〈x〉). If x = 〈c, 1〉 ∈ S∗, then T〈x〉 = Hc and thus B(c, j(b, 〈x〉), ε, ε)

by Lemma 7.4.3. Hence we have P+
= (x, y ↓〈x〉) and thus P+

= (z, y ↓〈x〉). a

Lemma 7.10. SC−1 ` (Pair)∗; apply Lemma 7.9 to X = {v, w} for v, w ∈
S∗ ∪ U∗.

Proposition 7.11. Let x = 〈a, 1〉 ∈ S∗, u ∈ S(Ha), and v ∈ (Ha)u. Then
we have P+

=

(
(x↓u)↓v, x↓u∗v

)
; by definition and Lemma 7.4.3.

Lemma 7.12. SC−1 ` (Union)∗.

Proof. Take any x = 〈a, 1〉 ∈ S∗. Put X := {x↓u| u ∈ Ha ∧ lh(u) = 2}. We
take y = 〈b, 1〉 ∈ S∗ such that (∀z ∈ U∗∪S∗)(P+

∈1
(z, y)↔ (∃x ∈ X)P+

= (z, x)) by

Lemma 7.9. Take any v ∈ S∗ and z ∈ U∗∪S∗ such that P+
∈1

(z, v) and P+
∈1

(v, x).
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We have P+
= (v, x ↓〈w〉) for some 〈w〉 ∈ S(Ha). Hence, we have P+

∈1
(z, x ↓〈w〉),

and thus there exists 〈w′〉 ∈ H(x↓〈w〉)0 = (Ha)〈w〉 such that P+
=

(
z, (x↓〈w〉) ↓〈w′〉

)
.

Then, we obtain P+
= (z, x ↓〈w,w′〉) by Proposition 7.11. Since 〈w,w′〉 ∈ Ha, we

finally get x ↓〈w,w′〉∈ X and thus P+
∈1

(z, y). a

Lemma 7.13. For each ∆0-formula ϕ(~x) of LKP, there are inductive relations
P+
ϕ (~x) and P−ϕ (~x) such that, for all ~x ∈ U∗ ∪ S∗,

P+
ϕ (~x) ⇔ ϕ∗(~x) and P−ϕ (~x) ⇔ ¬ϕ∗(~x).

Proof. By induction on ϕ. For example, if ϕ = (∀z ∈1 x)ψ(z, x,~v), we take

P+
ϕ (x,~v) :⇔ x ∈ U∗ ∨ ∀w(〈w〉 ∈ Ȟ(x)0 → P+

ψ (x ↓〈w〉, x, ~v)

P−ϕ (x,~v) :⇔ x 6∈ U∗ ∧ ∃w(〈w〉 ∈ H(x)0 ∧ P−ψ (x ↓〈w〉, x,~v). a

Lemma 7.14. SC−1 ` (∆0-Sep1)∗.

Proof. Let ϕ(z, x,~v) ∈ ∆0. Take x = 〈a, 1〉 ∈ S∗ and ~v ∈ U∗ ∪ S∗. Put

X := {x ↓〈w〉| 〈w〉 ∈ Ha ∧ P+
ϕ (x ↓〈w〉, x,~v)}

which is hyperelementary. By Lemma 7.9 there is y such that, for all z ∈ U∗∪S∗,
P+
∈1

(z, y)⇔ ∃w
(
〈w〉 ∈ Ha ∧ P+

ϕ (x ↓〈w〉, x,~v) ∧ P+
= (z, x ↓〈w〉)

)
⇔ P+

∈1
(z, x) ∧ P+

ϕ (z, x,~v). a

Lemma 7.15. SC−1 ` (∆0-Coll1)∗.

Proof. Let x = 〈a, 1〉 ∈ S∗ and suppose (∀y ∈∗1 x)(∃z ∈ S∗ ∪ U∗)ϕ∗(y, z) for
some ϕ ∈ ∆0. By Theorem 5.8, where we take P (y, z) :⇔ z ∈ S∗∪U∗∧P+

ϕ (y, z),

there are inductive relation Q and coinductive relation Q̌ such that

• If Q(y, z) then z ∈ S∗ ∪ U∗ and P+
ϕ (y, z).

• If P+
ϕ (y, z) for some z ∈ U∗ ∪ S∗, then {z | Q(y, z)} = {z | Q̌(y, z)} 6= ∅.

Let X = {z | ∃u(〈u〉 ∈ Ha ∧Q(x↓〈u〉, z)}, which is hyperelementary. By Lemma

7.9, we pick w ∈ S∗ such that (∀v ∈ U∗ ∪ S∗)
(
P+
∈1

(v, w) ↔ (∃u ∈ X)P+
= (v, u)

)
,

and let w = 〈b, 1〉. Take any y with P+
∈1

(y, x). We have P+
= (y, x ↓〈u〉) for some

〈u〉 ∈ Ha and ϕ∗(y, z) for some z ∈ S∗ ∪ U∗. Hence we get P+
ϕ (x ↓〈u〉, z) and

thus Q(x↓〈u〉, z′) for some z′. We have z′ ∈ X, z′ ∈ U∗ ∪ S∗, and P+
ϕ (x↓〈u〉, z′),

which finally entails P+
∈1

(z′, w) and ϕ∗(y, z′). a

Lemma 7.16. SC−1 ` (Found1)∗.

Proof. Suppose ∀y(y ∈∗1 x → ϕ∗(y)) → ϕ∗(x) for all x ∈ U∗ ∪ S∗. Take
any z ∈ U∗ ∪ S∗. We will show ϕ∗(z). If z ∈ U∗ we trivially get ϕ∗(z) by the
supposition. Let z = 〈a, 1〉 ∈ S∗. Since z ↓ε=∗ z, it suffices to show that

∀v(v @a u→ ϕ∗(z ↓v))→ ϕ∗(z ↓u), for all u ∈ Ha.(1)

Let u ∈ Ha and assume ∀v(v @a u → ϕ∗(z ↓v)). Take any w with P+
∈1

(w, z ↓u).
We have P+

= (w, z ↓v) for some v @a u by Proposition 7.11 and thus ϕ∗(w) by
the assumption. Since w is arbitrary we obtain ϕ∗(z ↓u) by the supposition. a

Lemma 7.17. SC−1 ` (Ext)
∗
.
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Proof. Let x = 〈a, 1〉 ∈ S∗ and y = 〈b, 1〉 ∈ S∗. When P+
∈1

(z, x)↔ P+
∈1

(z, y)
for all z ∈ U∗ ∪ S∗, we can show B(a, b, ε, ε, B) and thus P+

= (x, y). a
Finally, let T = {ε} ∪ {〈〈v, 0〉〉 | v ∈ V}. We can give an explicit definition of

some object b ∈M such that Hb = T . We fix one such b and its definition, and
put V∗ := 〈b, 1〉. With this interpretation, we can easily verify SC−1 ` (U)∗.

Theorem 7.18. The translation ∗ is an interpretation of KPV− in SC−1 . It is
also an interpretation of KPV− + (Sep+

0 ) in SC−1 + LSC-Sep, and KPV in SC1.

Proof. For the first claim, it remains to be shown that SC−1 ` (ZFU )∗. In
general, for each ϕ(x1, . . . , xk) ∈ L∈ only with the displayed variables free, we
can show the following by induction on ϕ, which immediately entails the claim:

SC−1 ` ∀x1 · · · ∀xk
[
ϕ(~x) ↔ (ϕU )∗

(
〈x0, 0〉, . . . , 〈xk, 0〉

) ]
.(2)

For the second claim, let ϕ(z,~v) ∈ LKP, x = 〈a, 0〉 ∈ U∗, and ~v ∈ U∗ ∪ S∗. In
the presence of LSC-Sep, we can take b = {c ∈ a | ϕ∗(〈c, 0〉, ~v)}. Then we put
y = 〈b, 0〉 ∈ U∗ and have

(∀z ∈ U∗)[z ∈∗0 y ↔ z ∈0 x ∧ ϕ∗(z,~v)].

The case for (Repl+0 ) and LSC-Repl is similarly treated. a

Theorem 7.19. For all ϕ ∈ L∈, if KPV− ` ϕU then SC−1 ` ϕ. The same
holds for KPV− + (Sep+

0 ) and SC−1 + LFix-Sep, and for KPV and SC−1 . This is
an immediate consequence of the last theorem and (2).

§8. Reduction of VF to KPV. Cantini [7] gave an embedding of VF[[PA]] in
KPu, which is essentially equal to KPU+ [2] over natural numbers augmented
with the arithmetical induction schema extended to the whole language (see [7]
or [16] for its definition); note that KPω is a urelement-free formulation of KPu.

Essentially the same embedding works for VF (over ZF) and KPV; in fact, it
gives an embedding of VF−+LT -Ind in KPV−+ (Found+

0 ). Such an embedding
is given by what Cantini calls provability interpretation, by which we interpret
the truth of an L∞∈ -sentence σ ∈ St∞LT

by the provability of σU ∈ (St∞LT
)U within

a certain semi-formal infinitary system formalizable within KPV−.
In what follows we work within KPV− + (Found+

0 ). As in §6, we will occa-
sionally treat LKP-formulae as classes; e.g., we write x ∈ U and x ∈ (St∞LT

)U .
We also assume that formulae of LT are all expressed in their negation normal
forms; so, they can be seen as constructed from literals by means of ∧, ∨, ∀, and
∃; then, for a formula A in its negation normal form, ¬A is standardly defined.

Definition 8.1. For α, ρ ∈ OnS , and for a finite (in the sense of U) set
Γ ⊂U (St∞LT

)U , the relation S|α
ρ

Γ holds iff one of the following holds:

(a) for some a, b ∈ U , either pȧ∈ ḃqU ∈0 Γ and a∈0 b, or pȧ 6∈ ḃqU ∈0 Γ and a 6∈0 b;

(b) for some a, b ∈ U , either pȧ= ḃqU ∈0 Γ and a=b, or pȧ 6= ḃqU ∈0 Γ and a 6=b;
(c) for some a ∈ U , it holds that pT ȧqU , p¬T ȧqU ∈0 Γ;
(d) p¬TpAqqU , p¬Tp¬AqqU ∈0 Γ, for some pAqU ∈ (St∞LT

)U ;

(e) there exist some pAqU , pBqU ∈ (St∞LT
)U , and α0, α1 <

S α such that pA ∧
BqU ∈0 Γ, S|α0

ρ
Γ, pAqU , and S|α1

ρ
Γ, pBqU ;



TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS 19

(f) there exist some pAqU , pBqU ∈ (St∞LT
)U and α′ <S α such that pA∨BqU ∈0

Γ, and either S|α
′

ρ
Γ, pAqU or S|α

′

ρ
Γ, pBqU ;

(g) there exists some pA(x)qU ∈ (Fml∞LT
)U such that p∀xA(x)q ∈0 Γ, and for

each a ∈ U there is αa <
S α such that S|αa

ρ
Γ, pA(ȧ)qU ;

(h) there exist some pA(x)qU ∈ (Fml∞LT
)U and α′ <S α such that p∃xA(x)qU ∈0

Γ, and S|α
′

ρ
Γ, pA(ȧ)qU for some a ∈ U ;

(i) there exist some pAqU ∈ (St∞LT
)U , α′ <S α, and ρ′ <S ρ such that

pT (pAq)qU ∈0 Γ, and S|α
′

ρ′
pAqU ;

(j) there exist some pAqU ∈ (St∞LT
)U , α′ <S α, and ρ′ <S ρ such that

p¬T (pAq)qU ∈0 Γ, and S|α
′

ρ′
p¬AqU ;

here, following the convention, we mean S|α
ρ

Σ ∪ {pDq} by “S|α
ρ

Γ, pDq”.

Due to the axiom (U), each of the ten clauses (a)–(j) above (and the finiteness

in U) is ∆0 with parameters α, ρ, and Γ, and the relation S|α
′

ρ′
Γ′ only occurs

positively therein. Hence, the relation S|α
ρ

Γ can be defined as a least fixed-point

of a positive Σ-operator and thus a Σ-predicate in KPV−; see [2, Ch.VI].

Lemma 8.2. The following basic proof-theoretic properties of the semi-formal
system S are all standardly shown by induction on α (using (Found1)).

• S|α
ρ
∅U for no α and ρ. (Consistency of S)

• For Γ ⊂U ∆, α ≤S β, and ρ ≤S τ , if S|α
ρ

Γ then S|β
τ

∆. (Structural Lemma)

• If a 6∈0 b and S|α
ρ

Γ, pȧ ∈ ḃqU , then S|α
ρ

Γ. (Falsity Lemma 1)

• If a ∈0 b and S|α
ρ

Γ, pȧ 6∈ ḃqU , then S|α
ρ

Γ. (Falsity Lemma 2)

• If a 6= b and S|α
ρ

Γ, pȧ = ḃqU , then S|α
ρ

Γ. (Falsity Lemma 3)

• If a = b and S|α
ρ

Γ, pȧ 6= ḃqU , then S|α
ρ

Γ. (Falsity Lemma 4)

• If S|α
ρ

Γ, pA ∧BqU then S|α
ρ

Γ, pAqU and S|α
ρ

Γ, pBqU . (∧-Inversion)

• If S|α
ρ

Γ, p∀xA(x)qU then S |α
ρ

Γ, pA(ȧ)qU for all a ∈ U . (∀-Inversion)

• If S|α
ρ

Γ, pA ∨BqU then S|α
ρ

Γ, pAqU , pBqU . (∨-Exportation)

Lemma 8.3. If S|α
ρ

Γ, p¬Tp¬AqqU , pTpAqqU , then S|α
ρ

Γ, p¬Tp¬AqqU .

Proof. By straightforward induction on α. a

Lemma 8.4 (Cut admissibility). Suppose S|α
ρ

Γ, pAq and S|β
ρ

Γ, p¬Aq for

some pAq ∈ (St∞LT
)U . Then, we have S|γ

ρ
Γ for some γ ∈ OnS .

Proof. For each pAqU ∈ (St∞LT
)U , let scU (pAqU ) ∈ ωU be the surface com-

plexity of pAq: all atomics are assigned the surface complexity 0 and thus
scU (pT ȧq) = 0U for all a ∈ U . Using (Found1) and (Found+

0 ), the claim is shown

by quadruple induction on ρ ∈ OnS , sc(pAq) ∈ ωU , α ∈ OnS , and β ∈ OnS .
The details are parallel to the proof of Theorem 4.4 of [7] (or Theorem 62.1 of
[8]); we note that Lemma 8.3 is used in the case where the rule (d) is used. a

We will write S| Γ when S|α
ρ

Γ for some α and ρ.
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Lemma 8.5 (T-elimination). 1. If S| pTpϕqqU then S| pϕqU .

2. If S| p¬TpϕqqU then S| p¬ϕqU .

Proof. If S|α
ρ
pTpϕqqU , then (i) must be the case for Γ := {pT (pϕq)qU},

and S|α
′

ρ′
pϕqU for some α′<S α and ρ′<S ρ. The claim 2 is shown similarly. a

Definition 8.6 (Provability interpretation). We define the provability inter-
pretation A∞ ∈ LKP for each A ∈ LT by:

Tx 7→ S| x, x ∈ y 7→ x ∈0 y, and ∀x 7→ (∀x ∈ U);

and all the other vocabulary is unchanged.

Lemma 8.7 (Reflection Lemma). Let A0(~x), . . . , An(~x) ∈ LT at most ~x free.

Then KPV−`(∀~a∈U)
(
S| {pA0(~̇a)qU, . . . ,pAn(~̇a)qU}U→

(
A∞0 (~a)∨· · ·∨A∞n (~a)

))
.

Proof. For each k ∈ N, we can define within KPV− a partial truth predicate
Trk(x) of the L∞T -structure 〈 U ,∈0,T

∞, {cu | u ∈ U}〉 for all pψqU ∈ (St∞LT
)U

with scU (pAqU ) ≤U kU ; c.f., [7, Lemma 5.8.1]. Then we can show

(∀Γ ⊂ (St∞LT
)U )
[(
S| Γ ∧ (∀x ∈0 Γ)(scU (x) ≤U kU )

)
→ (∃x ∈0 Γ)Trk(x)

]
.

by straightforward induction on α ∈ OnS , using (Found1). a

Lemma 8.8. If pϕ(~v)qU ∈ LogAxUL∞T , then S| pϕ(~̇a)qU for all ~a ∈ U .

Theorem 8.9. The translation A 7→ A∞ is a relative interpretation.

Proof. V1∞ follows from Reflection Lemma. V2∞ and V3∞ follow from
Falsity Lemma and Consistency of S. V4∞ is a consequence of Lemma 8.8. V5∞

follows from the clause (g) in Definition 8.1, the axiom (U), and Σ-Collection for
S ([2, Ch.I]), which is derivable in KPV−. V6∞ follows by ∨-Exportation and
Lemma 8.4. V7∞ is immediate from the clause (i). V8∞ follows from Lemma
8.5.2. Finally, V9∞ is immediate from the clause (d). a

Theorem 8.10. There is an interpretation of VF−+LT -Ind in SC−1 +LSC-Ind
that preserve the L∈-part.2 Hence, VF− + LT -Ind ⊂L∈ SC−1 + LSC-Ind.

Proof. By Theorems 7.18 and 8.9, the translation ϕ 7→ (ϕ∞)∗ is an interpre-
tation of VF− + LT -Ind in SC−1 + LSC-Ind, and it maps ∀x to (∀x ∈ U∗), x ∈ y
to x ∈∗0 y, and Tx to (S ` x)∗. Let I be a new translation of LT to LSC that
maps Tx to (T∞)∗(〈x, 0〉) and preserves all the rest. In a similar way to (2), we
can show that, for all ϕ(x1, . . . , xk) ∈ LT only with the displayed variables free,

SC−1 ` ∀~x
[
ϕI(~x)↔ (ϕ∞)∗(〈x1, 0〉, . . . , 〈xk, 0〉)

]
.

Hence, I is also an interpretation of VF− + LT -Ind in SC−1 + LSC-Ind. a
2As a matter of fact, we can embed VF− in KPV− and thus in SC−1 by modifying Cantini’s

embedding of VF− in PW− + GID in [8]. For this purpose, we need to re-define (St∞LT
)U in

terms of inductive definitions within KPV−, which makes the use of (Found+
0 ) in Theorem 8.4

dispensable; the new definition does not provably equal to the original definition in KPV−,
though they coincide in KPV− + (Found+

0 ). We then introduce an intermediate system that

is the same as VF− except that the quantifiers “(∀x ∈ St∞LT
)” and “(∀x ∈ Fml∞LT

)” in the

VF-axioms are replaced by “∀x”, which includes VF−, and embed it in KPV−.
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§9. Applications. In the present section, we will present two applications of
the results and techniques of the previous sections.

9.1. Answer to an open problem of [12]. It was asked in [12] as an
open problem whether Σ1

1-AC is conservative over KFW (KF with a global well-
ordering of sets); we refer the reader to [12] for the definitions of all the systems
and axioms of second-order set theory discussed in this subsection. The proof-
theoretic equivalence of Σ1

1-AC[[PA]] and KF[[PA]] over arithmetic is well-known
(see [9]), but the known proof of the conservation Σ1

1-AC[[PA]] ⊂LN KF[[PA]] uses
a technique that is not yet known to be applicable to those systems over set
theory. In this subsection, we will show that the conservation holds also over
set theory. Precisely, what we will literally show is that KF is conservative over
Π1

0-Coll; however, Σ1
1-AC is identical as a theory with Π1

0-Coll plus a global choice
GC ([12, p.1489]), and the conservation Σ1

1-AC ⊂L∈ KFW can be shown in an
exactly parallel manner, since the addition of a global well-ordering of sets does
not affect all the relevant arguments.

Theorem 9.1. Π1
0-Coll ⊂L∈ KF.

Proof. We make the following definitions in KPV−: for u ∈ U and x ∈ S,

(x)u := {v ∈ U | 〈v, u〉U ∈1 x} and PS(x) := {y ∈ S | ∀z(z ∈1 y → z ∈1 x)}.

By interpreting sets and classes of second-order set theory by urelements u ∈ U
(= V) and sets x ∈ PS(V) respectively, we obviously have a syntactic embedding
of NBG + Σ1

∞-Sep + Σ1
∞-Repl in KPV, where Σ1

∞-Sep and Σ1
∞-Repl are the

separation and replacement schemata extended for all second-order formulae.
With this interpretation, each instance of Π1

0-Coll is translated into

(∀x ∈ U)(∃y ∈ PS(V))ϕU (x, y)→ (∃z ∈ PS(V))(∀x ∈ U)(∃u ∈ U)ϕU (x, (z)u),

for some ϕ ∈ L∈; note that ϕU is ∆0 for every ϕ ∈ L∈. We call this schema
(Π1

0-CollKP). Since we have shown SC1 ⊂L∈ KF, it suffices to show SC1 `
(Π1

0-CollKP)∗: the proof is essentially a formalization of Theorem 6D.3 of [19].
Suppose the antecedent of an instance of (Π1

0-CollKP)∗ holds. We take an
inductive relation P so that

P (x, y) :⇔ x ∈ U∗→
(
(y ∈ PS(V))∗ ∧ (ϕU )∗(x, y)

)
.

We have ∀x∃yP (x, y) by the supposition. It follows by Theorem 5.8 that there
is a hyperelementary Q such that Q ⊂ P and ∀x∃yQ(x, y). Then we put B :=
{a | (∃x ∈ U∗)Q(x, 〈a, 1〉)}. B is hyperelementary and 〈a, 1〉 ∈ S∗ for all a ∈ B.
From this B we define another hyperelementary Z ⊂ U∗ so that

Z :=
{
w | (∃v, u ∈ U∗)(∃a ∈ B)

(
(w = 〈v, u〉U )∗ ∧ u = 〈a, 0〉 ∧ v ∈∗1 〈a, 1〉

)}
;

By Lemma 7.9, we pick z ∈ S∗ such that (∀w ∈ U∗ ∪ S∗)[w ∈∗1 z ↔ w ∈ Z].
Now, take any x ∈ U∗. There exists y = 〈a, 1〉 ∈ (PS(V))∗ with Q(x, y). We
have a ∈ B and let u = 〈a, 0〉 ∈ U∗. Then, for all v ∈ U∗, (〈v, u〉U ∈1 z)

∗ iff
v ∈∗1 y: that is, ((z)u)∗ =∗ y and thus (ϕU )∗(x, ((z)u)∗). a
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Remark 9.2. Since KPV derives ∆-Separation, ∆1
1-CA is syntactically embed-

dable in KPV. By Theorem 80.2 of [12], we also have Σ1
1-Coll ⊂L∈ ∆1

1-CA ⊂L∈
KF, which gives an alternative proof of Theorem 9.1.3

9.2. Embedding of KPu in ID1[[PA]]. It is well-known that KPu (and KPω)
is proof-theoretically equivalent to ID1[[PA]]. The proof-theoretic reduction of
ID1[[PA]] to KPu is easily obtained via the standard interpretation (see [21,
Ch. 11.5] for example), but the converse reduction was originally obtained by
means of ordinal analysis due to Jäger [16]. As far as the author knows, a di-
rect syntactic embedding KPu (or KPω) in ID1[[PA]] has not been given in the
literature.4 We will give such an embedding in the present subsection.

It is to be observed that all the proofs in §7 can be straightforwardly turned
into a proof of embeddability of KPu in SC1[[PA]]. Hence, for the purpose of the
present section, it suffices to show that SC1[[PA]] is embeddable in ID1[[PA]].

Let 〈·, ·〉 : N2 → N be a bijective pairing function and (·)0 and (·)1 its associated
projections. For a class X ⊂ N, we write x <X y for 〈x, y〉 ∈ X, which is not to
be confused with ≺X (§5).

We begin with Sato’s lemma in [22]. For each A(x,X) ∈ I(LN), we set

A′(x,X) := ¬A
(
(x)1,

{
u | u <X (x)0

})
.

We call A′
(
x, {z | A′(z,X)}

)
the derivative of A; namely, it is equal to

¬A
(

(x)1,
{
u | ¬A

(
(x)0,

{
v | v <X u

})})
We will abuse the notation and write A′′ for the derivative of A.

Lemma 9.3 (Sato). Let A ∈ I(LN). The following is provable in ID−1 [[PA]].
Let X be a class with ∀x[A′′(x,X) ↔ x ∈ X]. Suppose we can take the acces-
sible part of <X , i.e., the least class Y that is progressive with respect to <X :
more precisely, it is the unique (if any) class Y such that ClosW[<X ](Y ) and
ClosW[<X ](Z) → Y ⊂ Z for all classes Z (see p.12). Then, there is a class that

satisfies the SC−1 -axioms (SC0)–(SC2) for A in place of ≺A.5

Theorem 9.4. SC−1 [[PA]] is a definitional extension of ID−1 [[PA]].

Proof. Let A(x,X) ∈ I(LN). Then we define B(x,X) as

A
(

(x)0,
{
u | ¬A

(
(x)1,

{
v | u 6<X v

})})
.

3The proof of Theorem 80.2 of [12] is flawed, but the statement itself is true and the claim
that PZF1 ⊂ ∆1

1-CA is also true; for, the class-theoretic counterpart of Σ1
∞-TI (see [23]) is

provable in NBG + Σ1
∞-Sep + Σ1

∞-Repl. The proof of Theorem 80.1 of [12] is also flawed, but

this statement is an immediate consequence of the main result of [17] and Theorem 18 of [12].
4After the submission of the present paper, I was informed by Prof. Wolfram Pohlers that

the same result was already obtained by Christian Tapp in [24]; but Tapp’s thesis is not widely
available, and so I keep this result in the present paper.

5This statement is actually a combination of Theorem 5 and Theorem 7 of [22]. Sato gives

these theorems for second-order systems of fixed-points, but, as Sato himself notes in [22, §8],
his proofs can be generalized for first-order cases; there he only considers first-order systems

ID1 ([[PA]]) of fixed-points with the axiom schemata extended to the whole language, but the

extension of the schemata is in fact not necessary for the theorems.



TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS 23

X occurs only positively in B and thus B ∈ I(LN). We set / := {〈x, y〉 | 〈y, x〉 6∈
JB} and we write x / y for 〈x, y〉 ∈ /; namely, for x, y ∈ N, we have x / y ⇔
〈y, x〉 6∈ JB. Since JB is a fixed-point of B, we have

x / y ⇔ ¬A
(
y,
{
u | ¬A(x, {v | 〈u, v〉 6∈ JB})

})
⇔ ¬A

(
y,
{
u | ¬A(x, {v | v / u})

})
⇔ A′′(〈x, y〉, /).

Namely, / satisfies the first condition of Sato’s Lemma. Then, since / is coin-
ductive, we can take its accessible part Acc(/) (= JW[/], see p.12) by Theorem
5.2 (modified for arithmetic), and thus the second condition is also satisfied. a

We have a canonical translation of LN in the language of KPu in which the
translation of each ϕ ∈ LN is of the form of the relativization ϕU to the class U
of urelements; note that since KPu has a constant N for the set of urelements,
ϕU is equivalent to a ∆0-formulae ϕN for all ϕ ∈ LN. Now, by Theorem 9.4,
we have an embedding of KPu in ID1[[PA]], from which we obtain in a parallel
manner to Theorem 7.19 that if KPu ` ϕU then ID1[[PA]] ` ϕ, for all ϕ ∈ LN. A

parallel argument gives an embedding of KPV(−) in ID
(−)
1 over set theory too.

KPω is formulated over L∈, and there is a canonical translation ϕω of LN in L∈.
We can regard KPω as a subsystem of KPu by interpreting ∀x 7→ (∀x ∈ S). Now,
KPu proves N and ω are isomorphic (as LN-structures) and thus KPu ` ϕω ↔ ϕN

for all ϕ ∈ LN. Hence, we also have an embedding of KPω in ID1[[PA]], which
entails that if KPω ` ϕω then ID1[[PA]] ` ϕ, for all ϕ ∈ LN.

Theorem 9.5. KPu and KPω are embeddable in ID1[[PA]].

§10. On the strength of the replacement axiom. We have seen that
the inter-theoretical relation between axiomatic systems of truth changes when
we replace the traditional arithmetical base system by a set-theoretic one. It
is observed that LSC-Repl plays a crucial role in the proof of Sato’s theorem
and thus LT -Repl is the main cause of this disanalogy. Then, when we drop
it, can we still somehow obtain the equivalence of the non-compositional and
compositional systems of truth over set theory? The next theorem shows that
the answer is affirmative but in a trivial sense.

Theorem 10.1. 1. ID−1 + LFix-Sep ⊂L∈ ZF. 2. SC−1 + LSC-Sep ⊂L∈ ZF. 3.

VF−+LT -Sep ⊂L∈ ZF. Hence, in particular, VF−+LT -Sep =L∈ KF−+LT -Sep.

Proof. The proof is a generalization of Theorem 20 of [12]. Let L′∈ be L∈∪{c}
for a fresh constant symbol c. We define an L′∈-theory T by:

ZF + L′∈-Sep + L′∈-Repl + {∃α ∈ On(c = Vα ∧ ‘α is limit’)}
+
{

(∀~x ∈ c)
(
ϕc(~x)↔ ϕ(~x)

)
| ϕ(~x) ∈ L∈

}
,

where ϕc(~x) is the relativization of ϕ(~x) to the set c; note that ϕ here does
not contain c. Due to the Reflection Principle, we have T ⊂L∈ ZF. Now we
will work within T. For each A ∈ I(L∈), we can standardly take the least

fixed-point I
Φ
〈c,∈〉
A

of the inductive operator Φ
〈c,∈〉
A : P(c) → P(c). Consider the

following translation of LFix to L′∈: ∀x and ∃x are translated to ∀x ∈ c and
∃x ∈ c; ∈ is translated to itself; finally x ∈ JA is translated to x ∈ I

Φ
〈c,∈〉
A

. This
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gives an interpretation of ID−1 in T. Since c = Vα for some limit α ∈ On, the
interpretation of LFix-Sep automatically holds. Now, if ID−1 + LFix-Sep ` σ for
σ ∈ L∈, then T ` σc and thus T ` σ due to the reflection axioms postulated for
T. The other claims can be proven similarly. a

Corollary 10.2. KPV− + (Found+
0 ) + (Sep+

0 ) ⊂L∈ ZF.

§11. Schematic reflective closure VF∗[[PA]] over arithmetic. Feferman
[9] presented the notion of schematic reflective closure of schematic systems such
as PA and ZF. Feferman’s original definition is based on the KF-axioms of truth,
but we can generalize this notion with other axiomatizations of truth like VF.

Let LN(P) := LN ∪ {P} for a fresh unary predicate symbol P . We define
Lt(P) := LN(P)∪{T} as the language of axiomatic systems of truth over arith-
metic with a predicate variable P . For a first-order language L ⊃ LN, the
L-system PAL is the extension of PA with the induction schema extended for L.

Definition 11.1. The Lt(P)-system VF(P)[[PA]] is defined as PALt(P) plus the
VF-axioms for Lt(P), formulated for arithmetic, and the following new axiom:

∀x(TpP ẋq↔ Px).P:

Here we assume P is included in our coding. Another Lt(P)-system KF(P)[[PA]]
is defined as PALt(P) plus the KF-axioms for Lt(P) and P; see [11, §3.3].

Definition 11.2 (P -Substitution). Let L′ ⊃ LN(P). A new inference rule,
P -substitution (for L′) is defined as:

ϕ(P )

ϕ
(
ψ(x̂)

) (P -SubstL′)
, for ϕ(P) ∈ LN(P) and ψ(x) ∈ L′.

Lt(P)-systems VF∗[[PA]] and KF∗[[PA]] are defined as VF(P)[[PA]]+(P -SubstLt(P))
and KF(P)[[PA]]+(P -SubstLt(P)) respectively. Feferman [9] proved that KF∗[[PA]]
has the strength of predicative limit and is equivalent to ramified analysis.

We next consider incorporating the P -Substitution rule into first-order systems
of inductive definitions. We define Lfix(P) as LN(P) plus unary predicate JA
associated with each inductive operator form A ∈ I(LN(P)).

Definition 11.3. The Lfix(P)-system ID1(P)[[PA]] is defined as PALfix(P) plus

ClosA(JA), for each A ∈ I(LN(P));

ClosA(Ψ)→ JA ⊂ Ψ, for each A ∈ I(LN(P)) and Ψ ∈ Lfix(P).

The Lfix(P)-system ID∗1[[PA]] is defined as ID1(P)[[PA]] + (P -SubstLfix(P)).

Also, although we will not study them in the present paper, Lfix(P)-systems

ÎD1(P)[[PA]] and ÎD∗1[[PA]] are defined in an obvious manner, and we can show

that ÎD1(P)[[PA]] =LN KF(P)[[PA]] and ÎD∗1[[PA]] =LN KF∗[[PA]].
The form of P -Substitution rule resembles the Bar Rule and might be seen as a

first-order counterpart of the Bar Rule. In fact, the way in which P -Substitution

increases the strength of KF or ÎD1 up to the predicative limit is pretty much the
same as the way in which the Bar Rule increases the strength of second-order
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systems of arithmetic like Σ1
1-AC. However, as we will see, it does not add any

strength to VF[[PA]] and ID1[[PA]].

Lemma 11.4. VF∗[[PA]] ⊂LN ID∗1[[PA]].

Proof. We can embed VF(P)[[PA]] in ID1(P)[[PA]] in the same manner to
Theorem 9.5 (with obvious modifications for arithmetic). This embedding can
be extended to an embedding of VF∗[[PA]] and ID∗1[[PA]] by a straightforward
generalization of Lemma 31 of [11]. We note that this proof actually gives an
interpretation of VF∗[[PA]] in ID∗1[[PA]] that preserves the LN(P)-part. a

§12. Analysis of ID∗1[[PA]]. We will give ordinal analysis of ID∗1[[PA]], which
then gives analysis of VF∗[[PA]] via Lemma 11.4. We use the same notation of [13],
and the following definitions and results except 12.3–12.6 are all straightforward
generalizations of those in [13, §6] (or [21, §9]) for our current setting.

A general treatment of systems of ν-iterated inductive definitions is aimed for
in [13] and thus ζ-ary disjunctions for ζ ≤ Ων have to be taken into consideration
therein, where Ων is the ν-th uncountable cardinal. However, since we focus
on non-iterated inductive definitions here, we can restrict all our arguments to
ζ ≤ Ω1 and accordingly simplify some definitions; we will write Ω for Ω1.

A first-order language L∞fix(P) is defined as

LN(P) ∪ {I<ξA | ξ ≤ Ω & A ∈ I(LN(P))}

where I<ξA is a unary predicate. As in §8, we assume that formulae and sentences
are expressed in their negation normal forms in the present section; cf. [13, §6.1].

For each A(x,X) ∈ I(L(P)) and LN-term t, we write IξA(t) for A(t, I<ξA ); it is

to be noted that the A here and thus IξA(t) may contain P .
We divide the L∞fix(P)-sentences into two types, namely,

∨
-type and

∧
-type,

and assign each L∞fix(P)-formula A its characteristic sequence CS (A) ⊂ L∞fix(P),
rank rk(A) ∈ On, and parameters par(A) ⊂ On.

A true closed LN-literal is of
∧

-type, and a false closed LN-literal is of
∨

-type.
For every closed LN-term t, both Pt and ¬Pt are neither

∧
-type nor

∨
-type.

For an LN(P)-literal A, we set par(A) = CS (A) = ∅ and rk(A) = 0.
For L∞fix(P)-sentences A and B, the sentences A∧B and ∀xA are of

∧
-type, and

the sentences A ∨B and ∃xA are of
∨

-type. We define their ranks, parameters
and characteristic sequences as follows:

rk(A�B) = max{rk(A), rk(B)}+ 1 rk(QxA) = rk(A(0)) + 1

par(A�B) = par(A) ∪ par(B) par(QxA) = par(A(0))

CS (A�B) = {A,B} CS (QxA) = {A(n) | n ∈ N},

where � ∈ {∧,∨}, Q ∈ {∀,∃}, and n is the numeral for n ∈ N.

Let A(x,X) ∈ I(LN(P)) and ξ ≤ Ω. For each closed LN-term s, I<ξA (s) is of∨
-type and ¬I<ξA (s) is of

∧
-type. Their ranks and parameters are defined by:

rk
(
I<ξA (s)

)
= rk

(
¬I<ξA (s)

)
:= ω · ξ; par

(
I<ξA (s)

)
= par

(
¬I<ξA (s)

)
:= {ξ};

CS
(
I<ξA (s)

)
= {IζA(s) | ζ < η}; CS

(
¬I<ξA (s)

)
= {¬IζA(s) | ζ < η}.
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We define a translation Φ? of Lfix(P)-sentences Φ in L∞fix(P): for each A ∈
I(LN(P)) and closed LN-term s, we set J?A(s) := I<Ω

A (s) and ¬J?A(s) := ¬I<Ω
A (s);

all the other atomic Lfix(P)-sentences, the boolean connectives, and the quanti-
fiers are preserved. We observe that, for an L∞fix(P)-sentence A, we have

par(A) := {ξ | I<ξB occurs in A for some B ∈ I(LN(P))}.

We can easily show that rk
(
IξA(s)

)
< ω · ξ + ω and rk

(
J?A(s)

)
= Ω for all

A ∈ I(LN(P)), and thus rk(Φ?) < Ω + ω for every Lfix(P)-sentence Φ.

We say that an L∞fix-sentence F is of
∨Ω

-type, or simply F ∈
∨Ω

, when ξ < Ω

for each occurrence of ¬I<ξA (s) in F (but F may contain I<Ω
A (s)).

We define a set C(α, β) and the collapsing function ψΩ(α), for α, β ∈ On , by
simultaneous recursion on α, in exactly the same manner as in [13] and [20].6

For an ordinal γ, we define an operator Hγ : P(On)→ P(On) by:

Hγ(X) :=
⋂{

C(α, β) | X ⊂ C(α, β) ∧ γ < α
}
.

Given Z ⊂ On, we define a new operator Hγ [Z] by putting Hγ [Z](X) := Hγ(X∪
Z). In the following, the letters H, H′, H′′, . . . will be used as syntactic variables
ranging over operators Hγ [X] for some γ ∈ On and X ∈ P(On), and the word
“operator” will mean such an operator Hγ [X] unless otherwise specified. For
∆ ⊂ L∞fix(P) and F ∈ L∞fix(P), we will write H[∆] for H[

⋃
A∈∆ par(A)] and H[F ]

for H[{F}]; following the convention, we will also write ∆, F for ∆ ∪ {F}.

Definition 12.1. For an operator H and a finite set ∆ of L∞fix(P)-sentences,
the relation H| α

ρ,τ
∆ holds for α, ρ ∈ On and τ ∈ {0, 1}, if and only if α ∈ H(∅),

par(∆) =
⋃
A∈∆ par(A) ⊂ H(∅), and one of the following holds:

(Ax): Ps,¬Pt ∈ ∆ for closed LN-terms s and t with the same value (i.e., sN = tN);
(
∧

): there are F ∈ ∆∩
∧

and αG<α for eachG ∈ CS (F ) such thatH[G]|αG
ρ,τ

∆, G;

(
∨

): there are F ∈
∨
∩∆, G ∈ CS (F ), and αG < α such that H|αG

ρ,τ
∆, G;

(cut): there areA with rk(A) < ρ and α0 < α such thatH| α0

ρ,τ
∆, A andH| α0

ρ,τ
∆,¬A;

(cl): τ = 1, and there exist some A ∈ I(LN(P)), a closed LN-term s, and α0 < α
such that I<Ω

A (s) ∈ ∆ and H| α0

ρ,τ
∆, IΩ

A(s).

Note that the new clause (Ax) is added to the semi-formal system in [13] to deal
with the newly added predicate variable P ; also, τ only take either 0 or 1 since
we need not consider iterations of inductive definitions.

All the basic proof-theoretic properties are standardly shown in the same man-
ner as in [13, §6] (or [20]); in particular,

• Controlled Tautology: H[∆, F ]|2·rk(F )

0,0
∆,¬F (s), F (t), for each F ∈ L∞fix(P)

and closed LN-terms s and t with sN = tN.

6These are defined in [20] and [13] for the sake of ordinal analyses of impredicative systems

up to KPi and ∆1
2-CA plus bar induction; hence, we here include many redundantly large

ordinals for our current purpose, such as ψΩ(εI+1). We could cut off the redundant ones and
simplify the definitions of C(α, β) and ψΩα; we could replace I by Ω and drop the closure
condition for σ 7→ Ωσ in the definition of C(α, β), and only allow Ω in place of κ in ψκα.

Alternatively, we could define the collapsing function in the manner described in [21, §9.4].
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• Predicative Cut-elimination: If Ω 6∈ [ρ, ρ + ωβ), β ∈ H and H| α

ρ+ωβ ,τ
∆,

then H|ϕβα
ρ,τ

∆, where ϕ here denotes the binary Veblen function.7

Theorem 12.2 (Collapsing Theorem). Let X ⊂ On. Suppose γ ∈ Hγ [X],

∆ ⊂
∨Ω

, and X ⊂ C
(
γ + 1, ψΩ(γ + 1)

)
. Then, we have the following

if Hγ [X]| α

Ω+1,τ
∆, then Hγ+3Ω+1+α [X]| ψΩ(γ+3Ω+1+α)

ψΩ(γ+3Ω+1+α),0
∆.

Let ∆(P) = {A1(P), . . . , An(P)} be a finite set of L∞fix(P)-sentences possibly
interspersed with P . For B ∈ L∞fix(P), we denote {A1(B), . . . , An(B)} by ∆(B).

Lemma 12.3. Suppose H| α
0,0

∆?(P) for a finite set ∆(P) of LN(P)-sentences.

Then, for any Lfix(P)-formula Ξ(x) with only x free, we have

H|Ω+ω+α

0,0
∆?
(
Ξ?(x̂)

)
.

Proof. We first note that H| α
0,0

∆?(P) and ∆(P) ⊂ LN(P) imply that nei-

ther (cut) nor (cl) is used in its derivation and also that no I<ξA appears in its
derivation for any ξ ≤ Ω. The claim is shown by induction on α.

If ∆?(P) is obtained by (Ax), then ∆?(P) contains Ps and ¬Pt for some s
and t with sN = tN. Then ∆?(Ξ?) contains Ξ?(s) and ¬Ξ?(t), and thus we get

H|Ω+ω

0,0
∆?(Ξ?) by Controlled Tautology, since par(Φ?) ⊂ {Ω} ⊂ H(∅) for every

Φ ∈ Lfix(P). If ∆?(P) contains a true closed LN-literal, then so does ∆?(Ξ?).
Suppose that the last inference is made by

∧
-rule and there exists F (P) ∈

∆?(P) ∩
∧

with CS (F ) 6= ∅ such that for all G ∈ CS (F ) there is αG < α with
H[G]|αG

0,0
∆?(P), G(P). Since ∆(P) ⊂ LN(P), F should be of the form ∀xΦ?(x)

or Φ?0 ∧Φ?1 for some LN(P)-formulae Φ, Φ0, and Φ1. Hence, each G(P) ∈ CS (F )
is equal to Ψ?(P) for some Ψ ∈ LN(P), H = H[G] for all G(P) ∈ CS (F ), and

CS
(
F (Ξ?)

)
=
{
G(Ξ?) | G(P) ∈ CS (F )

}
;(3)

note that this (3) is not necessarily the case when F is of the form ¬I<ξA (t), and so
the assumption that ∆(P) ⊂ LN(P) is crucial here. By the induction hypothesis,

for each G ∈ CS (F ), we have H|Ω1+ω+αG
0,0

∆?(Ξ?), G(Ξ?), and thus we obtain

H|Ω1+ω+α

0,0
∆?(Ξ?) by

∧
-rule. The other cases are similarly treated. a

The next is a straightforward generalization of well-known results; see [13,
Lemmata 76, 79, and 82] or [21, §9].

Lemma 12.4. For each axiom Φ of ID1(P)[[PA]], it holds that H0|Ω·2+ω

Ω+1,1
Φ?.

Let ID∗1 �n [[PA]] be the system obtained from ID∗1[[PA]] by restricting the number
of applications of P -SubstLfix(P) to at most n-times.

Theorem 12.5. For each n ∈ N, if ID∗1 �n [[PA]] ` Φ(~x) for Φ(~x) ∈ Lfix(P),
then there exists some α < ψΩ(εΩ+1) and γ < εΩ+1 such that Hγ | α0,0 Φ?(~r) for

all closed LN-terms ~r.

7Due to the new clause (Ax), the proof of Reduction Lemma in [13] (or [20, Lemma 3.4.3.5])
needs slight modification to treat the extra case where the cut-formulae are Ps and ¬Ps. Such

a modification is well-known and we refer the reader to [21, §7.3] and [20, Lemma 2.1.5.7].
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Proof. The claim is shown by meta-induction on n. Suppose the claim has
been shown for m, and let n = m+ 1. Put Tn to be:

ID1(P)[[PA]] ∪ {Θ(Ξ) | ID∗1 �m [[PA]] ` Θ(P), Θ(P) ∈ LN(P), and Ξ ∈ Lfix(P)};

obviously, ID∗1 �n [[PA]] ` Φ(~x) implies Tn ` Φ(~x). Let ID∗1 �m [[PA]] ` Θ(~v,P) and
take any Lfix(P)-formula Ξ(u, ~w) and closed LN-terms ~s and ~t. By the induction
hypothesis, we have Hγ | α0,0 Θ?(~s,P) for some α < ψΩ(εΩ+1) and γ < εΩ+1.

Hence, we get Hγ |Ω+ω+α

0,0
Θ?
(
~s,Ξ(û,~t)

)
by Lemma 12.3. Now assume Tn ` Φ(~x)

and take closed LN-terms ~r. It follows from the above and Lemma 12.4 that there
exist some n < ω such that Hγ | Ω·2+ω·2

Ω+1+n,1
Φ?(~r). By Predicative Cut-elimination

we obtain Hγ |ϕ
n
0 (Ω·2+ω·2)

Ω+1,1
Φ?(~r), where ϕn0 (δ) is defined as ϕ0

0(δ) := ϕ0(δ+1) and

ϕk+1
0 := ϕ0(ϕk0(δ)). Then, by Collapsing Theorem we obtain

H
γ+3Ω+ϕn0 (Ω·2+ω·2) | ψΩ(γ+3Ω+ϕn0 (Ω·2+ω·2))

ψΩ(γ+3Ω+ϕn0 (Ω·2+ω·2)), 0
Φ?(~r).

We have γ + 3Ω+ϕn0 (Ω·2+ω·2) < εΩ+1. By Predicative Cut-elimination we get

H
γ+3Ω+ϕn0 (Ω·2+ω·2) |

ϕ
ψΩ(γ+3

Ω+ϕn0 (Ω·2+ω·2)
)
(ψΩ(γ+3Ω+ϕn0 (Ω·2+ω·2)))

0, 0
Φ?(~r),

where ϕ
ψΩ(γ+3Ω+ϕn0 (Ω·2+ω·2))

(
ψΩ

(
γ + 3Ω+ϕn0 (Ω·2+ω·2)

))
< ψΩ(εΩ+1). a

Hence, ID∗1[[PA]] and ID1[[PA]] has the same proof-theoretic ordinal (suitably
defined), and the proof gives their proof-theoretic equivalence for LN(P).

Theorem 12.6. VF[[PA]] =LN VF∗[[PA]] =LN ID1[[PA]] =LN ID∗1[[PA]].

It is shown in [13] that (ID2
1)0 plus the Bar Rule is stronger than (ID2

1)0 and its
proof-theoretic ordinal is ψΩ(εΩ+Ω). Since (ID2

1)0 is the second-order counterpart
of ID1, Theorem 12.6 indicates that P -Substitution does not always behave as
an equivalent first-order counterpart of the Bar Rule.

§13. Discussion and conclusion. The notion of mutual truth-definability
between axiomatic systems of truth is introduced in [11] in an attempt to formally
capture the “conceptual equivalence” of different axiomatic conceptions of truth,
which is a strong equivalence relation of axiomatic systems implying both proof-
theoretic equivalence and mutual conservation. The mutual truth-definability
of KF and VF over ZF follows from Theorems 3.2, 4.8, and 8.10. In an exactly
parallel manner, we can show the mutual truth-definability of VF(P) and KF(P)
over ZF, and this mutual truth-definability can be extended to that of VF∗ and
KF∗ over ZF by Lemma 31 of [11] (modified for set-theoretic base systems).
These make a contrast against the failure of the mutual truth-definability of
those systems over arithmetic. Also, although we do not yet know whether
KF∗ (and VF∗) is stronger than KF (VF resp.) over ZF, Theorem 12.6 gives
another disanalogy in either case: if VF∗ is stronger than VF, then the schematic
reflective closure VF∗ adds deductive power over set theory while it does not
over arithmetic; otherwise, the schematic reflective closure KF∗ does not add
deductive power over set theory while it does over arithmetic.
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Some results of the present paper may also give a new perspective to the so-
called conservativeness argument against deflationism about truth. In brief, the
argument goes as follows: deflationism about truth requires that the truth pred-
icate and its axioms should not enable any new theorem that is not derivable
without them, but adequate axiomatic systems of truth are not conservative
over their base systems and thus deflationism is untenable. Traditionally, in
the context of the conservativeness argument, only axiomatic systems of truth
over arithmetic, such as KF[[PA]], are taken into account and referred to as the
“evidence” of the claim that adequate axiomatic systems of truth are not con-
servative over their bases. In reply to this argument, Field [10] points out that
the failure of conservativeness is caused by extending the arithmetical induc-
tion schema to the truth predicate, and then argues that the extension of the
schema is not justifiable solely in virtue of the concept of truth. Theorem 10.1
suggests that different schemata and base systems have different implications for
the argument. We leave more philosophical discussions on this issue to [14].

For the future study, we list below two open problems:

1. Do KF∗ and VF∗ have the same L∈-theorems as KF and VF?
2. Are KF− and VF− mutually truth-definable?

My conjecture is affirmative to the former and negative to the latter.

§14. Appendix. In this appendix, we will show that SC1 is equivalent to
Sato’s [22, p.106] original system ID+

1 of stage comparison pre-wellorderings.

Definition 14.1. Let L′SC be a sublanguage of LSC defined by

L′SC = L∈ ∪ {RA | A ∈ I(L∈)} = LSC \ {JA | A ∈ I(L∈)}.

The L′SC-system ID+
1 � is defined as ZF+(SC0) with (SC2) restricted to L′SC plus:

(ID1+): ∃z
(
A(x,≺A�z) ∧ ¬A(y,≺A�z)

)
→ x ≺A y, for every A ∈ I(L∈);

(ID2+): x ≺A y ↔ ∃z
(
z ≺A y ∧ A(x,≺A�z)

)
, for every A ∈ I(L∈).

Then we set ID+
1 := ID+

1 � +L′SC-Sep + L′SC-Repl.

Sato showed that the transitivity of ≺A and the converse of (ID1+) are prov-
able in ID+

1 � [22, Lemma 7], and that {x | ∃yA(x,≺A�y)} is a least fixed-point of

each A ∈ I(L∈) provably in ID+
1 � [22, Lemma 6], which induces an embedding [

of LSC into L−SC in which J[A(x) := ∃yA(x,≺A�y).

Lemma 14.2. Let A ∈ I(L∈). The following are provable in ID+
1 �.

1. For all x and y, if y 6≺A x, then ≺A�x⊂≺A�y.

2. For all x ∈ J[A, it holds that A(x,≺A�x).

Proof. 1. Suppose y 6≺A x. Take any w ≺A x. We have A(w,≺A�u) for
some u ≺A x by (ID2+). If w ⊀A y were the case, we would have A(y ≺A�u) by
(ID1+) and thus y ≺A x by (ID2+).

2. Let x ∈ J[A and pick a ≺A-minimal z with A(x,≺A�z). If x ≺A z, there
would be w ≺A z with A(x,≺A�w) by (ID2+), which contradicts the minimality
of z. Hence, we get ≺A�z⊂≺A�x by 1 and thus A(x,≺A�x) by monotonicity. a

Lemma 14.3. ID+
1 �` (SC1)[. Hence, SC−1 is a definitional extension of ID+

1 �.
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Proof. If x ≺A y, then x ∈ J[A and ¬A(y,≺A�x) by (ID2+) and the irreflex-
ivity of ≺A. The converse follows from (ID1+) and Lemma 14.2.2. a

Lemma 14.4. SC1 ` (ID1+) and SC1 ` (ID2+).

Proof. For the first claim, suppose A(x,≺A�z) and ¬A(y,≺A�z) for some z.
We have z 6≺A x by (SC1) and x ∈ JA by ≺A�z⊂ JA. Hence we get ≺A�x⊂≺A�z
by Lemma 4.5 and thus ¬A(y,≺A�x) by monotonicity, which implies x ≺A y by
(SC1). For the second claim, let z ≺A y and A(x,≺A�z). By (SC1) we have
¬A(y,≺A�z), z ⊀A x, and x ∈ JA. We get ≺A�x⊂≺A�z by Lemma 4.5 and thus
¬A(y,≺A�x); hence x ≺A y. The converse follows by Lemma 4.3.1. a
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